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We are in an era of data-centric scientific research, where hypotheses are not only tested through directed 
data collection and analysis but are also generated by combining and mining the pool of data already 
available [1-3]. The scientific data landscape we draw upon is expanding rapidly in both scale and diversity. 
Taking the life sciences as an example, high-throughput gene sequencing platforms are capable of generating 
terabytes of data in a single experiment, and data volumes are set to increase further with industrial-scale 
automation. Between 2001 and 2008 the number of databases reported in the Life Sciences’ annual review 
jumped from 96 to 1070 [4].  Not only are the datasets growing in size and number, they are only partly 
coordinated and often incompatible [5], which means discovery and integration tasks are significant 
challenges.  At the same time, we are drawing on a broader array of data sources: modern biology draws 
insights from combining different types of “omic” data (proteomic, metabolomic, transcriptomic, genomic) 
as well as data from other disciplines such as chemistry, clinical medicine, and public health; Systems 
Biology links multi-scale data with multi-scale mathematical models. These data encompass all types: from 
structured database records to published articles, raw numeric data, images, and descriptive interpretations 
that use controlled vocabularies.  

Data generation on this scale must be matched by scalable processing methods. The preparation, 
management, and analysis of data are bottlenecks and also beyond the skill of many scientists. Workflows 
[6] provide: (i) a systematic and automated means of conducting analyses across diverse datasets and 
applications; (ii) a way of capturing this process so that results can be reproduced and the method can be 
reviewed, validated, repeated and adapted; (iii) a visual scripting interface so that computational scientists 
can create these pipelines without low-level programming concerns ; and (iv) an integration and access 
platform for the growing pool of independent resource providers so that computational scientists need not 
specialise in each one. The workflow is thus becoming a paradigm for enabling science on a large scale by 
managing data preparation and analysis pipelines, and  the preferred vehicle for computational knowledge 
extraction.  

Workflows Defined 

A workflow is a precise description of a scientific 
procedure–a multi-step process to coordinate 
multiple tasks, like a sophisticated script [7]. Each 
task represents the execution of a computational 
process, such as running a program, submitting a 
query to a database, submitting a job to a compute 
cloud or grid, or invoking a service over the Web to 
use a remote resource. Data output from one task is 
consumed by subsequent tasks according to a 
predefined graph topology that “orchestrates” the 
flow of data. Figure 1 presents an example 
workflow, encoded in the Taverna Workflow 
Workbench [8], which searches for genes by linking 
four publicly available data resources distributed in 
the USA, Europe and Japan: BioMart, Entrez, 
Uniprot, and KEGG.  

Workflow systems broadly have three components: 
an execution platform, a visual design suite and a 
development kit. The platform executes the 
workflow on behalf of applications and handles 
common crosscutting concerns, including: (a) 
invocation of the service applications, handling the 
heterogeneity of data types and interfaces on 
multiple computing platforms; (b) monitoring and 

Figure 1. A Taverna workflow that connects several 
internationally distributed datasets to identify candidate 
genes that could be implicated in resistance to African 
trypanosomiasis [11]. 



 

 

recovery from failures; (c) optimization of memory, storage and execution including concurrency and 
parallelization; (d) data handling: mapping, referencing, movement, streaming and staging; (e) logging of 
processes and data provenance tracking; and (f) security and monitoring of access policies. Workflow 
systems are required to support long-running processes in volatile environments and thus must be robust and 
capable of fault tolerance and recovery. They also need to evolve continually to harness the growing 
capabilities of underlying computational and storage resources, delivering greater capacity for analysis.  

The design suite provides a visual scripting application for authoring and sharing workflows and preparing 
the components that are to be incorporated as executable steps. The aim is to shield the author from the 
complexities of the underlying applications and enable them to design and understand workflows without 
recourse to commissioning specialist and specific applications or hiring software engineers. This empowers 
scientists to build their own pipelines when they need them and how they want them. Finally, the 
development kit enables developers to extend the capabilities of the system and enables workflows to be 
embedded into applications, web portals or databases. This embedding is transformational: it has the 
potential to incorporate sophisticated knowledge seamlessly and invisibly into the tools that scientists use 
routinely.  

