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Abstract

The Open Provenance Model (OPM) is a community-driven data model
for Provenance that is designed to support inter-operability of provenance
technology. Underpinning OPM, is a notion of directed acyclic graph, used
to represent data products and processes involved in past computations,
and causal dependencies between these. The Open Provenance Model
was derived following two “Provenance Challenges”, international, multi-
disciplinary activities trying to investigate how to exchange information
between multiple systems supporting provenance and how to query it. The
OPM design was mostly driven by practical and pragmatic considerations,
and is being tested in a third Provenance Challenge, which has just started.
The purpose of this paper is to investigate the theoretical foundations of
this data model. The formalisation consists of a set-theoretic definition of
the data model, a definition of the inferences by transitive closure that are
permitted, a formal description of how the model can be used to express
dependencies in past computations, and finally, a description of the kind
of time-based inferences that are supported. A novel element that OPM
introduces is the concept of an account, by which multiple descriptions of a
same execution are allowed to co-exist in a same graph. Our formalisation
gives a precise meaning to such accounts and associated notions of alternate
and refinement.

Warning It was decided that this paper should be released as early as
possible since it brings useful clarifications on the Open Provenance
Model, and therefore can benefit the Provenance Challenge 3 commu-
nity. The reader should recognise that this paper is however an early
draft, and several sections are incomplete. Additionally, figures rely
on colours but these may be difficult to read when printed in a black
and white. It is advisable to print the paper in colour.
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1 Introduction

In the fine arts and in digital libraries, provenance respectively refers to the
documented history of an art object, or the documentation of processes in a digital
object’s life cycle [27]. The “e-science community” [45] also shows a growing
interest in provenance since it is crucial to ensure reproducibility of scientific
experiments [18].

Over the years, a series of systems have been developed to track and ex-
ploit provenance in many different ways [30]. Following a discussion session
on standardisation at the International Provenance and Annotation Workshop
(IPAW’06) [33, 5], a consensus began to emerge, whereby the provenance re-
search community needed to understand better the capabilities of the different
systems, the representations they used for provenance, their similarities, their
differences, and the rationale that motivated their designs.

Hence, the first and second Provenance Challenges [44, 10] were set up in order
to provide a forum for the community to understand the capabilities of different
provenance systems and the expressiveness of their provenance representations.
The participating teams [36] ran an agreed Functional Magnetic Resonance Imag-
ing workflow, exported provenance information, and implemented pre-identified
“provenance queries” asking typical questions about past execution of the work-
flow. As discussions indicated that there was substantial agreement on a core
representation of provenance, the Open Provenance Model (OPM) [34] (subse-
quently revised by a broader committee [38]) was put forward as a data model by
which systems can exchange provenance information. Such agreed model is being
the focus of a Third Provenance Challenge [48], where its suitability is practically
evaluated by using it as the agreed format for provenance information exchange.

From the outset, because precision matters when systems have to inter-operate,
OPM was described in a technology-agnostic manner, both in natural language
and using a formal notation. The key structure defined in the Open Provenance
Model is an OPM graph, a directed acyclic graph aimed at representing causal,
data and control dependencies of past computations. The specification also out-
lined the kind of inferences that would be permitted over such graphs, but it also
identified various challenges in maintaining consistency. These uncertainties are
not desirable because for systems to be able to inter-operate really, implementers
would have to agree on separate sets of conventions.

Furthermore, a novel element that OPM introduces is the concept of an ac-
count, a description of a past execution; multiple accounts are allowed to co-exist
in a same graph, hereby representing different observations or explanations at dif-
ferent levels of abstraction of a same execution. The foundational underpinning
of accounts was mostly absent from the original specification. In this paper, we
provide a precise meaning for such accounts and associated notions of alternate
and refinement.

Hence, the contribution of this paper is fivefold:
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1. A full formalisation of the Open Provenance Model that clarifies a number
of issues in the first version of the model.

2. The introduction of the concept of APath underpinning the permitted in-
ferences over OPM graphs.

3. A formal definition of the notions of account alternate and refinement.

4. A characterisation of the suitability of OPM to express a description of past
execution.

5. Finally, a characterisation of the kind of time inference allowed by the
model.

2 OPM Overview

The purpose of this Section is to overview the Open Provenance Model [38]
and provide intuition about its key components. The rest of the paper is then
dedicated to its formalisation. This overview relies upon the OPM graphical
representation, which we now introduce. The core data structure that OPM
supports is an OPM graph, consisting of nodes and edges; we first focus on the
former. Physical objects or data products, referred to as artifacts , are represented
as ellipsis, whereas activities that produce and consume artifacts, also known as
processes , are represented by rectangles. These entitities constitute the nodes of
OPM graphs, and are annotated with their respective identifiers. Edges in OPM
graphs are directional, from effect to cause, explaining how an effect resulted
from a cause. Graphs should be read from bottom to top, explaining how effects
are repeatedly derived from causes. An example of OPM graph is displayed in
Figure 1, illustrating how a cake resulted from a baking process and was made
of several ingredients.

In Figure 1, we distinguish three types of edges. An artifact–process edge
indicates that the artifact was generated by the process, e.g. cake–bake. A
process–artifact edge indicates that the process used the artifact, e.g. bake–2
eggs. An artifact–artifact edge states that the former artifact was derived from
the latter, e.g. cake–2 eggs. There is a fourth kind of edge, illustrated in Figure 2:
a process–process edge states that the former process was informed by the latter.
We note that all edges are characterised by the past tense, to denote that they
refer to a past execution. This point is quite crucial: the aim of OPM graphs
is to represent executions that took place in the past (up to the present); OPM
is not seeking to express how future computations may run. A point to note is
that artifacts are instantaneous pieces of data or state, whereas processes have a
duration.

In fact, OPM edges have a more precise definition, based on event ordering.
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Figure 1: Baking Cake

• An artifact was generated by a process, if the process had to initiate its
execution, for the artifact to be produced.

• A process used an artifact, if the artifact had to be present for the process
to be able to complete.

• An artifact was generated from another artifact if the latter had to exist,
for the former to be generated.

• Finally, a process was informed by another process if the latter had to
initiate its execution for the former to complete.

The event orderings explain why edges ‘used’ and ‘generated by’ are not enough
to explain dependencies between outpus and inputs. To express that ‘flour’ was
actually involved in the production of ‘cake’, we use an explicit artifact to artifact
edge.

In OPM, a process may be connected to several artifacts by ‘used’ edges. To
distinguish them, such edges are annotated by a role indicating the functions of
the artifacts in that process. When several artifacts are connected to a same
process by multiple used edges, all of them were required for the process to
complete. Similar conventions apply for edges between artifacts and processes.
Illustrative roles are displayed in Figure 1 only; roles are not displayed in the
following figures to avoid cluttering them.

OPM graphs are intended to be used to describe past executions. Such de-
scriptions may be provided at different levels of abstraction, for instance, higher-
level business-logic oriented description for end-users, whereas lowel-level one
for systems people. Descriptions may even be produced by different observers.
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Figure 2: Baking a Bad Cake

While Figure 1 captures the provenance of a cake, as described by a waiter to a
customer, the baker can provide a different interpretation of what occurred, as
illustrated in Figure 2. The latter description indicates that one of the eggs was
actually fried, while the baked cake actually used a single egg. Both descriptions
pertain to a same execution, but they simply provide different information about
it. Each description is referred to as an account . Hence, OPM allows for both
accounts to be combined in a single graph, as illustrated by Figure 3.

We use colouring to encode account membership. The original baking activity
is described with orange edges, whereas the baking/frying activity is encoded
with black edges. Blue is used for edges belonging to both activities. Account
membership of nodes is “inherited” from the edges they are incident to.

Interestingly, properties about accounts can be expressed. The orange and
black accounts are said to overlap because they share common nodes (the original
input ingredients and the final cake). More precisely, these accounts are alternate
versions of a same story, namely that the cake was derived from ‘2 eggs’ (and
the other ingredients). In the black account, this dependency is inferred by
transitivity of (cake, 1 egg) and (1 egg, 2 eggs). Furthermore, the black account
is a refinement of the orange accout, because all data derivation of the orange
account also hold in the black account.

Finally, there are further constraints over OPM graphs to make them legal.
Within an account, we require an artifact to be generated by a single process, to
ensure that we do not have conflicts about the artifact’s origin. Also, within an
account, we require the graph to be acyclic, so that it accurately expresses causal
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Figure 3: Original and Refined Account of Baking Process

dependencies between processes and artifacts. Having overviewed the key aspects
of the Open Provenance Model, we are now ready to undertake its formalisation.

