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Abstract
Functional nucleic acids are an attractive substrate for molecular computing. A nucleic acid
molecule is a linear chain of covalently bound building blocks assembled in arbitrary order from
a set of typically four nucleotides. Certain pairs of nucleotides weakly attract each other through
short-range electrostatic interaction and, accordingly, complementary sequences of nucleotides
can bind to each other. The complementary stretches of nucleic acids that attract each other
can be part of two different molecules or two parts of a single molecule. Binding within a single
molecule leads to a folding of the linear chain. This so called secondary structure is of great
importance for the function of nucleic acids.

The present paper is concerned with the representation of this secondary structure. We propose
an extension for the syntax of the standard dot-bracket notation to increase its convenience
and expressive power for both its use to communicate nucleic acid secondary structures among
humans and machines. The extensions reflect our own requirements for the representation of
nucleic acids for molecular computation, but should be useful for functional nucleic acids in
general.

1. Computational Nucleic Acid Enzymes

Organisms have powerful and enviably efficient information processing capabilities. To a large
extent these capabilities are conferred by macromolecules and their specific properties. The
existence of these natural information processing architectures demonstrates that computing
based on physical substrates that are radically different from silicon is feasible. Accordingly,
the potential of biomolecules as a computing substrate in artificial devices has been investi-
gated for over three decades [15]. In nature proteins appear to play the preeminent role as
molecular computing substrate. At the present state of technology, however, two other classes
of biomolecules are more amenable to applications in man-made information processing ar-
chitectures: deoxyribonucleic acids (DNA) and ribonucleic acids (RNA). The former offers a
more limited conformational flexibility and concomitant less functionality, while the latter is
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less stable and requires more careful laboratory techniques. The existing body of work on using
nucleic acids for information processing can be grouped under three concepts:

Covalent Concept: Early proposals for the use of DNA in computing were inspired by the
discovery of DNA’s role in the storage of inheritable information and the astounding
information density that can be achieved with molecular encoded data. All of these
concepts require the formation and cleavage of specific covalent bonds which would require
custom-designed proteins and are for this reason not practical (cf., e.g., [8])

Complement Concept: In [1] the influential suggestion to use arbitrary nucleotide sequences
and the hybridisation with their complementary sequences instead of covalently linked
individual bases was made and a practical demonstration of this approach was given.
This idea moved the burden of recognising tokens of information from proteins (which up
to now cannot be designed for purpose) to the self-assembly of short nucleotide sequences
which can be designed with desired self-assembly properties and can be synthesised with
ease.

Conformational Concept: Whereas in the above two concepts the conformational flexibility
of the nucleic acids is irrelevant or even undesirable, more recently computing concepts
that exploit the change in conformation a nucleic acid undergoes upon hybridising with
another nucleic acid molecule have been developed [9, 10].

A recent introduction to the conformational concept of information processing with nucleic acids
is available in [11]. The three-dimensional conformation of a nucleic acid is largely determined
by the secondary structure, i.e., the intramolecular binding among complementary sections of
its nucleotide sequence. The sequence itself is typically for the most part not as important for
the function as the secondary structure it assumes. For a given secondary structure there is
generally a large variety of nucleotide sequences that it will fold into.

In designing sets of nucleic acids for information processing one typically has a desired secondary
structure and additional local constraints on the sequence. For example, a binding side for an
effector molecule (i.e. a nucleic acid that will affect the activity of a functional nucleic acid)
may be required to be complementary to a sequence released in a preceding step. Software
tools that, given a secondary structure, can generate a suitable sequence candidate likely to
fold into the desired structure are available [2, 3, 5]. It would be desirable to have a convenient
representation of secondary structures together with sequence constraints and special properties
of regions of the sequence. Ideally a single representation should support the communication
between humans and software.

2. Representation of Nucleic Acid Structure

A widely used method to denote RNA secondary structure is the dot-bracket-notation or paren-
thesis format introduced by Hofacker et al. [2]. It uses matching parenthesis and dots to denote
paired and free bases, respectively. Fig. 1 illustrates the notation for a short RNA sequence.
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Figure 1: A sample secondary structure of an RNA molecule is shown (A) together with the
notation of its sequence (B) and its structure in dot-bracket form (C).

