
Energy-Aware Simulation for
Wireless Sensor Networks

Geoff V. Merrett, Neil M. White, Nick R. Harris and Bashir M. Al-Hashimi
Electronic Systems and Devices Group, School of Electronics and Computer Science

University of Southampton
Southampton, UK

Email: gvm@ecs.soton.ac.uk

Abstract—Energy-aware sensor nodes are usually tightly energy-
constrained, execute energy-efficient algorithms, have the ability
to interrogate and control the devices used for storing and
consuming energy, and often feature one or more sources of
energy harvesting. Due to the cost, time and expertise required to
deploy a Wireless Sensor Network (WSN), simulation is currently
the most widely adopted evaluation method. Network simulation
is well established for mobile ad hoc networks, using simulators
such as the popular ns2. However, the differing characteristics
and performance criteria of WSNs introduce additional
simulation requirements, and this has resulted in a number of
simulators and simulator extensions developed specifically for
this purpose. This paper investigates the suitability of a number
of state-of-the-art simulators for evaluating energy-aware WSNs,
and subsequently proposes a novel structure for simulating
energy-aware WSNs. The proposed structure provides diverse,
flexible and extensible hardware and environment models, and
integrates a structured architecture for embedded software to
enhance the design of energy-aware sensor nodes. To illustrate an
implementation of the structure, details of – and observations
obtained using – an in-house simulator (WSNsim) are presented.

Keywords-wireless sensor networks, energy-aware, simulation,
modeling

I. INTRODUCTION
Wireless Sensor Networks (WSNs) consist of a number of

small, self-powered sensing devices (nodes) that communicate
with each other using a wireless medium [3]. WSNs have
application to a wide range of areas including environmental
monitoring, industrial monitoring, military, healthcare, and
security [4]. As nodes are often expected to operate over
periods of many years, be small in volume and be self-
powered, considerable research is being undertaken into the
development of energy-aware hardware, algorithms and
protocols.

There are three accepted techniques for evaluating and
analyzing networks: analytical methods [5], computer
simulation, and practical implementation. The constraints and
complexity of WSNs often cause analytical methods to be
unsuitable or inaccurate [6]. Additionally, the proportion of
algorithms that are analyzed through practical evaluation is
comparatively low, possibly due to the relative infancy,
deployment cost, time required, broad diversity and application
dependence of WSNs. As a result, simulation is currently the
most widely adopted method of analyzing WSNs, allowing the

rapid evaluation, optimization and adjustment of proposed
algorithms and protocols.

This paper investigates the suitability of current network
simulators to evaluate energy-aware WSNs. The findings of a
thorough literature review highlight that there are a number of
shortcomings in currently available simulators and, to rectify
these, we propose a new simulation structure for energy-aware
WSNs. The proposed structure offers the following novel
features and benefits:

• The provision and flexible integration of adequate
modeling for node hardware and the environment.

• The integration of a structured architecture for
embedded software to enhance and consider the
importance of energy-aware sensor node design.

In order to understand the requirements of a simulator,
Section II provides an overview of energy-aware WSNs.
Section III presents a review of existing WSN simulators, and
their ability to sufficiently evaluate energy-aware WSNs.
Section IV details our proposed structure for energy-aware
WSN simulation and, subsequently, Section V describes how it
was implemented in an in-house simulator developed as a part
of this research. Finally, Section VI draws conclusions, and
outlines the future directions of this research.

II. ENERGY-AWARE WIRELESS SENSOR NETWORKS
Nodes in a WSN are usually highly energy-constrained and

expected to operate for long periods from limited on-board
energy reserves. To permit this, nodes – and the embedded
software that they execute – must have energy-aware operation.
Energy efficiency has been of significant importance since
WSNs were first conceived but, as certain applications have
emerged and evolved [7], a real need for ultra-miniaturized
long-life devices has reemerged as a dominant requirement.
Because of this, continued developments in energy-efficient
operation are paramount, requiring major advances to be made
in energy hardware, power management circuitry and energy-
aware algorithms and protocols.

The energy components of a typical wireless sensor node
are shown in Fig. 1. Energy is provided to the node from an
energy source, whether this is a form of energy harvesting from
sources such as solar, vibration or wind, or a resource such as
the mains supply or the manual provision and replacement of
primary batteries. Energy obtained from the energy source is

This work was supported in part by the Engineering and Physical Science
Research Council (EPSRC) under grant number EP/D042917/1.

buffered in an energy store; this is usually a battery or
supercapacitor. Finally, energy is used by the node’s energy
consumers; these are hardware components such as the
microcontroller, radio transceiver, sensors and peripherals.