Each workflow system has its own language, design suite, and software components, and the systems vary in 
their execution models and the kinds of components they coordinate [9]. Sedna is one of the few to use the 
industry-standard Business Process Execution Language (BPEL) for scientific workflows [10]. General 
purpose open source Workflow systems include Taverna, Kepler, Pegasus, and Triana. Other systems, such 
as the LONI Pipeline for neuroimaging and the commercial Pipeline Pilot for drug discovery, are more 
geared toward specific applications and are optimized to support specific component libraries. These focus 
on interoperating applications; other workflow systems target the provisioning of compute cycles or 
submission of jobs to Grids. For example, the Pegasus and DAGMan have been used for a series of large-
scale e-science experiments such as prediction models in earthquake forecasting using sensor data in the 
Southern California Earthquake Center (SCEC) CyberShake project.  

Workflow Usage 

Workflows liberate scientists from the drudgery of routine data processing so they can concentrate on 
scientific discovery. They shoulder the burden of routine tasks, they represent the computational protocols 
needed to undertake data-centric science, and they open up the use of processes and data resources to a much 
wider group of scientists and scientific application developers.  

Workflows are ideal for systematically, accurately, and repeatedly running routine procedures: managing 
data capture from sensors or instruments; cleaning, normalising and validating data; securely and efficiently 
moving and archiving data; comparing data across repeated runs; regularly updating data warehouses. For 
example, the Pan-STARRS astronomical survey uses Microsoft’s Trident system workflows to load and 
validate telescope detections running at about 30 TB per year. Workflows have also proved useful for 
maintaining and updating data collections and warehouses by reacting to changes in the underlying datasets. 
For example, the Nijmegen Medical Centre rebuilt the tGRAP G-protein coupled receptors mutant database 
using a suite of text-mining Taverna workflows.  

At a higher level, a workflow is an explicit, precise, and modular expression of an in silico or “dry lab” 
experimental protocol.  Workflows are ideal for gathering and aggregating data from distributed datasets and 
data-emitting algorithms—a core activity in dataset annotation, data curation, and multi-evidential, 
comparative science. In Figure 1, disparate datasets are searched to find and aggregate data related to 
metabolic pathways implicated in resistance to African trypanosomiasis; interlinked datasets are chained 
together by the dataflow. In this instance, the automated and systematic processing by the workflow 
overcame the inadequacies of manual data triage—which leads to prematurely excluding data from analysis 
to cope with the quantity—and delivered new results [11]. 

Beyond data assembly, workflows codify data mining and knowledge discovery pipelines and parameter 
sweeps across predictive algorithms. For example, LEAD workflows are driven by external events generated 
by data mining agents that monitor collections of instruments for significant patterns to trigger a storm 
prediction analysis and the Jet Propulsion Laboratory uses Taverna workflows for exploring a large space of 
multiple parameter configurations of space instruments.  

Finally, workflow systems liberate the implicit workflow embedded in an application into an explicit and 
reusable over a common software machinery and shared infrastructure. Expert informaticians use workflow 
systems directly as means to develop workflows for handling infrastructure; expert scientific informaticians 



 

 

use them to design and explore new investigative procedures; a larger group of scientists uses precooked 
workflows with restricted configuration constraints launched from within applications or hidden behind Web 
portals. 

