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Abstract. In this paper, we introduce a system for handling very large
datasets, which need to be stored across multiple computing sites. Data
distribution introduces complex management issues, particularly as com-
puting sites may make use of different storage systems with different in-
ternal organizations. The motivation for our work is the ATLAS Experi-
ment for the Large Hadron Collider (LHC) at CERN, where the authors
are involved in developing the data management middleware. This mid-
dleware, called DQ2, is charged with shipping petabytes of data every
month to research centers and universities worldwide and has achieved
aggregate throughputs in excess of 1.5 Gbytes/sec over the wide-area net-
work. We describe DQ2’s design and implementation, which builds upon
previous work on distributed file systems, peer-to-peer systems and Data
Grids. We discuss its fault tolerance and scalability properties and briefly
describe results from its daily usage for the ATLAS Experiment.
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1 Introduction

Our work addresses the problem of managing very large datasets. The motivation
is the LHC project at CERN, which is expected to start operation during the
summer of 2008 and continue in production for about twenty years. The LHC
particle accelerator, extending for a 27 km ring buried 100 meters underground
is illustrated in Figure 1, along with the various LHC detectors. The raw data
produced by just one of the LHC detectors (the ATLAS Experiment [1]) exceeds
ten petabytes per year. ATLAS is a worldwide collaboration that will produce
petabytes of data during its lifetime. These data needs to be distributed and
stored globally for access by a large number of scientists.

In this paper we start with a review of contributions in the area of distributed
file systems, peer-to-peer and data grids. Based on this prior work, we propose
a new architecture, improving the previous contributions in several respects. We
describe important properties of the system and initial experiences running a
real world production infrastructure for the ATLAS Experiment.



2 Managing very-large distributed datasets

Fig. 1. Schematic overview of the LHC accelerator.

2 Existing Work

A number of different Computer Science areas have devised architectures and
software systems to address the problem of very large datasets. Some of the most
relevant areas are distributed file systems, peer-to-peer (P2P) systems and Data
Grids. In this section we introduce the major contributions from these areas.

2.1 Distributed File Systems

NFS [10] is one of the early distributed file systems which continues to be widely
used. It is based on a stateless (up to version 4) client/server protocol imple-
mented using remote procedure calls and supports POSIX-like semantics. With
large numbers of users or under bandwidth constraints, the POSIX-like semantics
hinder the performance and scalability, resulting in NFS being an unattractive
choice to manage datasets at the petabyte scale.

AFS [9] was the first distributed file system to introduce client-side caching.
This property increases the scalability of AFS but introduces additional com-
plexity when handling updates. UNIX ”last file write wins” semantics are hard
to implement in a scalable manner. AFS introduced ”last file close wins” seman-
tics. This limits the universal applicability of AFS but increases its scalability
for the common cases of multiple reads with infrequent writes. We are not aware
of any AFS-based system handling petabytes of data over a wide-area network.
We believe this is due to fundamental AFS design decisions, such assupport-
ing POSIX-like semantics. Coda [15], a successor of AFS, introduced support
for disconnected operations when the network connection is lost, but at the
petabyte-scale Coda suffers from exactly the same issues as AFS.

Another modern cluster file-system is the block-based IBM General Parallel
File System (GPFS) [16]. GPFS provides high-performance I/O due to its ability
to stripe blocks of data from individual files over multiple disks. GPFS has been
demonstrated to work over a wide-area network [17] but under strict deployment
constraints. Block-based systems can be expected to have difficulties scaling to
very large user numbers, particularly in a shared environment.

The Lustre [21] distributed file system was originally developed by Cluster
File Systems. Lustre is inspired by the architecture devised for the Digital VAX-
Clusters, which were built on top of a local file system by requiring data access to
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interact closely with a distributed lock manager. The core components of Lustre
are the distributed lock manager, the metadata servers and object storage tar-
gets. Lustre scales to the data handling requirements discussed previously: tens
of thousands of nodes and PetaBytes of storage. Lustre was designed as a cluster
file system for a closed network but since has been expanding to accommodate
multi-site and multi-cluster deployments. Lustre briefly described plans for a
”Lustre Router Control Panel” to allow adjusting of quality of service within a
cluster and wide-area network.