With the increased usage of energy sources in nodes [8, 9],
the need for energy stores other than batteries (many of which
suffer from only offering a limited number of charging cycles)
is increased. This can be seen by the body of research that is
now utilizing supercapacitors (devices that are similar to
standard electrolytic capacitors, but with capacities of many
Farads) to store the node’s energy [9, 10].

To be energy-aware, the embedded software executing on
the node must be aware of the state of its energy components.
This may be as advanced as monitoring the energy harvested
from each source [11], inspecting the rate of consumption by
different consumers [12], directing the flow of energy from and
to different stores [10] and managing the charging of
rechargeable stores [10]. Alternatively, this may equate to
simply being able to inspect the residual energy in a single
store. Therefore, the embedded software must not only be
capable of interfacing with energy hardware (this is generally a
requirement of power management circuitry), but also
interpreting the data that are obtained – usually in the form of a
sampled voltage – into a remaining lifetime, power or energy.
Based upon these values, the operation of the node is adjusted
accordingly, usually to maximize the lifetime of the network.

To sufficiently and effectively evaluate algorithms and
protocols for energy-aware WSNs, the characteristics,
properties and requirements described in this section need to be
reflected and supported in simulation. The following section
investigates popular WSN simulators, and assesses their ability
to evaluate energy-aware WSNs.

III. EXISTING SIMULATORS FOR ENERGY-AWARE WSNS
While simulation is reasonably well established for Mobile

Ad Hoc Networks (MANETs), the simulation of WSNs not
only requires the implementation of a radio channel, but also a
‘sense-able’ physical environment and accurate energy models.
The design aims and strategies of different simulators result in
them each having different strengths and weaknesses. In order
to successfully simulate and evaluate energy-aware WSNs, it is
necessary to provide necessary support for the node’s
embedded software, wireless communication, sensing, and
energy resources [13] (this is not an exhaustive list, but is the
criteria under which simulators will be evaluated in this paper).
This section reviews the state-of-the-art in network simulators
suited to WSNs [14], and evaluates their ability to simulate
energy-aware algorithms and protocols.

Simulators for use with WSNs can be classified into two
predominant categories: those that have been developed as
extensions to existing generic network simulators (such as the
SensorSim [2] extension to ns2 [15]), and those that have been
designed specifically for the simulation of WSNs (such as
TOSSIM [16]).

A. Generic Network Simulators
The widely used ns-2 [15] is an object-oriented discrete

event network simulator based upon the Real network
simulator (ns) that was released in 1989. The extensibility of
ns-2 has been a major contributor to its success, with protocol
implementations being widely produced and developed by the
research community. The use of ns-2 with WSNs is, however,
limited by its scalability, the lack of an application model, and
the reported difficulty in developing extensions [6]. While the
latter is not such a problem for traditional networks using
established protocols, it poses a number of obstacles in the
simulation of WSNs. SensorSim [2] is a WSN extension for
ns2, providing advanced models and the ability to interact with
external hardware. As shown in Fig. 2, SensorSim’s simulated
embedded software contains a communication stack and a
‘sensor protocol’ stack. The latter samples the sensor channel
(similar to a communication channel, in that it dictates spatial
attenuation of physical phenomena) and computes relevant data
(such as tolerances) for use by the application. SensorSim also
implements a single energy provider (a battery), and multiple
energy consumers (including the CPU, radio transceiver and
sensors). SensorSim suffers from the same scalability problems
as ns-2 and, due to support concerns, has been withdrawn from
public release. More recently, the NRL Sensor Simulator [17]
has been developed to provide support for WSNs in ns-2, but
does not provide the level of detail for sensing and energy
hardware that is presented by alternative simulators.

Like ns-2, OMNeT++ [18] is a discrete-event general
purpose network simulator, using a modular structure to define
the network architecture. While the well-supported INET and
mobility frameworks provide support for wireless
communication and mobility, a lack of sufficient sensing and
energy models make them generally unsuited to WSN
simulation. Many other extensions and frameworks have been
developed for OMNET++, including SenSim [19] and, more

Solar Cell
Vibration Harvester

Wind Harvester
Thermocouple
Mains Supply

Energy
Sources

Microcontroller
Radio Transceiver

Sensors
Peripherals

‘Ideal’ Store
Ni-Cad Battery
Ni-MH Battery
Li-ion Battery
Supercapacitor

Fuel Cell

Energy
Flow

Energy
Flow

Energy
Stores

Energy
Consumers

Figure 1: Energy components of a typical wireless sensor node.