Workflow-Enabled Data-centric Science 

Workflows offer techniques to support the new paradigm of data-centric science. They can be replayed and 
repeated. Results and secondary data can be computed as needed using the latest sources, providing virtual 
data (or on-demand) warehouses by effectively providing distributed query processing. Smart reruns of 
workflows automatically deliver new outcomes when fresh primary data and new results become available—
and also when new methods become available. The workflows themselves, as first-class citizens in data-
centric science, can be generated and transformed dynamically to meet the requirements at hand. In a 
landscape of data in considerable flux, workflows provide robustness, accountability, and full auditing. By 
combining workflows and their execution records with published results, we can promote systematic, 
unbiased, transparent and comparable research in which outcomes carry the provenance of their derivation. 
This can potentially accelerate scientific discovery.  

To accelerate experimental design, workflows can be reconfigured and repurposed as new components or 
templates. Creating workflows requires expertise that is hard won and often outside the skill set of the 
researcher. Workflows are often complex and challenging to build because they are essentially forms of 
programming that require some understanding of the datasets and the tools they manipulate [12]. Hence there 
is significant benefit in establishing shared collections of workflows that contain standard processing 
pipelines for immediate reuse or for repurposing in whole or in part. These aggregations of expertise and 
resources can help propagate techniques and best practices. Specialists can create the application steps, 
experts can design the workflows and set parameters, and the inexperienced can benefit by using 
sophisticated protocols. 

The myExperiment [13] social web site has demonstrated that by adopting content-sharing tools for 
repositories of workflows, we can enable social networking around workflows and provide community 
support for social tagging, comments, ratings and recommendations, and mixing of new workflows with 
those previously deposited. This is made possible by the scale of participation in data-centric science, which 
can be brought to bear on challenging problems. For example, the environment of workflow execution is in 
such a state of flux that workflows appear to decay over time, but workflows can be kept current by a 
combination of expert and community curation. 

Workflows enable data-centric science to be a collaborative endeavor on multiple levels. They enable 
scientists to collaborate over shared data and shared services granting non-developers access to sophisticated 
code and applications without having to install and operate them. Consequently scientists can use the best 
applications, not just the ones with which they are familiar. Multidisciplinary workflows promote even 
broader collaboration. In this sense, a workflow system is a framework for reusing a community’s tools and 
datasets that respects the original codes and overcomes diverse coding styles. Initiatives such as the 
BioCatalogue registry of life science Web services and the component registries deployed at SCEC enable 
components to be discovered. In addition to the benefits that come from explicit sharing, there is 
considerable value in the information that may be gathered just through monitoring the use of data sources, 
services, and methods. This enables automatic monitoring of resources and recommendation of common 
practice and optimization.  

Although the impact of workflow tools on data-centric research is potentially profound—scaling processing 
to match the scaling of data—many challenges exist over and above the engineering issues inherent in large-
scale distributed software [14]. There are a confusing number of workflow platforms with various 
capabilities and purposes and little compliance to standards. Workflows are often difficult to author, using 
languages that are at an inappropriate level of abstraction and expecting too much knowledge of the 
underlying infrastructure. The reusability of a workflow is often confined to the project it was conceived 
in—or even to its author—and it is inherently only as strong as its components. Although workflows 
encourage providers to supply clean, robust, and validated data services, component failure is common.  If 
the services or infrastructure decay, so does the workflow. Unfortunately debugging failing workflows is a 
crucial but neglected topic. Contemporary workflow platforms fall short of adequately supporting rapid 
deployment into the user applications that consume them, and legacy application codes need to be integrated 
and managed. 



 

 

Conclusion 

Workflows affect data-centric research in four ways. First, they shift scientific practice. For example, in a 
data-driven hypothesis [15], data analysis yields results that are to be tested in the laboratory. Second, they 
have the potential to empower scientists to be the authors of their own sophisticated data processing 
pipelines without having to wait for software developers to produce the tools they need. Third, they offer 
systematic production of data that is comparable and verifiably attributable to its source. Finally, people 
speak of a data deluge [13], and data-centric science could be characterized as being about the primacy of 
data as opposed to the primacy of the academic paper or document [16], but it brings with it a method 
deluge: workflows illustrate primacy of method as another crucial paradigm in data-centric research.  
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