An important lesson from Lustre is on how scalability is achieved by moving
from a block-based approach to an object-based approach, which changes the
fundamental mechanisms used to access data. Lustre, contrary to traditional
block-based devices, assumes that storage devices are intelligent devices and
makes use of more advanced protocols to access data. Lustre clients do not
talk directly to the block-based device but rather to a component called Object
Storage Target (OSTs). This approach eliminates many of the bottlenecks of
traditional block-based I/O in the communication between clients and block-
based storage devices.

Google has designed and implemented the Google File System (GFS) [11],
which provides a scalable system for distributed data-intensive applications.
It is designed for applications handling very large files with many reads and
few writes. GFS drops some of the assumptions of the earlier systems, such as
POSIX-like semantics. It consists of a master node (the ’metadata server’) and
multiple chunkservers. The master node maps a user file to multiple chunks (each
of 64 Mbytes), which are placed in various chunkservers. The file system sup-
ports parallel read, write and update operations and has built-in fault-tolerance
features.

GFS can scale to large clusters while running on inexpensive commodity
hardware. Hadoop1, a top-level Apache project, is a system inspired by the de-
sign of GFS but open source and therefore considerably better documented.
A core lesson from these systems is that scalability is achieved by taking ad-
vantage of environment constraints: for example, GFS eliminates the complex
distributed locking models of earlier systems by allowing append operations only
and adopting simple mechanisms for fault-tolerance.

2.2 Peer to Peer systems

Peer-to-peer (P2P) systems are particularly interesting for their scalability and
ability to cope with heterogeneous environments. This has been an area of re-
search with many contributions in the past years. Work described in [4] provides
an excellent analysis of the search aspects for P2P systems.

There are several different architectures for P2P networks that may be classi-
fied in ’centralized’, ’decentralized but structured’ or ’decentralized and unstruc-
tured’ [23]. While decentralized and unstructured systems were commonly used

1 Refer to http://hadoop.apache.org/core/.
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given their scalability but most have evolved to have associated structures, usu-
ally by relying on super-peer nodes or DHT algorithms [4]. This is an important
lesson for our own architecture. P2P research has also analyzed the searching
aspect in conjunction with storage and replication of data. Work by [23] and [14]
has shown how to minimize exchange of messages between peers whilst provid-
ing effective mechanisms to locate data and decide on replication in peer nodes
other than the data requestor, as to optimize future requests.

2.3 Data Grids

GASS [18] or ”Global Access to Secondary Storage” is one of the early Grid
Computing contributions to the large datasets problem. It consists of a system
designed to manage secondary caches, which is a logical evolution of the client-
side caches built into distributed file systems such as AFS. GASS claims to sup-
port bandwidth management rather than latency management as in distributed
file systems, but its functionality is very limited.

GDMP (Grid Data Mirroring Package) [20] is a file and object replication
tool. It introduced the concept of a storage system subscribing to collections of
files that were then moved using GridFTP [7]. GDMP was envisaged as a limited
prototype system for file movement and its scalability was not investigated.

Ann Chernevak et al [2] introduced the ”Data Grid” in an architecture paper
which defines a specialized Grid architecture for handling large data volumes.
The architecture is loosely defined to accommodate various models of operation
but is tightly integrated with ”Grid dynamics”: security, awareness of virtual
organizations and access to fast-changing large sets of resources. The ”Data
Grid architecture” consists of two main components: one responsible for storing
and retrieving data and another for bookkeeping. The paper also introduces
higher-level services to integrate all the individual lower-level services onto a
coherent set, defining a Replica Management service capable of moving files
between Grid sites and doing all the necessary bookkeeping. In addition it also
defined the Replica Selection and Filtering service that would decide on-demand
replication.

OptorSim [3] is an example of a simulator built mainly to study how to
optimize access to data from Grid jobs, e.g. devising models on how best to
replace replicas when storage space is limited. In the context of the OptorSim
work, an economic model was introduced. Most of this work had a strong focus on
coupling job scheduling with data replication. These simulators introduced novel
research but were not a comprehensive approach to data management, focusing
only on the data placement aspect and not on the search or bookkeeping aspects.

Giggle [22] is the reference work on replica location services. It consisted
of catalogues mapping logical names to physical replicas so that users could
reference data by a logical name independently of its physical location. These
catalogues could be layered. A s the scale increased, the authors moved to P2P-
based approaches for searching data.