Figure 2: The structure of SensorSim (adapted from [2]).

recently, Castalia [20]. SenSim provides a sensor network
extension for OMNeT++ by providing ‘node-level’ modules to
represent each layer of the protocol stack, the node hardware
(including energy models to represent a simple battery and
multiple consumers, for example the CPU and radio), and a
coordinator to pass messages around the node. Additional
‘network-level’ modules represent a sensor channel and a
network channel. SenSim requires a reasonably steep learning
curve, which is not usually popular with non-established
simulators. The Castalia simulator is a model-centric WSN
extension for OMNET++. Wireless communication is
implemented using a Packet Reception Rate (PRR) based
empirical model, and a ‘sensing device manager’ interacts with
the APP to obtain sensor samples from the physical process.
Sensor devices are modeled with noise and bias, and obtain
data from a flexible model of physical processes. Castalia does
not currently provide anything other than an ‘ideal’ [13] energy
store.

OPNET is an object-orientated commercial network
simulator, available free for academic use. However, due to
scalability and extensibility issues, it is not widely used for
WSN simulation. J-Sim [21] is a component-based simulator,
avoiding scalability issues associated with object-orientated
simulators such as ns-2. The sensor networks package for J-
Sim provides a very similar node architecture to that of
SensorSim [2] (as shown in Fig. 2). J-Sim is relatively
complicated to use and, due to a limited established user base,
is not as widely adopted as ns-2 or OMNET++.

B. Wireless Sensor Network Simulators
SENSE [6] improves on the efficiency of J-SIM by

providing a component-orientated architecture and making
improvements in the inter-communication efficiency. Energy
modeling in SENSE is implemented via a battery model
(accounting for dynamic battery effects), and empirical values
for energy consumption in different node peripherals.
However, SENSE does not model sensing with any granularity,
and lacks developed modules. The SENS simulator [22]
models the environment using a system of square tiles, where
each tile can have different characteristics (representing
different obstacles and surfaces) that affect the radio or
‘sensing’ signals that propagate across or through them. SENS
contains only an ‘ideal’ battery model, and a limited
architecture for the implementation of simulated embedded
software.

Finally, a sub-category of WSN-specific simulators is host
to those which simulate or emulate specific device hardware.
TOSSIM [16] is both a simulator and an emulator for WSNs, in
that it simulates TinyOS code for the Mica range of nodes and,
as such, provides obvious advantages to projects that are to be
implemented on the MICA nodes. ATEMU [23] increases
accuracy by providing emulation of the processor on the
MICA2 node, and allowing cycle-level emulation of code. This
enhances simulation accuracy at the expense of scalability and
speed. Avrora [24] finds a middle ground between accuracy
and speed by providing cycle-level emulation, but sacrificing
the continuous synchronization between nodes. Both TOSSIM
and Avrora have energy consumer models developed for them

(named PowerTOSSIM [25] and AEON [26] respectively).
Both of these use empirical current consumption measurements
(of hardware such as the radio transceiver, microcontroller and
sensors) to calculate the overall power consumption. While
these simulators/emulators are very suited to the evaluation of
the hardware to which they are specific, they offer little benefit
to the simulation of algorithms or protocols deployed on other
hardware platforms (for example, deployments and evaluations
using development kits such as the Texas Instruments ez430-
RF2500 or CC2431EM) or that are device unspecific. Due to
the device-specific nature of these simulators/emulators, they
are not considered in this paper.

In Egea-Lopez et al. [1], the authors propose a model
(shown in Fig. 3) for WSN simulation which shares many
similarities with that of SensorSim (shown in Fig. 2). The
model provides a physical parameter/sensor channel and a
node-level physical sensor layer, and also introduces an
‘energy producer’ object (to represent sources of energy) in
addition to the ‘battery’ and ‘power’ objects (representing
energy stores and consumers respectively). While we believe
that this is the model most suited to energy-aware WSN
simulation that has been proposed to date, it is not without its
limitations and shortcomings; these are discussed in the
following section.

C. Discussion
The conducted review of existing simulators (summarized

above) highlighted a number of limitations and shortcomings
for the evaluation of energy-aware WSNs. While most
simulators provide adequate support (or are at least structured
to allow ease of implementation) for wireless channel
modeling, energy and sensing often appear to be considered as
less important functions. This is clearly not the case in many

Figure 3: A network-level WSN simulation model (reproduced from [1]).

WSNs where energy-management and sensing are arguably
more important than communication to the operation of the
nodes. This shortcoming is most likely a result of the historical
development from the simulation of traditional communication
networks, where communication was of primary interest.