3 Formalisation

3.1 Definition

Figure 4 provides a definition of the Open Provenance Model, which we now para-
phrase. The set OPMGraph, the set of all possible OPM graphs, is expressed as
a dependent type1. In addition to sets of process identifiers, artifact identifiers,
roles, account, domain values, and Edges an OPM graph also contains an account
mapping function, a value mapping function and account relation declarations.
Nodes are identified by labels, and can be of two2 sorts: processes or artifacts.
Edges can connect any two nodes, and hence can be of four sorts as per the de-
pendencies introduced in Section 2: Used , WasGeneratedBy , WasDerivedFrom,
WasInformedBy . Edges of the first two sorts are annotated with a role charac-
terising the nature of the dependency.

1We use a dependent type [40, 3] to characterise the constraints that exist between the
components of an OPM graph. Specifically, we use a dependent sum type, which extends the
usual Cartesian product to model pairs where the type of the second component depends on the
first. In our notation, all components upon which types depend are made explicit as parameters
as the type OPMGraph. Here, for instance, the type of ValueOf depends on Node (defined as
ArtifactId ∪ ProcessId and Account).

2The original OPM specification [38] introduces a notion of agent that we have not formalised
in this document.
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An OPMGraph is a dependent type defined as follows

OPMGraph(ProcessId ,ArtifactId , Role,Account , V alue,Edge)

= AccountOf × ValueOf × AccountRelation

where

ProcessId : a primitive set of process identifiers
ArtifactId : a primitive set of artifact identifiers

ProcessId ∩ ArtifactId = ∅
Role : a primitive set of roles

Account : a primitive set of accounts
V alue : an application-specific set of values
Node = ProcessId ∪ ArtifactId
Used = ProcessId ×Role× ArtifactId

WasGeneratedBy = ArtifactId ×Role× ProcessId
WasDerivedFrom = ArtifactId × ArtifactId
WasInformedBy = ProcessId × ProcessId

AccountOf = Node ∪ Edge → P(Account)
ValueOf = Node × Account → P(V alue)
Overlap = P(Account)

Alternate = P(Account)
Refinement = Account× Account

AccountRelation = P(Overlap)× P(Alternate) × P(Refinement)
with constraint

Edge ⊆ Used ∪WasGeneratedBy ∪ WasDerivedFrom
∪ WasInformedBy

Concretely, an instance of an OPM graph is therefore a tuple of 9 elements

gr = 〈ProcessId ,ArtifactId , Role,Account , V alue,Edge, accountOf , valueOf , aRel〉

where

accountOf is of type AccountOf

valueOf is of type ValueOf

aRel is of type AccountRelation

Figure 4: Timeless Causality Graph Data Model
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In OPM, every node and edge can be associated with 0, 1, or more accounts,
which is captured by the AccountOf function type. We note that the domain
of a function of type AccountOf is exactly the set of nodes and edges defined
for the current graph. Likewise, nodes can be associated with domain specific
information, which is beyond the scope of this formalisation, but this association
is expressed by the ValueOf function type. (We note that different accounts can
associate a same node to different values.) Finally, a set of declarations can assert
the accounts that overlap, are alternate or are refinements of each other.

Given instance of an OPM graph represented by the tuple of 9 elements

gr = 〈PId,AId,R,Acc, V al, E, aOf , vOf , aRel〉 ∈ OPMGraph,

we introduce a convenient notation for accessing the components of gr:

ArtifactId gr = AId

ProcessId gr = PId

Nodegr = ArtifactId gr ∪ ProcessId gr

Edgegr = E

Rolegr = R

Accountgr = Acc

accountOf gr = aOf

valueOf gr = vOf

accountRelationgr = aRel

Likewise, we introduce notations Used gr, WasGeneratedBygr, WasDerivedFromgr,
WasInformedBygr to denote the various subsets of edges of a graph gr. For in-
stance, Used gr = {e|e ∈ Edgegr ∧ e ∈ Used(ProcessId gr, Rolegr,ArtifactId gr)}.
Hence, for any graph gr, the following equality holds:

Edgegr = Used gr ∪WasGeneratedBygr ∪WasDerivedFromgr ∪WasInformedBygr

The above notations will prove convenient when referring to several OPM graphs
at the same time.

For a given OPM graph gr, artifacts and processes of gr are respectively
elements of the sets ArtifactId gr and ProcessId gr. For any a ∈ ArtifactId gr, the
account membership of a is accountOf gr(a). For any p ∈ ProcessId gr, the account
membership of p is accountOf gr(p).

Note that any edge e ∈ Edgesgr for an OPM Graph gr, either belongs to

Used gr ∪WasGeneratedBygr

and is of the form e = 〈x1, r, x2〉 with r some role, or belongs to

WasDerivedFromgrorWasInformedBygr
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and is then of the form e = 〈x1, x2〉. In both cases, we introduce the notation
effect(e) to denote the effect node of e, i.e. x1, and cause(e) to denote the cause
node of e, i.e. x2. We also say that x1 and x2 are incident to e, and denote
this by isIncident(xi, e) for i = 1, 2. Note that edges are considered to be equal
simply if they are equal in the mathematical sense, i.e. they are the same tuple.

To ensure that cause and effect of an edge belong to the same account as the
edge, a node “inherits” the accounts defined by the edges it is cause or effect of.
Formally, this is expressed as follows.

Definition 1 (Effective Account) For a given OPM graph gr, we define the
function

effectiveAccountOf gr : Nodegr ∪ Edgegr → P(Account)

as follows:

• If x ∈ Nodegr, then

effectiveAccountOf gr(x) = accountOf gr(x) ∪⋃
{accountOf gr(e) | e ∈ Edgegr and isIncident(x, e)}

• If x ∈ Edgegr, then

effectiveAccountOf gr(x) = accountOf gr(x)

As suggested by Section 2, we can consider an account as a colouring of a
graph. An account view is the subgraph obtained by selecting nodes and edges
with a given colour. Formally, this operation is defined as follows.

Definition 2 (Account View) For a given OPM graph gr and an account α,
we define the account view of gr according α, denoted by view(gr, α), as the OPM
graph with the following constituents:

• Nodeview(gr,α) = {n ∈ Nodegr | α ∈ effectiveAccountOf gr(n)}

• Edgeview(gr,α) = {e ∈ Edgegr | α ∈ effectiveAccountOf gr(e)}

• accountOf view(gr,α) = λx.{α}

• valueOf view(gr,α) = λx.λα′. if (x ∈ Nodeview(gr,α) ∧ α′ = α)
then valueOf gr(x, α′)
else ∅

• accountRelationview(gr,α) = {∅, ∅, ∅}.
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In this definition, accountOf for a view is the constant function that maps each
node to α; we can see from this definition that we simply ignore any information
pertaining to other accounts. The valueOf function in the view is the restriction
of valueOf gr on Nodeview(gr,α)×{α}. This definition can be generalised to a view
over several accounts by using the union operator defined in Section 3.6.

An account view is considered legal if it does not contain any cycle, and if it
contains at most one 〈a, r, p〉 edge (of sort WasGeneratedBy) for any artifact a.

Definition 3 (Legal Account View) For an OPM graph gr and an account
α ∈ Account, the account view view(gr, α) is considered to be legal if

1. it is acyclic,

2. if for any edges 〈a1, r1, p1〉, 〈a1, r2, p2〉 ∈ Edgegr, then 〈a1, r1, p1〉 = 〈a1, r2, p2〉.

3. for any n ∈ Nodegr, valueOf gr(n, α) is not empty, if α is in effectiveAccountOf gr(n).

By extension, a graph is said to be legal if all its account views are legal.

Semantically, a legal account view is important since it provides a valid causality
graph (without cycle) and where at most one edge explains how each artifact is
derived from a process.

3.2 Definitional Constraints

Whilst Section 3.1 introduces a data model for OPM graphs, this syntactic frame-
work does not enforce the meaning of edges intuitively introduced in Section 2.
To remedy this problem, at least partially, in this section, we introduce a set of
rules providing an explanation for some of the OPM edges. Such explanation
takes the form of a subgraph expansion. First, we present the rules graphically,
before formalising them.

Figure 5 graphically presents three rules, using the following colour conven-
tion, for the sake of conciseness. In black, we find patterns of OPM graphs. In
red, we represent the graph elements that can be added to a graph, by application
of the rule. We now describe these rules.

Rule (Completion) states that if an artifact A1 was derived from an artifact
A0, then there exists a process P such that A1 was generated by P and P used
A0. The rule does not specify which process was involved, nor the respective roles
of these artifacts with regard to this process, but it states that such a process P
existed.