The dot-bracket-notation has the advantage that a string denoting the secondary structure of
a nucleic acid is of the same length as the string denoting the nucleotide sequence with a single
character for each nucleotide. The two strings can be aligned to show the secondary structure
features along the nucleotide sequence (Fig. 1B and C). In molecular biology one typically has a
given (discovered) sequence and is interested in its folding properties. The dot-bracket notation
reflects this mode of operation. As indicated above, in molecular computing applications it is
common that the secondary structure is of importance, but the detailed sequence that yields
the structure is over large stretches arbitrary. In such a scenario the dot-bracket notation is
often cumbersome, it leads to large expressions with information that is partially obscured for
human readers, because it would require counting identical characters. While the sequence
is typically arbitrary in most positions, as long as the structure of the molecule is preserved,
nucleic acids with functional properties, such as catalytic activity, often require specific bases in
a few positions. If in a few places the nucleotide sequence (i.e. the primary structure) is given,
two strings are required: one to specify the structure in dot-bracket-notation and a second
string to represent the type of the immutable nucleotides. Furthermore, for communicating
structural features among humans a two-dimensional rendering of the one-dimensional dot-
bracket notation is often desirable. It would be convenient if specific features in the sequence
could be communicated to the rendering software.

To alleviate these issues we use an extended dot-bracket-notation that is particularly suitable
to denote functional nucleic acids where the primary characteristic is the secondary structure
and not the sequence. In doing so we were aiming at:

• backward compatibility to the dot-bracket notation

• use of familiar and mnemonic conventions

• single character operators

• the possibility to describe sets of interacting molecules

• flexibility to chose expressions according to application

• support for rendering with and without colour

Achieving these aims comes at the price of giving up the equivalence of the length between the
secondary structure specification and the sequence. On the other hand, the extended notation
is often more compact and capable of describing, in a single string, a group of RNA molecules
where each molecule varies in length, sequence, and conformation.
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The extended dot-bracket-notation introduces several new symbols which fall into four different
categories:

Scoping symbols group sections of the notations. Square brackets “[ ]” are used for grouping
range of base positions. Curly braces delimit alphanumerical parameters for operators
and also limit sets of constraints placed on the choice of base permitted for a particular
sequence position. Curly braces can optionally be used to delimit the numbers specifying
repetitions.

Operator symbols associate a property with the preceding base position, or grouped range
of positions. The properties are mostly used for graphical rendering of the the structure
(_,$,~,@), but also to mark binding sites for inter-molecular binding (+). An operator
symbol is always followed by a parameter.

Constraint symbol restrict the possible bases that may be present at the preceding base
position. The two constraint symbols are a colon (:) which restricts the preceding position
to be equal to the base or set of bases that follow it, and a hat (^) that restricts the
preceding position to differ from the base or set of bases that follow it.

Special symbols are available to express features which cannot be expressed with the above
elements. At present only the %-symbol is defined, it marks a cleavage-point where the
RNA sequence may be hydrolysed.

An overview of the new symbols introduced in the extended dot-bracket-notation is provided
in Tab. 1. With these enhancements the extended dot-bracket notation can carry a lot more
information about an RNA structure than the standard notation while generally leading to a
more compact description. However, the translation from the extended dot-bracket-notation to
the standard notation is trivial. This is important as the computational tools for nucleic acids
secondary structure have adopted the dot-bracket-notation as their input–output channels [6].
A translation from the standard notation to the extended dot-bracket-notation can of course
not make much use of the richer syntax of the extended notation. It is also generally not re-
quired, as the standard notation is a valid subset of the extended notation. Nevertheless, such
a translation may be useful to arrive at shorter representations as shown for small examples in
Tab. 2. Any symbol that can occupy a base position in a sequence (i.e., .,(,),A,U,G,C,T,. . . )
may be followed by a positive integer value n to denote n repetitions of the symbol. This
run-length notation is particularly convenient for manually entering secondary structure de-
scriptions. The downside is that the run-length notation can obscure structural motives which
may be recognised more readily in the standard notation. A considered use of the repetition
parameter will maximise readability, whether by reducing the length of the representation or by
deliberately breaking runs of parenthesis into sections that match. For example, (3.2(3.4)6
represents a stem-loop with bulge. The same structure could also be written as (3.2(3.4)3)3.
The latter is longer, but preferable nevertheless, because the base-pairing of the two helices
is emphasised by breaking the run of six closing parenthesis into two groups of three closing
parenthesis each. This example also illustrates that in the extended dot-bracket-notation there
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Table 1: New symbols introduced in the extended dot-bracket-notation

Description Usage Comment

[ ] Grouping of base
positions

[.8]@{label A} Eight unbound bases marked as “label A”.