With the exception of the model proposed by Egea-Lopez
et. al [1] (shown in Fig. 3), none of the simulators investigated
provide support for energy sources (such as energy harvesting
devices). Most energy sources harvest energy from the
surrounding environment, and should hence interact with the
same environmental models that dictate the behavior of sensors
(for example, both photovoltaic cells and photodiodes use the
environmental ‘light’ model). Furthermore, none of the
simulators considered energy stores other than a battery (even
though a lot of current research is being performed into
supercapacitor-based devices) or provided for the inclusion of
multiple storage devices (for example allowing a battery and a
supercapacitor). In some simulators, energy consumption is
limited to only the microcontroller or the microcontroller and
radio transceiver, with the consumption of additional
peripherals such as sensors, actuators and RTCs ignored.

All of the simulators investigated model the simulated
embedded software as having a communication stack (usually a
PHY/MAC/MET/APP), with some also providing a limited
stack for sensing (consisting, at best, of a physical layer and
processing layer). Energy-management and awareness is
however not given any structure, instead assumed to be
implemented and processed as part of the application. The
integration of hardware models into the node’s simulated
software is often too restrictive to allow for the easy extension
and development of secondary functions. For example, in many
of the simulators investigated, the only method for a node to
interrogate energy hardware provides the ‘actual’ remaining
energy in the node, information which a practical sensor node
would not have access to.

The following section presents a simulation structure that
aims to overcome these limitations and shortcomings.

IV. A STRUCTURE FOR ENERGY-AWARE WSN SIMULATION
As a result of the findings summarized in Section III, we

propose a novel structure for energy-aware WSN simulation.
To overcome the identified shortcomings, such a structure
should satisfy the following requirements:

• Provision of adequate modeling for node hardware
including, but not limited to, energy sources (for
example energy harvesting devices), energy stores (for
example batteries and supercapacitors), and energy
consumers. Hardware models should be extensible to
allow the future incorporation of other hardware.

• Provision of an integrated and extensible environment
model to integrate with any hardware or other
environmental model. The environment model should
be dynamic to allow the modeling of ‘real world’
environments.

• Incorporation of an embedded software stack that
enhances and considers the importance of energy-
aware operation.

Our proposed energy-aware WSN simulation structure is
shown in Fig. 4, and contains an environment model and a
number of nodes (whether nodes are implemented using an
object-orientated or component-based model is unrelated to the
proposed structure) containing hardware models and a
structured architecture for embedded software. Objects
communicate with each other via the simulation controller. The
primary novel contributions of this structure are 1) a flexible
and integrated environment model, 2) sufficiently detailed
hardware models, and 3) a structured architecture for
embedded software.

1) Environment Model: The environment model (shown in
the ‘environment’ object in Fig. 4) describes the environment
into which the WSN is deployed. The model includes the
network model (specifying where nodes are physically
located), the channel model (dictating the propagation of data
through a wireless medium), and the environmental model

Figure 4: The proposed energy-aware structure for WSN simulation.

(containing a range of models specifying how physical
parameters in the environment change through space and
time). Further information on these models is given in Section
V, where the models implemented in an in-house energy-
aware WSN simulator (WSNsim) are outlined. The range of
hardware models shown in Fig. 4 (energy, sensing and timing)
are not exhaustive and are only representative of those that
have been subsequently incorporated into WSNsim.

Use of the environment models is flexible, allowing the
hardware models or other environmental models to access
them. Furthermore, the environmental models are fully
extensible; for example, an additional environmental model
describing the variation of wind or atmospheric pressure could
easily be added. This flexibility and extensibility aids in the
evaluation of energy-aware WSNs by allowing models to be
dependent on multiple physical phenomena, energy sources
(and other energy hardware) to harvest energy from a modeled
physical phenomena, and new energy source and sensor models
to be easily added.

2) Hardware Models: The hardware models describe the
operation of physical hardware on the node, which includes
energy hardware (sources, stores and consumers), various
sensors, and timing hardware (for example a Real Time Clock
[RTC]). Further information on these models is given in
Section V, where the models implemented in an in-house
energy-aware WSN simulator (WSNsim) are outlined. Like
the environment models, the hardware models are flexible and
extensible, allowing new hardware to be easily integrated into
a simulator. Furthermore, the hardware models are able to
query the environment models (for example a photovoltaic cell
or light sensor querying the environment model for the
incident light level at location [x, y]). This flexibility and
extensibility enhances energy-aware WSN simulation by
giving adequate representation to the various aspects of a
node’s hardware.

3) Structured Architecture for Embedded Software: The
incorporation of a ‘unified’ stack for embedded software in the
proposed simulation structure extends our work published in
[27] by highlighting the benefits that it can have on energy-
aware WSN simulation. The architecture provides a sensor
node with multiple stacks (each stack implementing a separate
node function) that are linked by a shared application layer.
The purpose and content of each of the layers of the ‘unified’
stack shown in Fig. 4 are described in detail in Section V. This
promotes structured and modular design, allows for efficient
code reuse, and enables the situation where future generations
of sensor nodes can utilize interchangeable components. We
believe that, in addition to being beneficial to the deployment
of practical sensor nodes, this architecture can also enhance the
simulation of energy-aware WSNs.