An example of an integrated replica management services is also very recent,
by Houda Lamehamedi [19]. It consists of a P2P-based system for replica loca-
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tion and an ’intelligent’ framework for replication based on user demand and
calculations of replication cost. This paper, despite being the most comprehen-
sive approach to managing large datasets on the Grid to date, stills does not
address real-life problems such as bandwidth management and does not address
issues such as replica consistency or support for tertiary storages, which were
modeled as arbitrary file access penalties.

The SDSC SRB (Storage Resource Broker) [25] supports shared collections
that can be distributed across multiple organizations and heterogeneous storage
systems. It is the system that presents most similarity to our working environ-
ment but we require a system that scales further than SRB, to hundreds of sites,
thousands of users and tens of petabytes of data.

2.4 Summary

There are several common architectural design decisions adopted in the systems
discussed above. One is that metadata is handled by a separate service (e.g.
Lustre, GFS or the Data Grid architecture). Even though a central metadata
service is sufficient for most usages, such a design has limited scalability when
compared with a P2P-based implementation. Another observation is that the
more recent systems do not store user files as individual files on the storage.
Finally, most distributed file systems maintain at most POSIX-like semantics
and systems such as GFS or Hadoop are not POSIX compliant at all due to
scalability issues.

Data Grids aimed from the start to support heterogeneous environments.
This trend is now being adopted by distributed file systems: Hadoop already
supports more than one backend. Lustre is working on a Control Panel to sup-
port bandwidth management on the WAN, enabling complex setups that spawn
multiple sites (”heterogeneous” network environment).

Nonetheless, none of the existing systems matches the exact needs or environ-
ment constraints we will be addressing in our architecture. In the next section,
we will look into these differences in more detail.

3 A Data Grid Architecture

Very large datasets at the terabyte or petabyte-scale often need to be hosted
across multiple sites with different storage systems. Presenting a uniform, scal-
able data management layer is the scope of the current work.

Unlike distributed file systems that require fairly uniform setups across sites
and complex network configurations, we require a management layer that can
scale to hundreds of sites. Unlike commonly used P2P systems, we need to have
reasonably stable associations between sites and have well established security
policies. Unlike all systems presented, we need to be able to impose global policies
based on data properties.

Our system needs to make opportunistic usage of volunteered resources with-
out any centralized administration, while maintaining expected quality of ser-
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vices overall. As such, we seek to combine the interesting properties of Data
Grids, distributed file systems and P2P for our Data Grid Architecture.

3.1 System requirements

Even though we propose a general-purpose data management system, clearly
one data handling system cannot be applicable to all possible domains. We have
therefore made certain assumptions about our environment:

– For accessibility and cost reasons, data needs to be distributed among mul-
tiple computing sites rather than hosted in a single site;

– Most files are large by traditional standards, with each file being hundreds
of megabytes or several gigabytes;

– Data is rarely modified after it has been produced, where the most common
case is to append data rather than replace existing data;

– The production of data occurs in highly parallel environments where multiple
batch nodes are producing part of a large data sample in parallel;

– There are multiple computing sites with different ’service-level agreements’.
These include professionally-managed computing centers down to university
clusters managed by students in their spare time. This implies very different
quality of service and scale of resources;

– There are volunteered contributions of computation and data storage re-
sources that should be supported in an opportunistic way, while taking into
account their expected quality of service and size;

– There is no centralized administration of all available resources, which re-
quires a coexistence of global and local policies;

– Volunteer contributions of resources requires the ability to adapt to different
implementations: e.g. supporting different storage systems. It is expected
that such need will introduce higher-failure rates and overall instability.

3.2 Core design principles

The principle design decision we took was not to depend on direct access to
the servers where the files are stored. Our architecture does not replace the
storage system at a site. Instead, it is layered on top of the existing storage
middleware (e.g. on top of a data center-wide Lustre installation or an NFS
server at a university campus). This is a completely different approach from
the systems previously discussed. This considerably extends our ability to make
opportunistic use of storage resources, but can lead to many more potential
inconsistencies. Our design tackles these inconsistency issues. To make efficient
use of the storages, we have defined an abstract layer to interact with the storage.

We decided to provide greater flexibility by not enforcing POSIX semantics,
following a trend observed in other distributed systems. Users of our system
require specific tools to access and manipulate data. Another important design
decision is on the unit of data handling. While files are the underlying unit, all
user requests are for datasets (groups of files). This matches our observation that
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users rarely use a single file in isolation but almost always make use of groups
of files (grouped statically by some semantic meaning). To further increase our
flexibility and optimize storage and network usage, we have decided to decouple
the units of data location from the unit of storage and the unit of transfer. Later
in this paper we will look in detail into this decision.

