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We are in an era of data-centric scientific redeanthere hypotheses are not only tested througictgid
data collection and analysis but are also generayedombining and mining the pool of data already
available [1-3]. The scientific data landscape waadupon is expanding rapidly in both scale ancidity.
Taking the life sciences as an example, high-thipuggene sequencing platforms are capable of gengr
terabytes of data in a single experiment, and dakames are set to increase further with industaalle
automation. Between 2001 and 2008 the number afbdats reported in the Life Sciences’ annual review
jumped from 96 to 1070 [4]. Not only are the datagyrowing in size and number, they are only partl
coordinated and often incompatible [5], which mealiscovery and integration tasks are significant
challenges. At the same time, we are drawing ¢noader array of data sources: modern biology draws
insights from combining different types of “omicath (proteomic, metabolomic, transcriptomic, germmi
as well as data from other disciplines such as @tgm clinical medicine, and public health; System
Biology links multi-scale data with multi-scale rhamatical models. These data encompass all types: f
structured database records to published articd®s,numeric data, images, and descriptive inteapioets
that use controlled vocabularies.

Data generation on this scale must be matched lalde processing methods. The preparation,
management, and analysis of data are bottleneakslan beyond the skill of many scientists. Wonkfo

[6] provide: (i) a systematic and automated meahgsomducting analyses across diverse datasets and
applications; (ii) a way of capturing this processthat results can be reproduced and the methothea
reviewed, validated, repeated and adapted; (ilijsaal scripting interface so that computationaéstists

can create these pipelines without low-level progréng concerns ; and (iv) an integration and access
platform for the growing pool of independent resmuproviders so that computational scientists nmesd
specialise in each one. The workflow is thus beognai paradigm for enabling science on a large dnale
managing data preparation and analysis pipelinas$, the preferred vehicle for computational knowled
extraction.

Workflows Defined

A workflow is a precise description of a scientifi-
procedure—a multi-step process to coordine
multiple tasks, like a sophisticated script [7].cBa

task represents the execution of a computatio

process, such as running a program, submitting
guery to a database, submitting a job to a comp
cloud or grid, or invoking a service over the Web
use a remote resource. Data output from one tas
consumed by subsequent tasks according to
predefined graph topology that “orchestrates” tl
flow of data. Figure 1 presents an examp
workflow, encoded in the Taverna Workflow
Workbench [8], which searches for genes by linkir
four publicly available data resources distributed

the USA, Europe and Japan: BioMart, Entre
Uniprot, and KEGG.

Workflow systems broadly have three componen
an execution platform, a visual design suite anc —
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development kit. The platform executes tf e
workflow on behalf of applications and handle
common crosscutting concerns, including: (*
invocation of the service applications, handling tr Figure 1. A Taverna workflow that connects several
heterogeneity of data types and interfaces internationally distributed datasets to identify candidate

. . L genes that could be implicated in resistance to African
multiple computing platforms; (bjnonitoring and  {rypanosomiasis [11].
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recovery from failures; (c)optimization of memory, storage and execution including coremey and
parallelization; (d)data handling: mapping, referencing, movement, streaming angirgga (e)logging of
processes and data provenance tracking; ande¢tkity and monitoring of access policies. Workflow
systems are required to support long-running psEses volatile environments and thus must be rtodoug
capable of fault tolerance and recovery. They aleed to evolve continually to harness the growing
capabilities of underlying computational and steragsources, delivering greater capacity for afglys

The design suite provides a visual scripting apgibie for authoring and sharing workflows and praya
the components that are to be incorporated as ttdeusteps. The aim is to shield the author from t
complexities of the underlying applications andl#a@ghem to design and understand workflows without
recourse to commissioning specialist and specgfieations or hiring software engineers. This em@s
scientists to build their own pipelines when thesed them and how they want them. Finally, the
development kit enables developers to extend tpelthbties of the system and enables workflows ¢o b
embedded into applications, web portals or databafhis embedding is transformational: it has the
potential to incorporate sophisticated knowledgengessly and invisibly into the tools that scietstiase
routinely.

Each workflow system has its own language, dediife,sand software components, and the systemsiwvary
their execution models and the kinds of compontrdg coordinate [9]. Sedna is one of the few tothse
industry-standard Business Process Execution LayjggBPEL) for scientific workflows [10]. General
purpose open source Workflow systems include Taydfepler, Pegasus, and Triana. Other systems, such
as the LONI Pipeline for neuroimaging and the comumaé Pipeline Pilot for drug discovery, are more
geared toward specific applications and are opg&thito support specific component libraries. Thesa$

on interoperating applications; other workflow syst target the provisioning of compute cycles or
submission of jobs to Grids. For example, the Pegyand DAGMan have been used for a series of large-
scale e-science experiments such as prediction Imddesarthquake forecasting using sensor datéen t
Southern California Earthquake Center (SCEC) Cytak& project.

Workflow Usage

Workflows liberate scientists from the drudgery rofitine data processing so they can concentrate on
scientific discovery. They shoulder the burden aitne tasks, they represent the computationabpods
needed to undertake data-centric science, andofiey up the use of processes and data resouragauoh
wider group of scientists and scientific applicatitevelopers.

Workflows are ideal for systematically, accuratedynd repeatedly running routine procedures: magagin
data capture from sensors or instruments; cleanimgnalising and validating data; securely andciffitly
moving and archiving data; comparing data acropsated runs; regularly updating data warehouses. Fo
example, the Pan-STARRS astronomical survey usesobbft's Trident system workflows to load and
validate telescope detections running at about BOp&r year. Workflows have also proved useful for
maintaining and updating data collections and wauwehs by reacting to changes in the underlyingsdtda
For example, the Nijmegen Medical Centre rebuit tGRAP G-protein coupled receptors mutant database
using a suite of text-mining Taverna workflows.