Rule (Equivalence 1) states that if there is an artifact that was generated
by a process P0 and used by a process P1, then P1 was informed by P0. Rule
(Equivalence 2) is the opposite to (Equivalence 1). If a process P1 was informed
by P0, then there exists an artifact that was used by the former and generated
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A1

P

A0

 

(Completion)

P1
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(Equivalence 1)

P1

A

P0

 

(Equivalence 2)

Figure 5: Definitional Constraints

by the latter; (Equivalence 2) however does not specify which artifact A was
involved, nor its roles with regard to the two processes.

We note that rules (Equivalence 1) and (Equivalence 2) really state an equiv-
alence: a WasInformedBy edge contains as much information as the presence
of an Artifact and associated Used and WasGeneratedBy edges. There is how-
ever no opposite to (Completion), since replacing a WasDerivedFrom edge by a
process is a lossy transformation. Indeed, let us consider the hypothetical oppo-
site transformation: the presence of a process does not imply the existence of a
WasDerivedFrom edge: for instance, when artifact A0 is used after artifact A1

was generated, no such WasDerivedFrom dependency can possibly exist.
Definitional constraints should be considered in conjunction with the legal

notion of account view (see Definition 2). For instance, the left hand of Figure 6
depicts an artifact A2 derived from two artifacts A0 and A1. Rule (Completion)
can be applied twice here, but the legality constraint requires an artifact to be
generated from a single process in a given view. Hence, the right hand side of
Figure 6 displays the only possible completion, where introduced process P used
both A0 and A1, and generated A2.

Likewise application of rule (Completion) to the left graph of Figure 7 entails
that there is a process that used A0 and that generated A1, but the legality
constraint implies that this process is P . Hence, we can derive that P used A0.
This is a derived (Completion) rule, which is a consequence of the (Completion)
rule and the legality definition of account views (Definition 3).

(Completion) rule and (Equivalence 2), which both introduce a new node in
a graph, can result in some uncertainty as illustrated by Figures 8 and 9. In
Figure 8, it is unknown whether the two processes P0 and P1 introduced by the
(Completion) rule are identical. Likewise, in Figure 9, it is not known whether
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P

Figure 6: Process insertion

A2

A0

P

A1

⇒

A2

A0

P

A1

Figure 7: Derived (Completion) Rule

the two artifacts A0 and A1 introduced by Equivalence 2 are the same.
Hence, repeated application of definitional constraints can result in multiple

graphs. While this kind of uncertainty may be regarded by some as problematic,
we will establish that the uncertainty due to definitional constraints does not af-
fect inferences that OPM graphs allow us to perform. Specifically and intuitively,
the uncertainty in the topology does not affect the chains of artifacts underpin-
ning OPM graphs. We establish such a property formally in the paper, after we
introduce the inferences that are permitted by OPM graphs.

Beforehand, in Figure 10, we summarise the definitional constraints intro-
duced in this section. The constraints are expressed with judgement, where
premises are expressed above a bar, and consequents below it. Importantly, the
rules make it explicit how accounts can be assigned to the created edges. (They
are implicitly assigned to nodes with the effectiveAccountOf function.) To facili-
tate their reading, equations are given the same name as the corresponding rules
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A0

A1 A2

⇒

A0

A1

P0

A2

P1

Figure 8: Uncertainty: Is P0 = P1 or P0 6= P1?

P0

P1 P2

⇒

P0

P1

A0

P2

A1

Figure 9: Uncertainty: Is A0 = A1 or A0 6= A1?

in Figure 5.
For equations (Equivalence 2) and (Completion), we note that the new edges

belong to the same account as the edge that is “expanded”. For equation (Equiva-
lence 1), the two existing edges in the premise of the judgement can be member of
different accounts. There are two possibilities for the account membership of the
resulting WasInformedBy edge. In the first case, a conservative inference is that
the edge belongs to the intersection of both sets of accounts: its interpretation
is that if both accounts state it, then the inference is valid. In the second case,
a more permissive inference is that the edge belongs to the union of the account
sets, meaning that it was inferred because we relied on several accounts to reach
this knowledge. There is no right or wrong solution: application domain design-
ers will have to decide how (Equivalence 1) should proceed according to their
needs. It should be noted that the conservative and permissive interpretations of
(Equivalence 1) only apply to inferred edges. In the permissive interpretation,
if an inferred edge belongs to accounts α1 and α2, it does not mean that such
an inference could have been carried out in α1 or α2 alone. Instead, it means
that both the knowledge of α1 and α2 was necessary to infer this edge. We note
that such an interpretation of inferred edges, differs from the interpretation of
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For any OPM graph gr, the application of a definition constraint results in a new
graph gr′ that extends gr according to the following rules. The resulting graph
gr′ is said to be an expansion of gr.

〈p2, r3, a2〉 ∈ Used gr ∧ 〈a2, r2, p1〉 ∈WasGeneratedBygr

〈p2, p1〉 ∈WasInformedBygr
′ (Equivalence 1)

with accountOf gr
′
(〈p2, p1〉)

= accountOf gr(〈p2, r3, a2〉) © accountOf gr(〈a2, r2, p1〉)
where symbol © denotes ∩ or ∪.

〈p2, p1〉 ∈WasInformedBygr

∃a2, r2, r3, 〈p2, r3, a2〉 ∈ Used gr
′

∧ 〈a2, r2, p1〉 ∈WasGeneratedBygr
′

(Equivalence 2)

with accountOf gr
′
(〈p2, r3, a2〉) = accountOf gr(〈p2, p1〉)

accountOf gr
′
(〈a2, r2, p1〉) = accountOf gr(〈p2, p1〉)
ArtifactId gr

′
= ArtifactId gr ∪ {a2}

valueOf gr
′
(a2) = v for some value v

〈a2, a1〉 ∈WasDerivedFromgr

∃p1, r1, r2, 〈a2, r2, p1〉 ∈WasGeneratedBygr
′

∧ 〈p1, r1, a1〉 ∈ Used gr
′

(Completion)

with accountOf gr
′
(〈a2, r2, p1〉) = accountOf gr(〈a2, a1〉)

accountOf gr
′
(〈p1, r1, a1〉) = accountOf gr(〈a2, a1〉)
ProcessId gr

′
= ProcessId gr ∪ {p1}

valueOf gr
′
(p1) = v for some value v

Figure 10: Expansion of Graph by Definitional Constraints
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asserted edges discussed in Section 3.6.

Definition 4 (Maximally Expanded Graph) For any legal OPM graph gr,
gr is maximally expanded if gr is closed under the application of definitional
constraints of Figure 10.

In principle, we coud apply (Equivalence 2) multiple times to an edge. How-
ever, already after the first time, it would be “closed” for that edge, so we do not
gain anything by applying the inference to the same edge again.

Definition 5 (Legal Expansions of Graph) For any legal OPM graph gr, the
set of all possible expansions of a graph, noted as expansions(gr), is defined as the
set of legal, maximally expanded graphs derived from gr, by successive application
of the definitional constraints of Figure 10.

Whilst the expansion rules introduced in this Section provide a useful clari-
fication about the meaning of OPM graphs, they do not fully capture the time
dependencies introduced in Section 2. This aspect of the model is the focus of
Section 5.

3.3 Inference Rules

The purpose of a provenance graph is to explain how an artifact is causally
dependent on other artifacts and processes, by means of one or more one-step
dependencies introduced in the previous section. To formalise this notion, we
define three multistep relations WasDerivedFrom∗,Used∗,WasGeneratedBy∗. We
note that relations Used∗,WasGeneratedBy∗ are intented to be inferred, whereas
WasDerivedFrom∗ can be both inferred and asserted. In the latter case, someone
can use an edge belonging to WasDerivedFrom∗ to assert that an artifact was
derived from another, using one or more derivation steps.

We note that WasInformedBy is not transitive. Indeed, let us consider the
OPM graph gr, such that 〈p2, p1〉 ∈WasInformedBygr and 〈p1, p0〉 ∈WasInformedBygr,
where processes p0, p1, p2 are scheduled as follows.

p0

p1

p2

The edge 〈p2, p1〉 ∈ WasInformedBygr states that p2 completes after p1 starts;
likewise 〈p1, p0〉 ∈ WasInformedBygr states that p1 completes after p0 starts.
However, there is no overlap between p2 and p0 and p2 completes before p0 even
started. So, in this case, the relation 〈p2, po〉 does not hold. So, we conclude that
the relationship WasInformedBy is not transitive.