3.3 Datasets

Datasets are natively supported by our architecture. A dataset is a collection
of files, typically containing more than one physical file, which are processed
together and usually comprise the input or output of a computation or data
acquisition process. Datasets are always produced at a single storage system
and later replicated to other storages.

A dataset is, at the lowest level, file metadata: a file is assigned as being part
of one or more datasets. This attribution provides very useful properties, even
if other systems do not make use of it. Knowing that a dataset represents files
that are used together, the system can optimize its units of data transfer and
discovery. Locating datasets as opposed to files implies storing much less entries
on a database, hence improving overall scalability. Similarly, when transferring
data, the dataset provides very good ordering of requests: if there is a long queue
of files to replicate, it makes the most sense to replicate those files that will allow
users to advance with their analysis as soon as possible - and these are typically
the files part of a dataset missing at a site. Additionally, there is often the need to
assign metadata attributes (e.g. ’software version used to produce the output’)
to a set of files. Again, in this case it makes the most sense to assign a single
metadata attribute to a dataset as opposed to assign it individually to a set of
files.

Creating a dataset is typically highly parallel task, where jobs in a batch
system are each producing the constituent files. To facilitate the iterative process
of constructing a dataset, which often lasts weeks, we have defined the possibility
to create ’versions’ of a dataset. Versions allow users to reference a static set of
files at a moment in time. Later versions can add or remove files from the dataset.
Nonetheless, for dataset integrity, datasets can only be replicated to other sites
when they are ’frozen’ - when no further changes are allowed. A correlation can
be established with our model and the ’last close wins’ semantics for distributed
file system, applied to a much higher-level concept.

3.4 User Functionallity

DQ2 provides the following functionality to the users:

– A user can create a dataset. A dataset is assigned a storage at creation time.
The dataset can then be modified by adding or removing files, using specific
tools to handle the physical movement of data from the user’s file system
to the storage system. The user does not control or manage the physical
location of the files within the storage system; this is done internally as we
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shall describe later. The storage system is seen as a black-box from the user
perspective and all interactions involve DQ2 tools.

– A user can replicate datasets between storages across the wide-area network
or within a site. After a dataset has been fully defined but before it can
be replicated, the user must freeze it. This guarantees the dataset can no
longer change. Afterwards, the user may subscribe the dataset to another
storage. The subscription, similar to the principles describe on [20], is used
for asynchronous replication. There are multiple subscription options: e.g.
restrict data flows by using only specific source sites (the default is for DQ2
to choose the best sources); or set the transfer priority among other options.

– A user can receive events during the replication process. As replication is
the one of the primary functions of DQ2. The user can choose to receive no-
tifications whenever certain events happen. For instance, when the dataset
has been fully replicated, the system can send a notification to an endpoint
specified by the user at subscription time. This is used to link the data
transfer system with the job submission system: when data is available at
a storage, the production management system gets a notification and auto-
matically launches jobs to process these data. We found this mechanism to
be routinely used. Subscriptions can be cancelled at any time, triggering a
clean-up of any ongoing transfers.

– Users can retrieve an entire dataset or some of its files to a local file system.
This allows synchronous downloading of data from the best available sources.

– Users can query DQ2 for replicas of a dataset to locate data.
– Users can also request deletion of replicas. Deletion requests are dealt with

asynchronously but users are informed when querying for replicas. Similarly,
a user may request the deletion of a dataset in the system: this triggers
deletion of all its replicas.

3.5 Architecture

Figure 2 describes the overall architecture. To implement the functionality pre-
viously described, DQ2 uses a combination of local and global services.

Fig. 2. DQ2 Architecture.
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Local services. The local services are called storage area services (a storage
area is loosely defined as a subset of a storage system). These local services are
associated to the storage at a site and typically require privileged access, de-
pending on whether the storage-specific plugins require such local access. There
may be more than one storage area service per storage system. For DQ2, these
areas are independent, each with its own set of services and dedicated disk space.
Local services are designed to be minimal without any global information. This
decision improves overall robustness making components more autonomous.