At a higher level, a workflow is an explicit, preei and modular expression of iansilico or “dry lab”
experimental protocol. Workflows are ideal forlgaing and aggregating data from distributed déseesed
data-emitting algorithms—a core activity in dataseinotation, data curation, and multi-evidential,
comparative science. In Figure 1, disparate dataset searched to find and aggregate data related t
metabolic pathways implicated in resistance to o&ini trypanosomiasis; interlinked datasets are eldain
together by the dataflow. In this instance, theomusited and systematic processing by the workflow
overcame the inadequacies of manual data triage€ehwhads to prematurely excluding data from analysi
to cope with the quantity—and delivered new reqdi1§.

Beyond data assembly, workflows codify data minamgl knowledge discovery pipelines and parameter
sweeps across predictive algorithms. For exam@é\D workflows are driven by external events geredat
by data mining agents that monitor collections rdtiuments for significant patterns to trigger arrst
prediction analysis and the Jet Propulsion Laboyatees Taverna workflows for exploring a largecspaf
multiple parameter configurations of space instnotsie

Finally, workflow systems liberate the implicit wdlow embedded in an application into an expligida
reusable over a common software machinery and dhiafiastructure. Expert informaticians use workflo
systems directly as means to develop workflowsheordling infrastructure; expestientific informaticians



use them to design and explore new investigatieequtures; a larger group of scientists uses precbok
workflows with restricted configuration constraitésinched from within applications or hidden behilidb
portals.

Workflow-Enabled Data-centric Science

Workflows offer techniques to support the new payadof data-centric science. They can be replayet a
repeated. Results and secondary data can be caihgaiteeeded using the latest sources, providitigavir
data (or on-demand) warehouses by effectively piogi distributed query processingmart reruns of
workflows automatically deliver new outcomes whessh primary data and new results become available—
and also when new methods become available. Thiflows themselves, as first-class citizens in data-
centric science, can be generated and transforrgedndcally to meet the requirements at hand. In a
landscape of data in considerable flux, workflowsvile robustness, accountability, and full audjtiBy
combining workflows and their execution recordshwjtublished results, we can promote systematic,
unbiased, transparent and comparable researchiam whtcomes carry the provenance of their devati
This can potentially accelerate scientific discgver

To accelerate experimentaésign, workflows can be reconfigured and repurposedeag components or
templates. Creating workflows requires expertis# 8 hard won and often outside the skill sethe t
researcher. Workflows are often complex and chgitento build because they are essentially forms of
programming that require some understanding ofiftasets and the tools they manipulate [12]. Hémee

is significant benefit in establishing shared adiens of workflows that contain standard procegsin
pipelines for immediate reuse or for repurposingvhiiole or in part. These aggregations of expedise
resources can help propagate techniques and kedticps. Specialists can create the applicatiopsste
experts can design the workflows and set parametard the inexperienced can benefit by using
sophisticated protocols.

The myExperiment [13] social web site has demotedrahat by adopting content-sharing tools for
repositories of workflows, we can enable socialwoeking around workflows and provide community
support for social tagging, comments, ratings awbmmendations, and mixing of new workflows with
those previously deposited. This is made possiplind scale of participation in data-centric scegnghich
can be brought to bear on challenging problems.eikample, the environment of workflow executiorinis
such a state of flux that workflows appear to deoagr time, but workflows can be kept current by a
combination of expert and community curation.

Workflows enable data-centric science to be a boHative endeavor on multiple levels. They enable
scientists to collaborate over shared data anadhsarvices granting non-developers access tostimatted
code and applications without having to install aperate them. Consequently scientists can usbdbie
applications, not just the ones with which they &amiliar. Multidisciplinary workflows promote even
broader collaboration. In this sense, a workflowtesn is a framework for reusing a community’s tcaotsl
datasets that respects the original codes and @wes diverse coding styles. Initiatives such as the
BioCatalogue registry of life science Web serviaed the component registries deployed at SCEC enabl
components to be discovered. In addition to theefitsnthat come from explicit sharing, there is
considerable value in the information that may hthgred just through monitoring the use of dataces)
services, and methods. This enables automatic aromt of resources and recommendation of common
practice and optimization.

Although the impact of workflow tools on data-céntresearch is potentially profound—scaling protess
to match the scaling of data—many challenges exist and above the engineering issues inherearge
scale distributed software [14]. There are a confuswumber of workflow platforms with various
capabilities and purposes and little compliancstémdards. Workflows are often difficult to authosjng
languages that are at an inappropriate level ofraditon and expecting too much knowledge of the
underlying infrastructure. The reusability of a Witow is often confined to the project it was covesl
in—or even to its author—and it is inherently ordg strong as its components. Although workflows
encourage providers to supply clean, robust, atidatad data services, component failure is commifn.
the services or infrastructure decay, so does trflew. Unfortunately debugging failing workflows a
crucial but neglected topic. Contemporary workflplatforms fall short of adequately supporting rapid
deployment into the user applications that constivam, and legacy application codes need to beriatied
and managed.



Conclusion

Workflows affect data-centric research in four walygst, they shift scientific practice. For exampin a
data-driven hypothesis [15], data analysis yietsults that are to be tested in the laboratoryoiskcthey
have the potential to empower scientists to be ah#ors of their own sophisticated data processing
pipelines without having to wait for software deygdrs to produce the tools they need. Third, thésr o
systematic production of data that is comparablkd \arifiably attributable to its source. Finallyegple
speak of a data deluge [13], and data-centric seieould be characterized as being about the pyirobc
data as opposed to the primacy of the academicr gapdocument [16], but it brings with it a method
deluge: workflows illustraterimacy of method as another crucial paradigm in data-centric rebear
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