Therefore, to distinguish asserted edges from inferred edges, we distinguish
the set Edge, denoting all asserted edges and expanded edges by definitional
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constraints, from Edge∗ denoting the set of all inferred multistep edges. We then
introduce OPMGraph∗ as the set of all OPM Graphs with multistep edges, in
which the accountOf function is also extended to take elements of Edge∗ in its
domain.

An OPMGraph∗ is a dependent type defined as follows

OPMGraph∗(ProcessId ,ArtifactId , Role,Account , V alue,Edge, Inferred)

= AccountOf × ValueOf × AccountRelation

where

WasDerivedFrom∗ = ArtifactId × ArtifactId

Used∗ = ProcessId × ArtifactId

WasGeneratedBy∗ = ArtifactId × ProcessId

AccountOf = Edge ∪ Inferred → P(Account)

with constraint

Edge ⊆ Used ∪WasGeneratedBy ∪ WasDerivedFrom

∪ WasInformedBy

Inferred ⊆ WasDerivedFrom∗ ∪ Used∗ ∪WasGeneratedBy∗

Similarly to previously, we define convenience notations. For any graph gr,
WasDerivedFrom∗gr denotes the subset of asserted edges {e|e ∈ Edgegr ∧ e ∈
WasDerivedFrom∗}. Likewise, Inferred gr denotes3 the set of inferred edges of gr.
All other notations and definitions remain the same as in OPMGraph.

Figure 11 summarises the inferences allowed on OPM graphs. In all three
inferences, we observe that the middle artifact is “eliminated”, by creating a new
edge that bypasses the artifact, by connecting an effect derived from the artifact
to a cause that resulted in the artifact. (We note that such an inference is not
allowed when an artifact appears in the context of two process, as described
above.). The notation (∗) is used in the figures to denote a one step dependency
or a multistep dependency. The inferred edge is always a multistep dependency.

While Figure 11 presents all the valid inference rules that prevail for OPM
graphs without asserted multistep edges, it is necessary to cater for asserted
WasDerivedFrom∗ edges, by the multistep (Completion∗) of Figure 12. (We note
that such a rule is superfluous for edges WasDerivedFrom∗ that are inferred, since
successive application of the (Completion) Rule and artifact elimination rule infer
the same graph). We note that this inference rule leads to the same potential
ambiguities as its one-step version.

Figure 13 formalises all permitted transitions. Equations (AssertedD), (AssertedU)
and (AssertedG) deal with asserted edges: any asserted edge also belongs to the

3We have not found the need to refer to subsets of inferred edges, so we did not define
accessors for these. We note that WasDerivedFrom∗gr allows access to asserted edges of that
kind.
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set of multistep edges. In particular, we note that equation (AssertedD) takes care
of both one-step and multistep asserted edges. Equations (Transitivity AAA),
(Transitivity PAA) and (Transitivity AAP) specify which multistep relations are
transitive. Equation (Completion∗) is the multistep completion rule.

3.4 Notion of an A-Path

The inference rules indicate that we can infer new edges by bypassing artifacts
(occurring in a suitable context). This means that, as far as causal dependencies
are concerned, a node is dependent on another if there is a path from the former
to the latter involving artifacts as intermediary nodes. Such a notion is captured
by the notion of an A-Path, i.e. a path involving artifacts as intermediary nodes.

Definition 6 (A-Path) For any OPM Graph gr, an A-Path between two nodes
x, y,∈ Nodegr, which we note isAPathgr(x, y), is defined as a sequence of nodes
n0, . . . , nm ∈ Nodegr, such that

1. n0 = x, nm = y, ni ∈ ArtifactId gr for any 0 < i < m, and

2. there is a sequence of edges e0, . . . , em−1 ∈ Edgegr such that effect(ei) = ni
and cause(ei) = ni+1 for 0 ≤ i < m.

In some situations, it is convenient to be able to state that among a set of
nodes N (typically a strict subset of Nodegr), there exists an A-Path.

Definition 7 (A-Path on Node Subset) For any OPM Graph gr, there ex-
ists an A-Path between two nodes x, y restricted to set N , which we note isAPathgr(x, y,N),
if isAPathgr(x, y) holds and is a sequence of nodes n0, . . . , nm ∈ N .

In Section 3.2, we indicated that the uncertainty produced by the introduction
rules (Completion) and (Equivalence 2) did not affect the kind of inferences that
are permitted over OPM graphs. We formalise this property by the following
theorem, establishing that whatever the uncertainty introduced, the set of A-
Paths is preserved.

Theorem 1 For any OPM Graph gr, and for any gr′ ∈ expansions(gr), the set
of all A-Paths for gr is equal the set of all A-paths for gr′ restricted to Nodegr:

isAPathgr(x, y) iff isAPathgr
′
(x, y,Nodegr).

Proof 1 For any two nodes x and y in gr, we will actually show that if there is
an A-path from x to y in gr′, then that path already existed in gr. (The converse
implication is trivial since gr is a subgraph of gr′.) Thereto, observe that the
definitional constraint rules do not introduce any new edges between artifacts.
So, we only have to worry about the first edge on the given path, if x is a process
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For any OPM graph gr, the application of the inference rules results in a new
OPMgraph∗ gr′ that extends gr according to the following rules. The resulting
graph gr′ is said to be inferred from gr.

〈a2, a1〉 ∈WasDerivedFromgr or 〈a2, a1〉 ∈WasDerivedFrom∗gr

〈a2, a1〉 ∈ Inferredgr
′ (AssertedD)

〈p, a〉 ∈ Usedgr

〈p, a〉 ∈ Inferredgr
′ (AssertedU)

〈a, p〉 ∈WasGeneratedBygr

〈a, p〉 ∈ Inferredgr
′ (AssertedG)

〈a2, a3〉 ∈ Inferredgr
′ ∧ 〈a3, a1〉 ∈ Inferredgr

′

〈a2, a1〉 ∈ Inferredgr
′ (Transitivity AAA)

with accountOf gr
′
(〈a2, a1〉)

= accountOf gr(〈a2, a3〉)© accountOf gr(〈a3, a1〉)

〈p, a2〉 ∈ Inferredgr
′ ∧ 〈a2, a1〉 ∈ Inferredgr

′

〈p, a1〉 ∈ Inferredgr
′ (Transitivity PAA)

with accountOf gr
′
(〈p, a1〉)

= accountOf gr
′
(〈p, a2〉)© accountOf gr

′
(〈a2, a1〉)

〈a1, p〉 ∈ Inferredgr
′ ∧ 〈a2, a1〉 ∈ Inferredgr

′

〈a2, p〉 ∈ Inferredgr
′ (Transitivity AAP)

with accountOf gr
′
(〈a2, p〉)

= accountOf gr
′
(〈a1, p〉)© accountOf gr

′
(〈a2, a1〉)

〈a2, a1〉 ∈WasDerivedFrom∗gr

∃p1, r1, r2, 〈a2, r2, p1〉 ∈WasGeneratedBygr
′

∧ 〈p1, r1, a1〉 ∈ Inferredgr
′

(Completion∗)

with accountOf gr
′
(〈a2, r2, p1〉) = accountOf gr(〈a2, a1〉) = accountOf gr

′
(〈p1, r1, a1〉)

ProcessIdgr
′

= ProcessIdgr ∪ {p1}
valueOf gr

′
(p1) = v for some value v

Figure 13: Transitive Closures
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node, and about the last edge on the given path, if y is a process node. We will
now argue that in both cases, there is no problem.

If x is a process node and the first edge on the path was not already in gr,
that edge must have been created by Equivalence rule 2. But then the edge ends
in an added artifact node that has no further edge to another artifact node. So
that edge cannot lie on the A-path.

If y is a process node and the last edge on the path was not already in gr,
again that edge must have been created by Equivalence rule 2. But then the edge
starts in an added artifact node that has no incoming edge from another artifact
node. So again that edge cannot lie on the A-path.

The above theorem can be rephrased by saying that for any OPM Graph gr,
and for any gr′ ∈ expansions(gr), there are no nodes x, y ∈ Nodegr such that
isAPathgr

′
(x, y) but ¬isAPathgr(x, y).

Theorem 2 For any OPM Graph gr, and for any gr∗ ∈ OPMGraph∗ inferred
from gr, the set of all A-Paths for gr is equal to the set of all A-paths for gr∗

restricted to Nodegr:

isAPathgr(x, y) iff isAPathgr
∗
(x, y,Nodegr)

Proof 2 This is obvious. Indeed, the three transitivity inference rules only short-
cut A-paths. Furthermore, the Completion* rule introduces a process node and
hence does not influence the A-paths.