Storage area services have two distinct roles: to hold dataset definitions and
to handle files in the storage. It is the responsibility of the storage area ser-
vices where a dataset is created to hold its definition, even if other replicas are
created and the master copy deleted. This information is permanent and needs
to be stored in a reliable way. The other role is to physically move files to the
storage from a remote location (import), to delete files from the storage, to stage
files (preparing a file for export) and to lookup files (to find if a storage has a
certain file). These activities are executed by local agents that rely on transient
information (available only during the lifetime of the request). Coordination of
which files to transfer, delete, stage or lookup is handled by a global component
we describe next. Nonetheless, decisions can be overridden locally (by denying
or re-ordering requests) given site or storage-specific policies.

Note that DQ2 does not include any database with full knowledge of a storage
namespace. When DQ2 needs to know whether a file is present, it will query
the storage system, avoiding the need to maintain and synchronize a separate
database (which could cause both scalability and consistency problems).

Global services. The global services have an important role in our system.
Each global service acts as the master for all activities with a dataset. When a
user asks for a dataset to be replicated, the request is redirected to a master,
using a dataset redirection service that guarantees unique mapping between a
dataset and a master service. The master will then queue and schedule the
dataset request. The master does not execute any of the activities: it simply
assigns work to local agents. Work assignments include looking up and staging
source files, doing wide-area transfers or deleting files. The local agents are not
dataset-aware: these only deal with bulk requests of files. It is up to the master
to optimize work assignments based on dataset knowledge.

Throughout its activity, the master will gradually build a cache of dataset
(and file) replica information. This cache serves as the mechanism for users
to locate dataset replicas. Dataset locations are never absolutely correct in a
distributed system: it is always possible that a request fails because data was
lost unexpectedly. Nonetheless, to avoid constant hits to the storage systems to
locate data, we maintain a cache that is gradually renewed from the masters
activity.

Quotas and accounting. In DQ2, quotas are handled in the master. DQ2
can only guarantee that within each master a user stays within his quota (or
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e.g. a replication request is denied). Global accounting is possible by gathering
statistics from all masters. In practice we have found the model to be sufficiently
flexible: the service that assigns datasets to masters may take into account the
ownership of the dataset and ensure that all datasets belonging to the same user
are mapped to a single master.

4 Implementation

This section describes implementation details for DQ2. We describe the imple-
mentation of the various components and their interactions. Common across all
components is the usage of HTTP as the communication protocol for client/server
requests.

4.1 Dataset Redirection Service

A user specifies a dataset in every request to DQ2. The request is first sent
to a central dataset redirection service. This service redirects the request, using
HTTP, to the appropriate master. Our current implementation statically assigns
datasets to masters based on a set of rules based on the dataset name. To avoid
single points of failure, multiple instances of the service can be setup, sharing the
same set of rules. Other rules could be foreseen to e.g. have the same load across
all master, which would require some form of coordination among masters. In
practice, this is not required from our experience and we have opted to strictly
partition dataset masters.

This redirect mechanism provides partitioning of requests among multiple
masters. Masters are deployed to serve a single activity. Examples of activities
defined in our production system are raw data taking, when the ATLAS detector
is taking raw data; regional monte-carlo production, encompassing all simulation
activities from a regional group without interest to the collaboration; official
monte-carlo production, including simulation activities that passed strict physics
validation and hence are available for use across physics groups.

4.2 Storage Area Services

Dataset definitions. Storage area services contain dataset definitions in a rela-
tional database. At creation time, each dataset is assigned a logical name by the
user and a globally unique identifier (UUID [6]) by the system. This guarantees
that datasets are uniquely identified when replicated to other storages. Each file
is also assigned a unique identifier by the system in addition to its logical file
name.

Agents. There are different agents with distinct roles: to lookup files on the
storage, to stage files (from a tape system or from the storage to an export
disk buffer), transfer or delete files. Agents use in-memory structures and hold
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minimal state. To interact with the storage, each agent makes use of storage-
specific plugins for executing the task. For instance: the mechanism to stage files
from tape depends on the tape system being used; similarly, to locate files in a
storage system a POSIX stat command may be sufficient; in other cases, storage
dependent tools are required.