The structured architecture for embedded software can act
as both an aid and a constraint for algorithm designers.
Designers of energy-management or intelligent-sensing
algorithms are likely to find it of assistance, providing a logical
structure to shape their design process. Application or
communication algorithm designers however may find it more
constraining, as aspects of energy, sensing and hardware that it
was not necessary to previously consider now need addressing.

However these rigid design constraints are interpreted, they
enforce the designer to consider fundamental aspects of a node,
a process that is likely to enable their design to transfer more
easily to a practical deployment. Note that it is not intended for
a communication protocol or application designer to have to
develop algorithms for intelligent sensing and energy-
management; with community support in an established
simulator, these would be available in the same way as the
considerable number of different communication protocol
layers are today.

Through the combination of detailed, flexible and
extensible models and a structured architecture for embedded
software, a simulator can provide the necessary level of
hardware and environmental representation that modern
energy-aware WSNs require. The proposed structure has been
subsequently incorporated into an in-house simulator
(WSNsim), discussed in the next section.

V. A CASE STUDY: WSNSIM
WSNsim is an in-house object orientated discrete-event

based simulator for WSNs, developed by the authors using
Microsoft Visual Studio .net 2005. WSNsim is built around the
proposed energy-aware structure (shown in Fig. 4), providing
hardware- and model-centric operation. The operation of
WSNsim is coordinated by a central controller, using a packet
scheduler to manage discrete event simulation. Logging and
GUI components (an example of WSNsim’s GUI is shown in
Fig. 5) are also implemented, and operate via the simulation
controller. WSNsim was developed to evaluate other research
into WSNs that was being performed at the University.
WSNsim is not currently available to the wider research
community, as it does not have the required documentation or
personnel to support it. Due to interest that it has received, this
is planned future work; this paper represents the first step in

Figure 5: A network under simulation in WSNsim, showing the residual
energy remaining in each node (with regular communication links annotated).

opening WSNsim to the wider research community.

To place the proposed simulation structure in context and
show how it is suited to the evaluation of energy-aware WSNs,
the following subsection explains the function of WSNsim’s
various models and software stacks. Details of the actual
simulations that have been undertaken are outside the scope of
this paper.

A. Physical and Environmental Models
Already highlighted as a requirement for a WSN simulator,

interaction between different ‘shared’ models in the simulator
is important; for example, the same environmental temperature
model could be used by a temperature sensor, thermoelectric
harvester, plus any other device models that exhibit
temperature dependence. Fig. 6 shows the interaction between
various models in the implemented version of WSNsim; the
reasons for these interactions are described in context in the
following subsections.

1) Energy Models: The energy model in each node
contains energy source(s), energy stores(s) and energy
consumer(s).

Energy sources in WSNsim provide an interface between
the environment model (which dictates, for example, the
intensity of the light incident on a photovoltaic cell) and the
energy that is subsequently added to the node’s energy store.
The sources modeled in WSNsim include a photovoltaic cell
(which includes consideration for the non-linear P-V
relationship exhibited by a photovoltaic, whereby the
instantaneous store voltage dictates the fraction of the
maximum power that is transferred) and a vibration harvester.

Energy stores are modeled in WSNsim for an ideal store, a
battery, and a supercapacitor. The battery store demonstrates
dynamic rate discharge, relaxation, and self-discharge effects,
while the supercapacitor store suffers from considerable
leakage. Further information on (and evaluation of) the
implemented ideal and supercapacitor store models can be
found in [13].

Energy consumers are modeled in WSNsim using empirical
values for the current consumption, that are multiplied by the

current store voltage and the duration for which they are
consuming. Consumers modeled include the microcontroller,
radio transceiver, sensors, ADCs, and the RTC. Further
information on the modeling and evaluation of implemented
energy consumers can be found in [13].

2) Sensor Model: WSNsim contains sensor models for
both a digital temperature sensor and a light sensing circuit.
These models interface with the environmental models to
obtain the value of the sensed parameter at the current time
and location. This value is then ‘sampled’ by introducing
inaccuracy and error, and converting the signal into a
quantized digital signal or voltage. Additionally, the light
sensing circuit allows the range or sensitivity to be controlled
by the embedded software, through the use of a digital input.

3) Timing Model: While timing has not been considered in
this paper, the timing model in WSNsim considers delays,
clock drift, and RTC errors. As shown in Fig. 6, the RTC
model uses the temperature model to include temperature
dependence, and the time delay model gets values for delays
directly from the hardware models.