Theorem 3 For any OPM Graph gr, and for any OPM Graph∗ gr∗ maximally

inferred from gr, isAPathgr(x, y) if and only if there exists e ∈ Inferred gr
∗

such
that x = effect(e) and y = cause(e).

Proof 3 The “if” implication follows from the previous theorem. The “only-
if” implication follows because any A-path can be shortcut to a single *-edge by
repeated application of the transitivity inference rules.
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3.5 Account Relations

Having defined the concept of A-Path and associated transitive inferences over
OPM graphs, we are now in position to characterise the remaining notion of
“account relation” introduced in Figure 4. We first discuss the three different
kinds of relations over accounts that can be declared in OPM graphs, namely
overlap, alternate and refinement.

We note that such account relations are explicitly declared in an OPM graph,
so that the processor of an OPM Graph does not need to read the graph fully, and
reason in order to establish such relations. Hence, the declarations are introduced
for efficiency reasons.

Overlap Two accounts are overlapping if they have at least one node in com-
mon, i.e. they refer to some common artifact or process. We formalise this notion
and generalise it to m accounts.

Definition 8 (Overlapping Declaration) For any OPM graph gr, m accounts
α0, . . . , αm−1 (with m > 1) are said to be overlapping, if {α0, . . . , αm−1} ∈
Overlapgr.

Definition 9 (Legal Overlapping Declaration) For any OPM graph gr, a
declaration of m overlapping accounts {α0, . . . , αm−1} ∈ Overlapgr is legal, if there
is a node n ∈⊆ Nodegr such that αi ∈ effectiveAccountOf gr(n) for 0 ≤ i < m.

We note that if {α0, α1} ∈ Overlapgr and {α1, α2} ∈ Overlapgr, it does not
imply that {α0, α2} ∈ Overlapgr, since α0, α1 may overlap over a set of nodes
different than the set of nodes over which α1, α2 overlap. Hence, Overlap is
not transitive. Furthermore, we made this relation n-ary to be able to express
the overlapping property over more than two accounts, since it could not be
expressed in terms of a binary relation. We also note that no common edge is
required for overlapping accounts, but dependencies are the subject of alternates
and refinements.

Alternate Two accounts can overlap over some artifacts and processes but
may be descriptions of two totally different activities. For instance, X used a
dictionary to lookup the definition of a word and Y used the same dictionary as
a door stopper. These two accounts are unrelated, except for the dictionary over
which they overlap. On the other hand, the accounts corresponding to the diaries
of the three authors of this paper on 11/03/09, have in common the fact that
they met at the University of Hasselt, brainstormed OPM, defined the notion A-
Path, and drafted this paper, while also containing non-overlapping descriptions
of their respective activities in the morning and evening. Such accounts, with a
common story, possibly expressed with different levels of details are said to be
alternate. We formalise this notion as follows.
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Definition 10 (Alternate Declaration) For any OPM graph gr, m accounts
α0, . . . , αm−1 (with m > 1) are said to be alternate, if {α0, . . . , αm−1} ∈ Alternategr.

Definition 11 (Legal Alternate Declaration) For any OPM graph gr, a dec-
laration of m alternate accounts {α0, . . . , αm−1} ∈ Alternategr is legal, if there is a
non-empty set P ⊆ Nodegr×Nodegr, such that for any 〈x, y〉 ∈ P , isAPathgri(x, y)
for all gri = view(gr, αi) with 0 ≤ i < m. The set P is said to be the set of A-
Paths over which the accounts provide alternate descriptions. (We note that the
actual path connecting x and y does not matter, provided that some connection
exists beween x and y).

Refinement A specific and very common case of alternate description occurs
when one account provides more details than another over a same execution.
Such a notion is being referred to as refinement. Previously introduced Figures 1
and 2 are an example of account refinement. While the relations Overlap and
Alternate were n-ary and symmetric, a refinement is a binary and asymmetric
relation. We formalise this notion as follows.

Definition 12 (Refinement Declaration) For any OPM graph gr, α0 is said
to be a refinement of α1, if 〈α0, α1〉 ∈ Refinementgr.

Definition 13 (Legal Refinement Declaration) For any OPM graph gr, a
declaration of a refinement 〈α0, α1〉 ∈ Refinementgr is legal, if the set

P = {〈x, y〉 | 〈x, y〉 ∈ Nodegr1 × Nodegr1 and isAPathgr1(x, y)},

is not empty and such that for any 〈x, y〉 ∈ P , isAPathgr0(x, y), where gri =
view(gr, αi) with i = 0, 1. The set P is said to be the set of A-Paths over which
α0 provides a refined description of α1.

In other words, a refinement of α1 into α0 is such that any A-Path of α1 is also
an A-Path of α0. Hence, such A-Paths constitute the alternate descriptions of
these two accounts. Hence, every refinement is also a legal alternate description.
We summarise such property as follow. For any OPM graph gr,

Overlapgr ⊇ Alternategr ⊇ Refinementgr.

3.6 Graph Operations

To do:Provide more rationale for these operations, justify disjunctive and con-
junctive interpretations. Should we introduce graph renaming, where graph ids
are being renamed, everything else being equal.

In this section, we define the OPM graph operations, union and intersection.
Before considering these, we need to understand what it means to have more
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than one accounts on a asserted edge. According to a disjunctive interpretation
it means that the asserted edge is there according to at least one of the accounts.
According to a conjunctive interpretation, it means means that the asserted edge
is there according to each of the account.

Both interpretations are reasonable, and therefore are reflected in the union
and intersection operations. Both rely on a union operator© over sets of accounts
(and sets of values). In the conjunctive case, the intersection is used to only
consider consider the accounts that are common among the common elements of
both graphs. In the disjunctive case, the union is chosen on the assumption that
when two OPM graphs are joined, we still would like to keep all possible accounts
from the common elements of both graph.

We note that such interpretations of accounts on asserted edges differ from
the permissive and conservative interpretations of inferred edges.

Definition 14 (OPM Graph union) Let gr1 and gr2 be two OPM graphs. We
define the union of gr1 and gr2, denoted gr1 t gr2, as follows:

Nodegr1tgr2 = Nodegr1 ∪ Nodegr2

Edgegr1tgr2 = Edgegr1 ∪ Edgegr2

accountRelationgr1tgr2 = accountRelationgr1 ∪ accountRelationgr2

where symbol © denotes ∩ or ∪. Furthermore, accountOf gr1tgr2 is the point-wise
union of accountOf gr1 and accountOf gr2 defined as:

accountOf gr1tgr2(x)

= accountOf gr1(x) if x ∈ DOM(accountOf gr1(x)) \DOM(accountOf gr2(x))

= accountOf gr2(x) if x ∈ DOM(accountOf gr2(x)) \DOM(accountOf gr1(x))

= accountOf gr1(x)© accountOf gr2(x)

if x ∈ DOM(accountOf gr1(x)) ∩DOM(accountOf gr2(x))

and likewise valueOf gr1tgr2 is the point-wise union of valueOf gr1 and valueOf gr2

defined as:

valueOf gr1tgr2(x)

= valueOf gr1(x) if x ∈ DOM(valueOf gr1(x)) \DOM(valueOf gr2(x))

= valueOf gr2(x) if x ∈ DOM(valueOf gr2(x)) \DOM(valueOf gr1(x))

= valueOf gr1(x)© valueOf gr2(x)

if x ∈ DOM(valueOf gr1(x)) ∩DOM(valueOf gr2(x))

Definition 15 (OPM Graph Intersection) Let gr1 and gr2 be two OPM graphs.
We define the intersection of gr1 and gr2, denoted gr1 u gr2, as follows:

Nodegr1ugr2 = Nodegr1 ∩ Nodegr2

Edgegr1ugr2 = Edgegr1 ∩ Edgegr2

accountRelationgr1ugr2 = accountRelationgr1 ∩ accountRelationgr2
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Furthermore, accountOf gr1ugr2 is the point-wise union (or intersection) of accountOf gr1

and accountOf gr2 defined as:

accountOf gr1ugr2(x)

= accountOf gr1(x) if x ∈ DOM(accountOf gr1(x)) \DOM(accountOf gr2(x))

= accountOf gr2(x) if x ∈ DOM(accountOf gr2(x)) \DOM(accountOf gr1(x))

= accountOf gr1(x)© accountOf gr2(x)

if x ∈ DOM(accountOf gr1(x)) ∩DOM(accountOf gr2(x))

where symbol © denotes ∩ or ∪. Likewise valueOf gr1ugr2 is the point-wise union
(or intersection) of valueOf gr1 and valueOf gr2 defined as:

valueOf gr1ugr2(x)

= valueOf gr1(x) if x ∈ DOM(valueOf gr1(x)) \DOM(valueOf gr2(x))

= valueOf gr2(x) if x ∈ DOM(valueOf gr2(x)) \DOM(valueOf gr1(x))

= valueOf gr1(x)© valueOf gr2(x)

if x ∈ DOM(valueOf gr1(x)) ∩DOM(valueOf gr2(x))

The results of the t and u operations over OPM graphs are themselves OPM
graphs. We note that the union operation over two graphs does not necessarily
preserve the legality of accounts since a given account in the union may contain
cycles or multiple WasGeneratedBy edges for a given artifact.