Interactions with master for schedulling. Agents have a list of masters on
which to poll for work. Each agent will poll for work, doing round-robin requests
across its masters. For some cases, DQ2 also implements a simple fair-share
mechanism. In this case, the agent will poll a master, specifying a maximum
response size. The agent can then maintain a share allocation to each master,
guaranteeing that each master gets an allocation of the agent’s work (e.g. the site
administrator can dedicate half its resources to serving requests from a specific
master: this is regularly used in ATLAS to guarantee that raw data gets shipped
in due time to all sites).

Wide-area transfers. DQ2 can support a variety of transfer protocols with
its plugin approach. GridFTP is commonly used due to its broad support by
storage systems but other protocols (HTTP) are also supported.

To interact with the storage systems we make use where possible of a com-
mon mass storage interface, called SRM ([8]). The SRM interface (v2.2) is imple-
mented by several storage vendors. In some cases, direct access is still required
as not all required information is exposed through SRM.

4.3 Dataset Master

Web service. The web service handles user requests to stage, transfer, delete or
verify consistency of datasets. Requests may be denied immediately if quotas are
exceeded. Users also contact the web service to get the status of asynchronous
requests (e.g. replication status). The web service implements authentication
through Grid X509 proxies ([5]). User read requests are insecure to avoid the
overhead of proxy verification. All other user requests are secure.

There is a second web service endpoint used by agents to request work. The
security on this web service may also be based on grid proxies but is usually con-
figured at the firewall level, avoiding the overhead of proxy verification (reducing
CPU usage on the server).

DQ2 makes use of HTTP URLs providing a simple REST [12] interface.
We have found the REST interface useful for linking external systems to DQ2
(e.g. metadata catalogues refer to the dataset status by using our public dataset
URLs).

Dataset-based brokering. The dataset master is responsible for assigning
work to the local agents. When handling a dataset request, the master makes
use of its knowledge about current replica status for decision making. Work
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assignments are made synchronously as the agents ask for more work. This syn-
chronous decision-making is an important property of our implementation, en-
abling a feedback approach: more work is given to a local agent as it finishes its
current set of work. The work assignments are done just in time and thus rely
on the most up to date information.

When transferring a dataset, the master will assign work giving higher pri-
ority to the datasets that have most files already present at the destination.
Therefore, dataset transfers will likely last less time and the completion rate is
higher. This implies that the master will scan the list of active dataset transfer
to that storage, replying to the local agent with the set of files that will likely
complete the most datasets in the shortest time.

Other optimizations are possible in the master. An important one is when
using tape backends. The latency to recall a file from tape is usually very high.
These requests can be optimized by doing the least number of tape mounts.
When transferring data that is on tape at a source to another storage across
the wide-area, a good coordination is required. DQ2 is able to coordinate such
transfers, making bulk lookup requests at the source, segmenting stage requests
per tape (based on information provided by the lookup agent) and scheduling
the transfer at the destination as soon as sets of files are made available from
the source. The feedback-based model and the synchronous decision making are
critical properties for this mechanism.

Caches. To implement the dataset-based brokering, a very fast response to
agents requests is required. As such, we have implemented various caches on the
master. One cache holds contents of datasets: the first time a request comes for a
dataset, the master does not know its constituent files. It must therefore ask the
storage area services for the dataset definition and caches back this information.
Further usages of the dataset will use this cache.

Another cache contains dataset and file replicas. DQ2 does not have ultimate
knowledge of where data is located: all it can do is act based on previously
known information and expect that data has not been lost in the meantime2. As
DQ2 is notified of the state of lookup, stage and transfer request, it caches this
information. Future scheduling decisions rely on this cached information (if the
cache is recent) and the system will gradually renew the information as required.
Users make use of this cache to locate dataset replicas (even knowing additional
information, such as whether a particular file is staged, if DQ2 was required, for
some other request, to stage the file).

In-memory structures. The master data structures are kept in-memory to
guarantee better performance, which is important for scheduling decisions (e.g.
choose files to transfer next out of the list of pending requests). In addition to

2 In our early prototypes, we exercised mechanisms such as having a storage notify
DQ2 of data losses but this approach was not possible to implement in practice due
to various issues interfacing with storage systems.
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in-memory structures, all data structures are written to a log on disk. This log
is asynchronously fed onto a relational database. When the master process is
restarted, the log is read and the state is re-initialized before the master starts
serving new requests.