4) Environmental Model: The environmental model
dictates the variation of physical parameters in the
environment, including temperature, vibration and light. Each
model can be used by multiple hardware models (as shown in
Fig. 6) and, in response to being parsed a location and a time,
returns the value of the parameter.

5) Channel Model: The channel model implemented in
WSNsim is very similar to that used in the Castalia simulator
[20]. An empirical log-distance path loss model with log-
normal shadowing [28] is used to calculate the signal strength
(and hence the SNR) at the receiving node. The SNR is
affected by temperature (due to the presence of thermal noise),
and hence the channel model interfaces with the temperature
model. Using the relationship between SNR and BER given in
[29], bit errors are introduced into the received packet, which
results in the packet being successfully received or else
discarded.

6) Network Model: The network model is used to contain
information on the location of nodes (information that is

Figure 6: The interaction between hardware and environment models present in the implementation of WSNsim.

required by the environmental models, but that is hidden from
the node). If a node requires location awareness (for example,
for a geographical routing algorithm), a hardware model for
GPS (or equivalent) should be implemented to interface with
the network model.

B. Simulated Embedded Software
1) Energy Stack: The simulated energy stack is formed of

three layers: the physical energy layer (PYE), energy analysis
layer (EAN), and energy control layer (ECO). The PYE is
responsible for interfacing with the node’s energy model to
manage and monitor the supply and demand of energy. To
monitor the residual energy in a store, the PYE obtains a
reading of the voltage across the store from the energy model;
this is performed on receipt of a measure request from the
higher layer and, when obtained, the resultant measurement is
sent back to the higher layer. The EAN converts voltage
measurements obtained by the PYE into meaningful statistics
such as the absolute residual energy, relative residual energy,
or remaining lifetime. This is performed through the use of
models for the dual-supercapacitor and battery (Ni-MH, Ni-
Cad, and Li-ion) stores that convert the voltage into a residual
energy. The ECO takes a high-level view of the energy
subsystem, and controls the energy-aware operation of the
node. Upon waking up from a sleep state, the shared APP
notifies the ECO which subsequently sends a measure request
to the EAN to monitor the store voltage. Upon receiving a
measurement of the energy residual in the store, the ECO
calculates the ‘energy-state’ of the node.

2) Sensing Stack: the sensing stack implemented in the
simulated node’s embedded software is formed of three layers:
the physical sensing layer (PYS), sensor processing layer
(SPR), and sensor evaluation layer (SEV). The PYS interfaces
with the sensor model to energize sensors and obtain raw
readings. The implemented PYS handles two requests, sense
and range, from the higher layer. The sense request causes the
parsed sensor to be sampled, and after the necessary sensing
period has passed, the reading is passed to the higher layer.
The range request updates the current setting of the light
sensor’s sensitivity range to the value parsed, and returns the
new value to the higher layer. The purpose of the SPR is to
convert raw sensor readings into high-level interpreted, error
corrected values with associated error bounds where
appropriate. The implemented SPR handles one request, sense,
from the higher layer, which is simply passed on to the lower
layer. In order to convert the raw values obtained from the
PYS into meaningful values, models are implemented in the
embedded software. Obviously, the effects of the random
variables introduced by the sensor models cannot be reversed,
and hence error exists in the sampled data. The bounds of this
error can be calculated through either inspection, or through
analysis of the error sources. Additionally, if the reading
obtained from the light sensor is nearing saturation, the SPR
layer sends a range request to the lower layer in order to
change the sensitivity range. The SEV layer is responsible for
coordinating sensing, evaluating the significance of sensed
data and performing event detection, and identifying faults in
the sensor hardware.

3) Communication Stack: The communication stack
implemented in WSNsim consists of three layers: the PHY,
MAC, and NET. The PHY is based upon the 2.4GHz air
interface specified in IEEE 802.15.4-2006 [29], implementing
a complete PD-SAP, PLME-SAP and PHY-PIB. The PHY has
been extended with primitives to support long preambles in
order to accommodate the low-power-listening techniques that
are required by the MAC layer. Finally, the NET implements
packet flooding and ‘minimum cost’ routing algorithms.

C. Observations and Discussion
The previous subsection gave details of the structure

implemented in WSNsim, providing an overview of the models
and layers that have been incorporated. This subsection
comments on the user experience of developing algorithms
(communication, energy-management and intelligent sensing)
using WSNsim, and highlights some of the enhanced design
experiences that the proposed simulation structure offers.