To do:The union/intersection operations may not preserve the legality of
refinement and alternate declarations. Investigate circumstances in which refine-
ment/alternate are preserved.

4 OPM and Past Executions

The motivation for designing the Open Provenance Model is that such a notion of
directed acyclic graph is suitable for representing causal dependencies resulting
from past executions. In this section, we show how the proposed model can be
used to express such execution-related dependencies, and establish that any infer-
ence over the encoded OPM graph allows us to derive any transitive dependency
that existed over an execution.

We use the following set-theoretic definition for a trace, describing a past
execution of a program. A trace consists of an ordered sequence of statements
(we use L(S) to denote the set of order sequences over elements of S). All
statements denote the assignment of a value to a variable. In the simplest case,
a constant is assigned to a variable. In the more complex case, the result of a
function call is assigned to a variable. Function calls identify the function called
and its arguments (all in the form of variables). The involvement of an argument
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in a function call is specified by its role (and several arguments may potentially
share a same role). Given that a same function call is allowed to return multiple
results, we identify each of them by their respective role.

Function : primitive set of functions

Variable : primitive set of variables

Constant : primitive set of constants over some domain of values

Trace = L(Statement)

Call = Function × P(Role × Variable)× Role

Statement = Variable × Constant ∪ Variable × Call

Some further constraints are added to traces: we assume that all statements
assign a new variable, and that all references to a variable in a statement must
be preceded by an assignment of that variable earlier in the trace. We note that
with these constraints, our traces have a single-assignment property.

To illustrate this definition, we consider the following trace, where v2 is as-
signed to the quotient of v0 and v1, whereas v3 is assigned to the remainder of
the division of v0 and v1. And finally v4, is the minimum of v0, . . . , v3.

v0 = 14

v1 = 3

v2 = division(dividend : {v0}, divisor : {v1}).quotient

v3 = division(dividend : {v0}, divisor : {v1}).remainder

v4 = minimum(input : {v0, v1, v2, v3}).min

Many forms of dependencies can be considered in such a trace language. For
instance, a control dependency expresses that a variable is read by a statement;
for instance, v2 is control-dependent on v0 since the assignment of v2 cannot
proceed before v0 has been assigned. (Such notion is usually considered in com-
pilers for instruction-level parallelism [1].) A where-from dependency [7] or alias
equivalence identifies that the output of a function is the same (e.g. at the same
location) as the content of variable. For instance, in this example, the content
of v4 is the same as the content of v3. (We note here that this is an accurate
dependency established by computing the minimum function.). A functional de-
pendency expresses that variable values were used to compute the result of a
function. For instance, both values of v0 and v1 where used in order to determine
v2 (and also v3).

In this paper, we abstract away from such dependencies as follows. An element
of the set Dependency expresses that a variable has some form of dependency on
a set of other variables.

Dependency = Variable × P(Variable)

Dependencies = P(Dependency)
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Any execution trace and associated set of dependencies can be converted into
an OPM graph gr, by means of the following translation function.

T [[ ]] : Trace × Dependencies → OPMGraph ×Mapping

The translation of a trace tr and dependencies dep, results in a graph gr and
mapping m constructed as follows:

1. If T [[tr, dep]] = 〈gr,m〉, then:

gr ∈ OPMGraph

m : Variabletr → ArtifactId gr ∪ Call tr → ProcessId gr

2. For each variable vi and associated stored value c, add a new artifact a to
ArtifactId gr, with valueOf gr(a) = c and m(vi) = a.

3. For any function call fc = f(r0 : {v0,0, v0,1, . . .}, . . .), add a new process p
to ProcessId gr, with valueOf gr(p) = f ; for any variable vi,j, add an edge
〈p, ri, a〉 to Used gr, where a = m(vi,j) for some role ri. In addition, m(fc) =
p

4. For any assignment v = fc.r, where fc is a function call f(r0 : {v0,0, v0,1, . . .}, . . .)
with m(fc) = p, add a new edge 〈v, r, p〉 to WasGeneratedBygr.

5. For any dependency 〈v, (v0, . . . , vn)〉 ∈ dep, add new edges 〈a, ai〉 to WasDerivedFromgr,
where a = m(v) and ai = m(vi). Should we

have a role
here?By construction, the translation of a trace maps every variable to a unique ar-

tifact in an OPM graph, and every data dependency is expressed by a WasDerivedFrom
edge. As a result, every transitive data dependency is expressed by an A-Path in
the OPM graph, and can be computed by inferences over the graph. Hence, using
this translation, we can claim that OPM graphs are suitable to represent past
executions and associated dependencies. The translation also helps developer
decide how to generate OPM graphs for their programs.

5 Time Annotations

Section 2 informally introduces edges supported by OPM by defining them in
terms of time ordering of events (e.g., Used edge means that process coudl com-
plete only after artifact was used). So far, our discussion of OPM has been
purely timeless. We address the problem time annotations on OPM graphs in
this section.
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As OPM graphs can be annotated by time information, we introduce an an-
notation function, which, for an OPM graph gr, has the following type.

Time : primitive set of time

Time⊥ : = Time ∪ {⊥}
TimeAnnotationgr = EdgeAnnotationgr ∪ ProcessAnnotationgr

EdgeAnnotationgr = (Used gr ∪ WasGeneratedBygr ∪ WasDerivedFromgr)

× Accountgr → Time⊥

ProcessAnnotationgr = ProcessId gr × Accountgr → (Time⊥ × Time⊥)

Time annotations are optional and hence are formalised as the set Time⊥ contain-
ing the distinguished element ⊥ denoting absence of time annotation. Time infor-
mation can be added as an annotation to some edges and to some nodes. Specif-
ically, Used , WasGeneratedBy , WasDerivedFrom edges may be annotated with
the time at which an artifact was used, generated, and generated respectively.
Processes may be annotated with their start time and/or their end time. Addi-
tionally, time annotations may differ for different accounts, hence the parametri-
sation with accounts.

While causal dependency implies time ordering, the converse does not neces-
sarily hold. Therefore, an annotated OPM graph allows us to derive time con-
straints. However, the mere presence of time annotations permits us to revisit
the (Completion) rule, as illustrated in Figure 14.

The left hand side contains a revised (Completion) rule, where a WasDerivedFrom
edge implies the existence of an intermediary process. Constraints over time an-
notations on those edges are expressed at the right of the figure: artifact A0 must
be generated (T0) before it is used (T1); the time at which A1 was derived (T ) is
the time at which it was generated by P (T2). In addition, for the process P to
have helped derive A1 from A0, at the minimum, A0 must have been used (T1)
before A1 was generated (T2), otherwise the WasDerivedFrom would simply not
hold.

Interestingly, when all these time constraints are satisfied, rule (Comple-
tion) has now an opposite, and we have a full equivalence, hence the names
(Equivalence 3) and (Equivalence 4) (A similar equivalence was introduced for
WasInformedBy edges in Figure 5 in a timeless context). Whilst (Equivalence 4)
establishes that there is a dependency between A1 and A0, we note that it may
not necessarily be a data dependency, since the actual content of A0 may not
have been actually exploited to generate A1. However, at the minimum, there
is a control dependency, since A1 would not have been generated if A0 had not
been produced (everything else being equal).

Following the introduction of (Equivalence 4), we are now in presence of a
single step WasDerivedFrom edge implied by the definitional constraints. Hence,
our notion of A-Path has to be extended to accommodate intermediary processes,
with specific constraints on their incident edges.
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Figure 14: Completion Rule and Time

Definition 16 (APT-Path) For any OPM Graph gr, and time annotation ta ∈
TimeAnnotationgr an APT-Path between two nodes x, y,∈ Nodegr, which we note
isAPTPathgr(x, y), is defined as a sequence of nodes n0, . . . , nm ∈ Nodegr, such
that:

1. there is a sequence of edges e0, . . . , em−1 ∈ Edgegr such that effect(ei) = ni
and cause(ei) = ni+1 for 0 ≤ i < m.