{ } Parameter delimiter see example above
{ } Set delimiter .:{A,C} A single unbound base that can be either

A or C.
{ } Repetition delimiter A{10} Always optional.
_ Line width ((([.5]_1))) Stem-loop structure with bold loop
$ Colour (3[.2]$1(3.4)3)3 A buldge in red.
~ Line decoration .24~1(3.3)3 Binding site marked as crinkled line.
@ Annotation marker See first row.
+ Multi-molecule binding (24+1(3.3)3 Sticky end of 24 bases, will bind to site

marked 1 on other molecule.
: Base assignment )):A Two binding bases, the second one of

which is A; See also set delimiter.
^ Base exclusion (((..^U.))) Stem loop where the central base in the

loop is not a uracil.
% Clevage point (((..%..((( Between bases, i.e., not a base position.

is no unique string to describe a given structure. The equivalence of two structures denoted
in the extended form, however, can be established by translating both into the standard form,
which is easily accomplished.

Specifications for individual base positions, repetitions of these, as well as groups (marked by
square brackets) of individual positions and repetitions can be arguments for operators. The
operator follows its argument and precedes its parameters. More than one operator/parameter
combination may follow an argument and all will be applied to the argument. Table 3 provides
a few examples of operator use—some of them taken from the structures rendered in Figs. 3
and 4. Note that in all cases the argument itself, which precedes the operator, is not shown.

The acceptable parameters that follow an operator and their semantics are not specified by the

Table 2: The extended dot-bracket-notation allows for run-length encoding to achieve a compact
representation

Standard notation Extended notation Part of Fig.

...(((((....))))).)))))))) .3(5.4)5.)8 3A
(((....))).....(((((((( (3.4)3.5(8 3B
(((((....))))).)))))))). (5.4)5.)8. 4A
..)).)))........ .2)2.)3.8 4C
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Table 3: Sample usage of operators

Notation Description Fig.

~2@{shift region 1} Apply decoration type 2 to the preceding region and label
it as “shift region 1”.

3A

+3~2 The preceding argument binds externally with another
molecule at the region marked “3” and is drawn with deco-
ration type 2 (“cross”).

3C

+2_1@{OBS2+EFF2} The argument (not shown) binds with another molecule at
the region marked “2”, draw the binding region in bold (line
thickness 1) and label it as “OBS2+EFF2”

4C

+1_1${Red}@{node001} The preceding argument binds externally with another
molecule at the region marked “1”, render the argument
with line thickness 1 in red and label the region as “node001”

-

~1_2${blue} Combination of drawing parameters applied to the preceding
argument resulting in a strong bold (thickness 2) crinkled
line (type 1) in blue color.

-

+{SITE1}~1_1@{match}${red} The preceding argument binds externally with another
molecule at the region marked as “SITE1”. This region is
rendered using crinkle line with the thickness value 1, and
colored in red. The region is labeled “match”.

-

notation. A rendering program, for example, may accept a predefined color number, an explicit
color name, or a hexadecimal RGB value. The corresponding operator with parameters would
be $1, ${red}, and ${#FF0000}. An overview of the extended notation is provided in Fig. 2.
For clarity, three of the nonterminal symbols occurring in the syntax graph are not shown in
Fig. 2. The non-terminal digit stands for a single digit in the range from 0–9. The non-terminal
alpha stands for a single character from either the range a–z, or A–Z, or a dash (-), underline
( ), or space ( ). The non-terminal base stands for any one of (A,U,G,C,T,X,N) in upper or
lower case.

As can be seen in Fig. 2, a single string in the extended dot-bracket-notation can denote more
than one molecule (cf. RNA string in Fig. 2). The limitations in expressing interactions among
multiple molecules in the standard notation was one of the factors motivating the present
work. An example with a pair of molecules that bind in two different regions of equal length
will illustrate the difficulty of using the standard notation in such cases:

((((((.....((((((......))))))...((((....))))...(((((( &

))))))........(((((....((((....))))....)))))...))))))

The two lines represent two different molecules, separated by the &-symbol. The regions in which
the two molecules will bind to each other are underlined. The dot-bracket-notation is not able to
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Figure 2: Syntax graph for the extended dot-bracket notation.
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express in which combination the binding regions will bind. In larger molecules the situation can
easily be more ambiguous with numerous plausible locations for intermolecular binding. In the
extended dot-bracket-notation, the + operator can indicate the matching regions. Accordingly,
the two molecules shown above can be represented as:

(6+{B1}.....((((((......))))))...((((....))))...(6+{B2} &

)6+{B1}........(((((....((((....))))....)))))...)6+{B2}

A more relevant example for such an ambiguous binding situation can be seen in Fig. 4D, where
the two binding sites in the AND gate have the same length. The AND gate uses two effector
molecules as input signals and, in its active state, is a three-molecule supramolecular complex.
The alphanumeric marking of binding sites in the extended dot-bracket-notation enables the
description of interactions among several molecules. Note in the examples above, how the
standard notation and the extended notation can be mixed to highlight particular features of
a molecule or set of molecules.