WSNsim, and the proposed structure that it is based around,
allowed for the evaluation of energy-aware algorithms for
energy-harvesting nodes that are the subject of other research
being performed at the University. The presence of a flexible
environmental model allows the simple addition of new energy
sources, and the level of hardware modeling means that the
results produced by the simulator are believable. The structure
of the embedded software that is imposed by the ‘unified’ stack
meant that the tasks of energy-management and intelligent
sensing had to be carefully considered in order to break down
the task into the various layers of the stack. While this could be
construed as limiting and cumbersome, it was the author’s
experience that this process led to algorithms that were better
designed, and that were closer to that which could be
practically deployable on real hardware. Furthermore, the
versatility of the environmental and physical models allowed
for the simple inclusion of sensor node hardware (the models in
WSNsim are currently configured to consider the Texas
Instruments CC2430 platform, though changing this is a simple
process), indeed the extensibility of the proposed structure
allowed the easy development and evaluation of a range of
hardware models [13], that have been able to continue to
evolve and expand throughout the process of this research.

When designing the MAC protocol in the communication
stack, thought had to be given towards how the node’s
microcontroller and radio transceiver would be turned off or
put into sleep modes at various states. This subsequently has
various effects on other aspects of the embedded software, for
example energy-management and sensing tasks must fit into
this schedule dictated by the MAC. While not enforced or
required in some other simulators, the control of different
devices’ power states must be considered in WSNsim, or the
microcontroller and radio transceiver would remain continually
active resulting in considerable energy consumption.

The overall experience of developing algorithms and
protocols in WSNsim was one that was greatly aided by its
structure, both in terms of the range and integration of
hardware and physical models, and the structured architecture
for developing embedded software.

VI. CONCLUSIONS
While simulation is well established for mobile and ad hoc

networks, the simulation of energy-aware WSNs (which is the
most used method of evaluation) using currently available tools
has a number of shortcomings. First, most available simulators
lack adequate support for the node’s hardware (especially
energy sources such as photovoltaics and vibration harvesters)
and the needed environmental models (available environmental
models are often too inflexible to allow easy integration of new
hardware). Second, the node’s simulated embedded hardware is
structured largely around communications, giving little
consideration to the implementation and interfacing of sensor
processing and energy-aware algorithms. In this paper, we have
presented a structure for the simulation of energy-aware WSNs.
The novelties of this structure are in the provision of adequate
modeling for node hardware and environment, and the
integration of a structured architecture for embedded software
to enhance the design of energy-aware sensor nodes. An
implementation of the structure has been demonstrated in our
in-house simulator, WSNsim. User experience of designing and
evaluating energy-aware algorithms using WSNsim have
shown that the design process can be significantly improved
through the use of the proposed structure.

The next step for this research is in integrating the proposed
structure into a publicly available simulator. This will either be
via an extension to an established simulator such as ns-2 or
OMNET++ or, alternatively, through the development of
WSNsim into a package that can be adequately documented
and supported.

REFERENCES
[1] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mario, and

J. Garcia-Haro, "Simulation scalability issues in wireless sensor
networks," IEEE Communications Magazine, vol. 44, pp. 64-73, Jul.
2006.

[2] S. Park, A. Savvides, and M. B. Srivastava, "SensorSim: A simulation
framework for sensor networks," in Int'l Workshop Modeling, Analysis
and Simulation of Wireless and Mobile Systems, Boston, MA, 2000, pp.
104-111.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A
survey on sensor networks," Communications Magazine, vol. 40, pp.
102-114, Aug. 2002.

[4] T. Arampatzis, J. Lygeros, and S. Manesis, "A survey of applications of
wireless sensors and wireless sensor networks," in Mediterranean Conf.
Control and Automation, Limassol, Cyprus, 2005, pp. 719-724.

[5] V. Prasad and S. H. Son, "Classification of Analysis Techniques for
Wireless Sensor Networks," in Int'l Conf. Networked Sensing Systems
(INSS'07), 2007, pp. 93-97.

[6] G. Chen, J., M. J. Branch, L. Z. Pflug, and B. Szymanski, "SENSE: A
Sensor Network Simulator," in Advances in Pervasive Computing &
Networking, B. Szymanksi and B. Yener, Eds., 2004, pp. 249-267.

[7] G.-Z. Yang, Body Sensor Networks. London, UK: Springer-Verlag,
2006.

[8] C. Park and P. H. Chou, "AmbiMax: Autonomous Energy Harvesting
Platform for Multi-Supply Wireless Sensor Nodes," in Sensor and Ad
Hoc Communications and Networks (SECON'06), 2006, pp. 168-177.

[9] R. N. Torah, P. Glynne-Jones, M. J. Tudor, and S. P. Beeby, "Energy
Aware Wireless Microsystem Powered By Vibration Energy
Harvesting," in PowerMEMS, Freiburg, Germany, 2007, pp. 323-326.