2. n0 = x and nm = y

3. for any 0 < i < m, either:

• ni ∈ ArtifactId gr , or

• ni ∈ ProcessId gr, with ni−1 = effect(ei−1) ∈ ArtifactId gr and ni+1 =
cause(ei) ∈ ArtifactId gr

and ta(ei−1, α) > ta(ei, α) for any α ∈ accountOf gr(ei−1)∩accountOf gr(ei).

From an annotated OPM graph gr, one can derive a set of time constraints
using the inference rules of Figure 15. Rule 1 requires that the beginning time
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of a process precedes its ending time. Rule 2 states that the derived time and
generated time of an artifact are identical. Rule 3 states that the time at which
an artifact was generated precedes the time at which it was used. Rule 4 states
that any a process used an artifact after its start and before its end. Likewise,
Rule 5 states that any process generated an artifact after its start and before its
end.

The (Completion) rule over asserted multistep WasDerivedFrom edges may
lead to different inferences. To explain this, let us consider the left hand of
Figure 16, where the (Completion) rule applied to edge A2 to A0 and equation (6)
allow us to derive the following constraints:

T0 < T1, T0 < T1

T2 < T3

T1 < T6 by (Completion) rule of single step edge 〈A2, A0〉
T6 = T7

On the other hand, if we consider the right-hand of Figure 16, we can derive
the following constraints, where there exists a choice because of the presence of
the multistep edge 〈A2, A0〉.

T0 < T1, T0 < T1

T2 < T3

T1 < T6 ∨ T3 < T6 by (Completion) rule of multistep edge 〈A2, A0〉
T6 = T7

The choice results from the fact that the multistep edge 〈P,A0〉 implied by the
multistep (Completion) rule can either be realised by the single step 〈P,A0〉 or the
two steps 〈P,A1〉, 〈A1, A0〉. At least one of this dependency was effective before
A2 was generated. While there is uncertainty about when an artifact was being
used, there is however no uncertainty about the generated artifact A2. Whatever
option we consider, we can infer that T0 < T6.

To do:Discuss the semantic property according to which all valid inferences
over time constraints (by transitivity of <) are the ones that would be derived by
transitive closure over OPM edges.
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For any OPM graph gr and time annotation ta ∈ TimeAnnotationgr, we can
derive the following time constraints.

p ∈ ProcessId gr ∧ α ∈ effectiveAccountOf gr(p) ∧ tagr(p, α) = 〈T1, T2〉
T1 < T2

(1)

g = 〈a1, r, p〉 ∧ g ∈WasGeneratedBygr ∧ α1 ∈ accountOf gr(g) ∧ tagr(g, α1) = T1

d = 〈a1, a2〉 ∧ d ∈WasDerivedFrom(∗)gr ∧ α2 ∈ accountOf gr(d) ∧ tagr(d, α2) = T2

α1 = α2

T1 = T2

(2)

u = 〈p1, r1, a〉 ∧ u ∈ Used gr ∧ α1 ∈ accountOf gr(u) ∧ tagr(u, α1) = T2

g = 〈a, r2, p2〉 ∧ g ∈WasGeneratedBygr ∧ α2 ∈ accountOf gr(g) ∧ tagr(g, α2) = T1

α1 = α2

T1 < T2

(3)

u = 〈p, r1, a〉 ∧ u ∈ Used gr ∧ α1 ∈ accountOf gr(u) ∧ tagr(u, α1) = T2

α2 ∈ effectiveAccountOf gr(p) ∧ tagr(p, α2) = 〈T1, T3〉
α1 = α2

T1 < T2 < T3
(4)

g = 〈a, r2, p〉 ∧ g ∈WasGeneratedBygr ∧ α1 ∈ accountOf gr(g) ∧ tagr(g, α1) = T2

α2 ∈ effectiveAccountOf gr(p) ∧ tagr(p, α2) = 〈T1, T3〉
α1 = α2

T1 < T2 < T3

(5)

d = 〈a1, a2〉 ∧ d ∈WasDerivedFrom(∗)gr ∧ α1 ∈ accountOf gr(d) ∧ tagr(d, α1) = T

u = 〈p, r1, a2〉 ∧ u ∈ Used (∗)gr ∧ α1 ∈ accountOf gr(u) ∧ tagr(u, α1) = T1

g = 〈a1, r2, p〉 ∧ g ∈WasGeneratedBygr ∧ α2 ∈ accountOf gr(g) ∧ tagr(g, α2) = T2

T1 < T2

(6)

Figure 15: Causation is Time-Monotonic
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Figure 16: Uncertainty over Time Inference due to multistep WasDerivedFrom

6 Related Work

Provenance, also referred to as lineage [17], has been extensively but not exclu-
sively studied in the context of scientific data [45, 6, 19, 33], since it is considered
as crucial to ensure reproducibility of scientific experiments [18]. Traditionally,
this field of research is divided according to workflow and data provenance. Work-
flow provenance (also referred to as coarse-grained provenance) records the com-
plete history (or workflow) of the derivation of some dataset [9], whereas data
provenance (also known as fine-grained provenance) is an account of the deriva-
tion of a piece of data in a dataset. The latter is been extensively investigated
by the database community, whereas the former has been the focus of the e-
science and grid communities. However, this distinction becomes artificial when
dealing with applications that involve both workflow and database technology, as
illustrated by the application adopted by the third Provenance Challenge [48].

Instead, given that OPM is a data model, we structure our related work in
four categories (i) representing provenance, (ii) creating such representation,
(iii) querying it, (iv) and storing it. We refer to surveys and proceedings for
usage and requirements of provenance [45, 6, 19, 33, 30].
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6.1 Provenance Representation

Following the first two Provenance Challenges [36, 44], the Open Provenance
Model was designed as a data model to promote inter-operability of systems
with provenance capabilities. Its features are inspired by a consensus that began
to emerge after the second Provenance Challenge; as a result, it embeds many
characteristics of systems produced by the teams involved in the challenges.

OPM edges Used/WasGeneratedBy correspond to traditional inputs and out-
puts of processes. But existence of an input for a given output does not nec-
essarily imply data dependency. Such dependencies are explicitly represented
by WasDerivedFrom edges in OPM. A similar distinction exists in the PASOA
model [25], where so-called interaction p-assertions are concerned with I/Os,
whereas relation p-assertions with data dependencies. Many systems recognise
the importance of such data dependencies and incorporate them explicitly in their
model, as summarised in the first Challenge editorial [37].

OPM introduces notions of account, account view and refinement. Abstrac-
tion capabilites are also a near-universally recognised requirement for provenance.
Multiple systems allow for layering of provenance representation: this helps users
focus on the right information for the task at hand. For instance, in myGrid, four
different views (process, data, organisational, and knolwedge) are defined [49].
In VisTrails, the provenance information space is divided into workflow evolution
layer, workflow layer and execution layer [43]. Likewise, abstract service descrip-
tions, service instantiation descriptions, data instantiation and runtime execution
constitute the four layers of the Redux model [4]. PASS (Provenance Aware Stor-
age System) also advocates multiple layers to deal with the complexity of data
and processes [39]. Views and layering can be captured by the OPM notion of
account, and associated account views and refinements. However, provenance
information does not have always to be structured hierarchically. The Zoom sys-
tem [16] allows for user views to be expressed: such views help hide complexity
of multi-step operations, offering the user a higher-level of abstraction. Formally,
user views are defined as a partition of steps of a workflow specification. In PA-
SOA [25], coexisting views of multiple asserters allow for potentially conflicting
interpretations of a same execution, and non-hierachichal tracers cater for the
kind of data diffusion encountered in peer-to-peer computing. Again, accounts
can be used to represent such kind of a information grouping. If OPM is to be
considered as a data model for inter-operability, extant work seems to suggest
that some layers need to be agreed, in which specific types of nodes and edges
are allowed to be specified.

Sahoo et al. [42] present a provenance algebra based on OWL, with a lot of
similarity to OPM (without accounts), and argue for a Semantic Web approach
to OPM. Whilst OPM can be encoded in RDF [21], we conjecture that RDF and
OWL-based reasoning cannot express the notion of legal refinement introduced
in this paper.
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This paper explains how the OPM model can be used to express dependencies
that existed during a past execution. Our approach however does not assume a
specific execution language, but instead assumes an execution trace that would
be produced by a typical programming language runtime. A number of other
approaches have undertaken formal studies of provenance in the context of pro-
gramming languages, defining provenance-based interpretation of such languages.
Doing so, they derived alternate representations of provenance which we now dis-
cuss in turn.