5 Fault Tolerance

Interactions between Master and Storage Agents. The dataset master in-
teracts with storage area services when it needs to resolve a dataset and schedule
work to a local agent. All requests are subjected to timeouts and are retried by
the master. Requests to resolve a dataset will be retried indefinitely until a valid
response is retrieved (as we expect to eventually have a valid response). Other
requests, such as staging or transferring a file, will be attempted a maximum
number of times, with an exponential back-off.

The agents also have a retrial policy when contacting the master. In case
a master goes down, each agent will retry reconnecting with an exponential
truncated back-off, giving the master time to recover if the service is unavailable.

Early validation of datasets. DQ2 implements early validation of user datasets.
In our early prototypes, we did not explicitly validate a user dataset before at-
tempting to transfer it. As a result, resources were being wasted trying to transfer
a dataset whose data was badly uploaded, missing or lost. We found that the
majority of cases corresponded to problems uploading files to the storage that
were not detected.

Given that DQ2 is layered on top of existing storage systems, we decided to
shield DQ2 from these errors by having a mandatory validation step before a
dataset can be replicated to other sites. This step is coordinated by the master.
It also serves as the mechanism for the master to be informed of the existence
of the new dataset; and store it in its cache. The step is triggered automatically
when the user notifies that the dataset is frozen (its contents are immutable).

Data corrupted or lost. In a distributed system with hundreds of storage sys-
tems, there are frequent occurrences of data corruption or data loss. The master
is able, in many cases, to detect and automatically correct these occurrences.
When files cannot be repeatedly accessed, the master requests the storage with
suspected data to copy over the files again from another available source. At the
same time, it blacklists those replicas so that other interested parties avoid them.
The mechanism is efficient given that the master possesses global knowledge of
the file replicas for a dataset.

Master availability. The master relies on in-memory structures. Operations on
the master are checkpointed to disk. There is an asynchronous system feeding the
checkpoint log onto a relational database for increased redundancy. Additional
redundancy mechanisms are possible, such as having master/slave replication of
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Fig. 3. Dominant errors classes (over a 1-month period).

the database holding the log information or splitting the web server from the
process executing the requests.

Transfer reliability. Figure 3 shows failure rates observed in our production
instance of DQ2. The majority of errors are reading data from storage systems.
For this reason, DQ2 validates source files prior to transfer, by doing a source
storage lookup. Only when files are reported as found and staged at the source
can the transfer start.

For wide-area transfers, DQ2 implements a retrial strategy that takes into ac-
count previous transfer history and channel performance. A channel is a virtual
unidirectional link3 between a source and destination storages. Best perform-
ing channels will serve more transfer requests, given the feedback-based model
(polling for more work when work is done) implemented between the agents and
master. Therefore, given more than one possible source for a file, it is likely that
the channel performing the best will serve the file first. If a transfer between a
source and destination is persistently failing, the agent responsible for collecting
work at the destination side will back-off and not request more work for some
time. If a specific file transfer is permanently failing, the master will temporar-
ily blacklist the source, allowing other sources to be used. If the failure is very
frequent for a single file, the file is marked as corrupted and there is an attempt
to copy it over from another location.

To validate transfers, we choose ADLER32 checksum because of the its rolling
hash property, which allows the checksum to be computed as the input moves
through a window. This eases the checksum computation without introducing
significant overheads (e.g. such as having to re-read the file to compute the
checksum). Tape drives also often compute ADLER32 at the hardware level
when writing files to tape, which provides another verification step in a optimized
manner.

3 e.g. ’CERN to BNL’ is the channel serving requests from CERN to the Brookhaven
National Laboratory in the US.
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(a) Distribution of files copied per
share.
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Fig. 4. Overview of scalability properties of DQ2.

6 System Scalability and Data Availability

In this section we describe the mechanisms in DQ2 that guarantee high avail-
ability of data and scalability of the system. We also describe the scale on which
DQ2 is operating on a daily basis for the ATLAS Experiment, moving petabytes
of data every month.

Separation between global and local services. The separation between
storage area services and dataset masters has multiple advantages. One is avoid-
ing having global knowledge present on the local services. Another advantage is
partitioning the system for scalability while maintaining global knowledge about
replicas of a dataset. This knowledge allows the master to make better decisions
about how to handle dataset requests, as it knows the state of the various repli-
cas (if on disk, if being garbage collected, etc). The storage agents continue to
have the ability to throttle access to their storages by simply not asking one of
the masters for more work.