[10] X. Jiang, J. Polastre, and D. Culler, "Perpetual Environmentally Powered

Sensor Networks," in 4th Int'l Conf. Information Processing in Sensor
Networks (IPSN'05), Los Angeles, CA, 2005.

[11] A. S. Weddell, N. R. Harris, and N. M. White, "An Efficient Indoor
Photovoltaic Power Harvesting System for Energy-Aware Wireless
Sensor Nodes," in Eurosensors 2008 Dresden, Germany, 2008.

[12] T. Stathopoulos, D. McLntire, and W. J. Kaiser, "The Energy
Endoscope: Real-Time Detailed Energy Accounting for Wireless Sensor
Nodes," in Int'l Conf. Information Processing in Sensor Networks (IPSN
'08), 2008, pp. 383-394.

[13] G. V. Merrett, A. S. Weddell, A. P. Lewis, N. R. Harris, B. M. Al-
Hashimi, and N. M. White, "An Empirical Energy Model for
Supercapacitor Powered Wireless Sensor Nodes," in 17th International
IEEE Conference on Computer Communications and Networks St
Thomas, Virgin Islands (USA): IEEE, 2008.

[14] M. Mekni and B. Moulin, "A Survey on Sensor Webs Simulation
Tools," in Int'l Conf. Sensor Technologies and Applications.
(SensorComm '08), 2008, pp. 574-579.

[15] ISI, University of Southern California, CA, USA, "The Network
Simulator - ns2." [Online]. Available: www.isi.edu/nsnam/ns.
[Accessed: Jan., 2009].

[16] P. Levis, N. Lee, M. Welsh, and D. Culler, "TOSSIM: Accurate and
scalable simulation of entire TinyOS applications," in Int'l Conf.
Embedded Networked Sensor Systems (SenSys'03), Los Angeles, CA,
2003, pp. 126-137.

[17] I. T. Downard, "Simulating Sensor Networks in NS-2," Naval Research
Lab, Washington DC ADA423595, 31 May 2004.

[18] A. Varga, "The OMNET++ discrete event simulation system," in
European Simulation Multiconference, Prague, Czech Republic, 2001,
pp. 319-25.

[19] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar, R. Kannan, and A.
Durresi, "Simulating Wireless Sensor Networks with OMNeT++,"
unpublished, submitted to IEEE Computer, 2005.

[20] National ICT Australia Ltd, "Castalia - A Simulator for WSNs," Mar.
[Online]. Available: http://castalia.npc.nicta.com.au/. [Accessed: Mar.,
2009].

[21] A. Sobeih, J. C. Hou, L.-C. Kung, N. Li, H. Zhang, W.-P. Chen, H.-Y.
Tyan, and H. Lim, "J-Sim: a simulation and emulation environment for
wireless sensor networks," IEEE Wireless Communications, vol. 13, pp.
104-19, Aug. 2006.

[22] S. Sundresh, W. Kim, and G. Agha, "SENS: A sensor, environment and
network simulator," in Annual Simulation Symposium, Arlington, VA,
2004, pp. 221-228.

[23] J. Polley, D. Blazakis, J. McGee, D. A.-R. Rusk, D., and J. S. A.-B.
Baras, J.S., "ATEMU: a fine-grained sensor network simulator," in
Conf. Sensor & Ad Hoc Communications & Networks (SECON'04),
2004, pp. 145-152.

[24] B. L. Titzer, D. K. Lee, and J. Palsberg, "Avrora: scalable sensor
network simulation with precise timing," in Int'l Symp. Information
Processing in Sensor Networks (IPSN'05), 2005, pp. 477-482.

[25] V. Shnayder, M. Hempstead, B.-r. Chen, G. W. Allen, and M. Welsh,
"Simulating the power consumption of large-scale sensor network
applications," in Int'l Conf. Embedded networked sensor systems
Baltimore, MD, USA: ACM, 2004, pp. 188-200.

[26] O. Landsiedel, K. Wehrle, and S. Gotz, "Accurate Prediction of Power
Consumption in Sensor Networks," in 2nd IEEE Workshop Embedded
Networked Sensors (EmNetS-II), 2005, pp. 37-44.

[27] G. V. Merrett, A. S. Weddell, N. R. Harris, B. M. Al-Hashimi, and N.
M. White, "A Structured Hardware/Software Architecture for Embedded
Sensor Nodes," in 17th International Conference on Computer
Communications and Networks St Thomas, Virgin Islands (USA), 2008.

[28] T. S. Rappaport, Wireless Communications: Principles & Practice:
Prentice Hall, 1996.

[29] IEEE, "802.15.4™-2006," in IEEE Standard for Information Technology
- Part 15.4: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (WPANs): IEEE, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