While investigating the expressiveness of query and update languages for
databases, Buneman et al. [7] defined a provenance-aware semantics for vari-
ants of the Nested Relational Calculus (NRC). In this context, domain values are
extended with a tag, which indicates values origin, i.e., their provenance (The
approach is akin to color propagation in databases.) Provenance of a value (in a
query result) is represented as a unique color that is associated with another value
in an input cell. This representation of provenance is suitable to answer where-
queries (see Section 6.2). It cannot in its current form express the provenance of
new values created by a query.

Cheney et al [13] define a traced evaluation of NRC queries, which results
in an explicit trace, considered to be an explanation of the dynamic execution
history of an expression. They then develop a metatheory of trace evaluation, in-
troducing properties of consistency and fidelity that characterise how well traces
describe execution. The grammar of traces is directly derived from the syntax
of expressions being evaluated. Such traces are not provenance per se. Instead,
provenance is extracted by means of queries (to which, we come back in Sec-
tion 6.2). This approach is very similar to the one adopted in the PASOA archi-
tecture [24], where the information stored about execution is referred to as process
documentation, and provenance is retrieved by means of provenance queries [32].
Those approaches are architecturally compatible with OPM since OPM consists
of a representation model for provenance.

Green et al. [23] state that semirings of polynomials yield a form of prove-
nance for relation calculus queries. Such polynomials describe how a tuple in the
output was derived from the input. Polynomial exponents are used to indicate
the number of times a given value is being used in a computation. The authors
demonstrate that this representation is richer than others such as where and why
provenance. OPM with its dependencies can also rerepsent such information: in
addition, it introduces roles to some of its edges, to characterise how these values
contributed to a final result.

Souilah et al. [47] propose the provenance calculus, which enriches the asyn-
chronous π-calculus with information describing the channels values are com-
municated over. Within the calculus, provenance is represented as a sequence
of input and output events, intended to describe the path over which a data
item was communicated over. This representation naturally maps to sequences
of WasDerivedFrom edges in OPM. In addition, the authors define a denotation
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of provenance, which consists as a set of assertions about the past of the value it
relates to.

Ludaescher et al. [29] consider a workflow-based model of computation and
a set of observables resulting from their execution. They define a provenance
model as a set of provenance assertions corresponding to execution observables
and runtime observables. They apply their approach to Kahn process networks,
with observables consisting of read and write operations (similarly to [47]).

Two of the authors [28] have investigated how to map the NRC dataflow to
OPM. An interesting aspect of this mapping is concerned with data collections,
for which an encoding in terms of OPM constructs is proposed. It is also noted
that NRC-dataflow specific data dependencies can be inferred with NRC-dataflow
inference rules, but cannot be expressed as inference in OPM. This suggests that
OPM should cater for domain specific inferences as well.

6.2 Provenance Queries

The database community has identified several ways of characterising the origin
of a value in a database, and has given them mono-syllabic names: where [7],
why [8], how [23], and route [14] provenance. In their original form, these notions
of provenance are typically investigated in the context of some query/update
language. However, they can also be regarded as queries over a provenance graph
representation such as OPM. In Section 4, we suggest that where-from or alias
dependency can be expressed in an OPM graph; where-provenance can then be
extracted from the OPM graph by following such types of dependencies.

Some form of graph traversal is generally (see comparison table in [37]) seen
as essential to retrieve provenance. Miles [32] proposes a scoping mechanism that
allows queriers to identify the subset of past activities that are relevant to their
interest. Cheney et al [13] similarly extract where and how provenance from their
provenance traces.

Common patterns of provenance queries begin to emerge, and APIs are be-
ing designed to support them directly, e.g., Karma [46] and Vistrails [43]. For
instance, common querying tasks in Vistrails return all direct or indirect compo-
nents preceding an activity in a past workflow.

Sahoo et al. [42] propose a systematic classification of provenance queries
along three broad categories: querying for provenance metadata, querying for
data values, and modifying provenance metadata. The first essentially consists
of a transitive closure over provenance graphs, similar to the A-Path concept in
OPM. The second consists of joins across provenance and application data: these
are not expressible in OPM since it deliberately does not model application data
to keep its focus on the essence of provenance. The third include merging and
comparing provenance from multiple sources, and corresponds to the operations
over graphs, including union and intersection, legal alternate and refinement.
Similarly, Futrelle et al. [22] distinguish two primary classes of conditions for
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queries: transitive closures and attributed queries.

6.3 Provenance Recording

OPM is a data model for provenance aiming at inter-operability of systems. It
is envisaged that OPM graphs could be the result of queries over repositories,
often called provenance stores [35], containing provenance, process documenta-
tion [32] or traces [13]. Nothing however in the model dictates how such a kind
of information is to be recorded in provenance stores.

Groth et al. [26] address the problem of distributed recording of process docu-
mentation, where autonomous, distributed services composed in a workflow have
to record process documentation independently. The challenge is twofold: make
sure that process documentation produced by a service “connects” with process
documentation generated by another; avoid unnessary synchronisation to ensure
scalable and efficient recording. Their solution consists of a data model for pro-
cess documentation that allows asynchronous recording, and a requirement put
on applications to pass message identifiers.

ES3 [20] intoduces the concept of a Probulator, which transparently captures
application envents and transmits that to a persistence storage akin to a Prove-
nance Store. PASS (Provenance Aware Storage System) [39] proposes a modified
kernel that intercepts OS-level events and records them in a scalable manner for
future querying.

6.4 Provenance Storage

Since workflow execution time can be long and runs numerous, the amount of
provenance information being recorded can be very large. OPM is concerned
with inter-operable provenance data exchange, and hence does not offer a solu-
tion to the problem of compact storage. However, it could benefit from existing
techniques in this field.

In the case where the workflow script is known, more compact representations
could be devised, where the provenance trace only explictly represents dependen-
cies that are not already present in a static workflow [15, 4]. From an inter-
operability viewpoint, this approach presents some challenges because queriers
not aware of the syntax and semantics of the workflow language used, would not
be able to understand the retrieved provenance.

The database community also considers efficient representation of provenance
for the type of provenance they consider. For instance, where-provenance [7]
can be efficiently implemented with coloring technique. The downside of this
representation is that it is tied to the query language and it cannot support other
forms of queries.

Chapman et al. [11] propose a set of techniques, including factorisation and
inheritance, to decrease the amount of storage required for provenance. It would

35



be interesting to investigate these in the context of OPM by specifying the formal
properties of OPM graphs that these compact representations preserve.

6.5 Other Related Work

It should be pointed out that there is a large tradition of graph-based data models,
for which we reder the reader to the excellent survey [2]. We have used the
term “causal dependency” with a liberal interpretation in this paper. There is
a vast amount of literature on causality. Pearl [41] discusses the possibility of
learning causal relationship from raw data, relying on formal techniques such
as graphs and probabilitic dependencies. Such techniques are extensively used
in Artificial Intelligence and social sciences. The OPM approach differs since
raw observations are “atomic” causal dependencies assumed to be observed by
participants in a computation. It is beyond the scope of OPM to define how
such atomic causal dependencies can be observed. In practice, techniques such as
program analysis [12], Probulator [20], operating system calls interceptions [39]
can be used to derive and observe such dependencies. Also, application designers
have a role in specifying the dependencies that their applications produce [31].
Once the full expressiveness of account is exploited, some OPM graphs may
contain conflicting information in different accounts, reasoning techniques about
such conflicts will have to be devised, and probabilitic methods may be suitable
to that end.

7 Conclusion

In this paper, we have proposed a formal definition of the Open Provenance
Model, a data model for provenance aiming at information exchange inter-operability
between systems with provenance capabilities. The formalisation introduces the
notion of A-Path to characterise the kind of inferences that are allowed over OPM
graphs. Such notion is then used to in the definition of alternate and refinement,
which were inexistent in the original OPM specification.

We envisage a vast amount of potential activity around this OPM specifica-
tion. First, from a practical viewpoint, OPM is the focus of the third challenge,
where pragmatic considerations of data exchange and provenance queries will
help evaluate its expressivity; bindings to XML and RDF are being proposed
and tools operating over OPM representations begin to emerge. From a more
theroretical perspective, issues pertaining to recording and querying need to be
formalised and investigated, so that systems where OPM takes a more prominent
role can be built. One of the novel elements of OPM is its notion of account.
One needs to devise methods for reasoning in the presence of accounts in order
to exploit this data model fully.
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