Tracing dataset popularity. As the number of datasets increase in the sys-
tem, we expect to have older datasets become less interesting with time. These
are usually kept for archival only (often on tape storage) but are no longer reg-
ularly used. DQ2 includes a tracer service that records all usages of a dataset.
This is used for monitoring purposes but could also be used for internal optimiza-
tions of the system. Thus, we can detect which datasets are more popular as to
predict hot-spots and implement automatic replication. Similarly, if the master
is unable to keep with the number of datasets it needs to manage, dataset usage
information could be used to rebalance the load, ignoring unused datasets.

Competition between transfers. When transferring datasets between sites,
the local agent needs to decide between competing requests, as it is needs to serve
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multiple masters. Fair-sharing is used to guarantee fair split of resource usages.
Figure 4(a) from a simulation run illustrates the results of our algorithm with
high priority transfers taking over the channel as needed and according to shares.
Each of these shares maps to a different master, serving different datasets. There
are obvious limitations with this model, such as assuming that all file transfers
are equal within a channel (regardless of file sizes). This is being addressed in
newer versions but has served us well in practice.

Improving data availability with import/export buffers. After a file is
staged at the source but before being transferred to a remote storage, DQ2 can
optionally copy it to a export buffer managed by DQ2. Similarly, when importing
data, the destination storage may first place the file onto an import buffer before
writing it to its final location.

These buffers allow DQ2 to split the units of storage from the unit of transfer:
the file may be artificially split or merged for transfer and/or storage. This can be
used to improve storage and transfers and protect DQ2 from storage instabilities.

If a storage has a tape-backend there is a high cost in the mechanical process
of mounting a tape for reading back the data. If a dataset is sufficiently large but
its constituents are small files, it is convenient to aggregate files of a dataset into
larger units as to improve later recalls from tape. As in DQ2 a dataset is usually
read in its entirety, this leads to increase performance and avoids clustering
datasets between different tapes.

Figure 4(b) also illustrates improvements achieved in throughput with this
technique. The figure shows results from (HTTP-based) wide-area transfers
where we compare simple HTTP file transfers with a mode where each file is split
into smaller chunks. In these tests, 64 MByte chunks were used. When transfers
are chunked, a slow read of a big file from a server has less performance impact
on concurrent transfers, because each HTTP request has a shorter lifetime as
it transmits less data. Transmitting long files in a single request blocks a server
’slot’ for a long time, affecting parallel transfers. Our tests were conducted on
loaded servers (10 to 15 clients) with samples of real ATLAS data. The ’slow
stream’ clients were artificially slowed down to match typical competition pat-
terns we observe in our production system, where transfer rates to destination
storages with good connectivity get affected by concurrent transfers from the
same servers to destinations with bad connectivity.

Real World Usage. The ATLAS production instance of DQ2 currently hosts
over 1.6 Million datasets. There are over 50 Million unique files with a total of
80 Million replicas (the average replication factor for ATLAS data is relatively
small due to lack of disk space). The system is now hosting ˜7.4 PetaBytes of
data over 60 distinct computing centers. One observation is the scale difference
between number of datasets and files, which motivates our choice for natively
supporting datasets.

Figure 5 shows results of large-scale transfer tests using DQ2. In these tests,
we transferred datasets from CERN to our major data centers. The figure covers
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(a) Aggregate throughput in
MBytes/sec.

(b) Data copied in GigaBytes.

Fig. 5. Overview of large-scale tests with DQ2 to multiple computing centers during
6-hour period.

a large-scale test where the system maintains an average throughput of over
1.5 Gigabytes/s. During this period, storage areas went down and came back
online later, showing the resilience of the system to the frequent occurrence of
temporary failures. The system achieved the rate of 7 TeraBytes of data exported
per hour.

7 Future Work and Conclusion

In this paper we addressed the problem of managing very large datasets in a
distributed environment. After presenting and discussing the state-of-the-art as
well as recent trends, we introduced a new system developed using the results of
previous research on P2P, Data Grids and distributed file systems. Our major
contribution is the provision of a more comprehensive feature set for managing
very large distributed datasets in a heterogeneous environment. DQ2 is managing
over 7 PetaBytes of data and has achieved transfer throughput in excess of 1.5
Gigabytes/s. Future work will focus on increasing the scalability of DQ2 and
protecting the system from lower-level middleware instabilities. We will also
conduct dedicated reliability tests to demonstrate the robustness of the system.
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