The benefit of the extended notation is most easily seen when it is rendered as two-dimensional
structures. Figure 3 shows the rendering of several sample structures from the literature.
Panel A shows a ribonucleic acid PASS gate in its inactive state [10]. Panel B depicts a
deoxyribonucleic acid AND gate described in [12]. The mechanisms of Fig. 3A is based on
disrupting the active conformation of a nucleic acids enzyme. Upon binding of an effector
molecule to the binding site shown in bold the active conformation is restored. In the gate
depicted in Fig. 3B, the binding site for the substrate of a nucleic acids enzyme is blocked by
intramolecular binding highlighted with a crinkled lines. Binding of effector molecules to the two
binding sites shown in bold will expose the substrate binding site. Two hammerhead ribozymes
with different catalytic activation strategies described in [4] and [14] are shown in Fig. 3C and
D, respectively. The hammerhead ribozymes are shown in their active conformation, each with
a bound effector molecule. The effector molecules are marked with bold lines and the location
of the cleavage point is marked on the substrate strand. The corresponding extended notation
for the four structures is shown in panel E.

In Fig. 4 four different states of the ribonucleic AND gate designed by Penchovsky and Breaker
[10] are shown. The interplay of multiple molecules and multiple conformational states is
crucial to the computing schemes based on functional nucleic acids. They are also a challenge
to represent in a convenient notation. Panels A shows the secondary structures of the AND
gate without effector molecules, panels B and C show the structures the AND gate assumes
if only one of the effector molecules is present. If both oligonucleotide binding sites (OBS1,
OBS2) are occupied by effector molecules the ribozyme changes into the catalytically active
conformation shown in panel D. The extended dot-bracket-notation corresponding to the four
states of the gate are shown in panel E.
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Figure 3: Four different structural renderings of arbitrary nucleic acid molecules.
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Figure 4: RNA molecular AND gate after [10] in different states. Rendered from the extended
dot-bracket notation.
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3. Conclusions

Within recent years nucleic acids of up to about 200 nucleotides in length have become a focus
of interest for prototype implementations of molecular computing concepts. During the same
period the importance of ribonucleic acids as components of the regulatory networks within
living cells has increasingly been revealed. While the configuration of the nucleic acids is gen-
erally linear, they can adopt a range of conformations. The conformation adopted by a nucleic
acid is determined by the possibility of its nucleotide chain to form non-covalent intramolecular
bonds through hybridisation of complementary regions in the nucleotide sequence. This in-
tramolecular hybridisation pattern, known as secondary structure of the molecule, is crucial to
the interactions a nucleic acid undergoes with other molecules. For a given secondary structure
there is typically a large number of sequences that will adopt this structure. The standard
method for denoting nucleic acid secondary structure is in the form of a string of matching
parenthesis for hybridising pairs of nucleotides separated by dots representing nucleotides that
do not participate in internal hybridisation. We have extended this notation for the convenience
of human users as well as machine processing. The extensions allow for a more compact nota-
tion through the use of iterator operators and grouping symbols, provide for constraints placed
on the nucleotides that may appear in a position, and facilitate the annotation of sequence
regions and the graphical rendering of secondary structures.

A downside of the proposed annotation is the potentially increased complexity of the strings
that represent a molecule. For human readers this means that more symbols and the scoping
of operators needs to be understood to read the notation. For machines establishing the equiv-
alence of the secondary structures denoted by two strings is no longer as simple as comparing
the strings. However, the language of the dot-bracket notation is a subset of the extended
dot-bracket notation proposed here and the use of its symbols and operators is thus wholly
optional. The most appropriate notation will depend on the application. For instance, the use
of iterator operators make it easier for humans to compare the length of hybridised regions
within a molecule, but the relative lengths of oligonucleotides is more readily apparent if de-
noted without iterator operators. Human users can choose to use the features of the extended
notation according to application. For machine processing the extended notation can easily be
expanded or reduced to the standard dot-bracket notation.

In our own work we felt the need for a more expressive notation for computational nucleic
acids. The extended dot-bracket notation described here answers this need. We are currently
converting our software tools to the new notation. The accompanying widening of its use is
likely to lead to further refinements of the notation and we welcome suggestions for improving
its usefulness. For example, the application of iterators to groups and the nesting of groups are
not currently part of the extended notation, but could be added if needed. We expect to make
the code used for rendering secondary structures in LaTeX [7] with TikZ [13] available in the
near future.
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