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Abstract

In this paper we extend the control methodology
based on Extended Markov Tracking (EMT) by
providing the control algorithm with capabilities
to calibrate and even partially reconstruct the en-
vironment’s model. This enables us to resolve
the problem of performance deterioration due to
model incoherence, a negative problem in all model
based control methods. The new algorithm, En-
semble Actions EMT (EA-EMT), utilises the ini-
tial environment model as a library of state tran-
sition functions and applies a variation of predic-
tion with experts to assemble and calibrate a re-
vised model. By so doing, this is the first control
algorithm that enables on-line adaptation within the
Dynamics Based Control (DBC) framework. In our
experiments, we performed a range of tests with in-
creasing model incoherence induced by three types
of exogenous environment perturbations: catas-
trophic, periodic and deviating. The results show
that EA-EMT resolved model incoherence and sig-
nificantly outperformed the best currently available
DBC solution by up to95%.

1 Introduction
Model based control methodologies have found their expres-
sion in a wide range of AI techniques. From basic planning
methods like STRIPs to complex PID controllers, the main
principle remains the same: the decision on what action to
take is based on a mathematical model of the environment
response to an action application. However, in spite of be-
ing mathematically sound with provable properties, model
based control methods suffer from one common pitfall. If
the model is incoherent, that is a discrepancy exists between
the actual reaction of the environment to an action application
and the reaction described by the model, the decision made by
a model based controller will be suboptimal. Now, a common
approach to resolve this problem is model calibration: either
through off-line or on-line interaction with the environment,
the model is adjusted (or even entirely reconstructed) to re-
duce incoherence and facilitate better decision making.

Although model calibration has received increasing at-
tention in recent years, the existing approaches make sig-

nificant behavioural assumptions on the environment, rang-
ing from frame assumptions[Pasulaet al., 2004] to struc-
tured motion of physical robots[Eliazar and Parr, 2004;
Stronger and Stone, 2005]. Against this background, in this
paper we relax these environment behavioural limitations by
concentrating on a control framework with discrete abstract
state models. More specifically, we concentrate on solving
on-line model calibration for the Dynamics Based Control
(DBC) framework[Rabinovichet al., 2007], which allows
application of the model based control methodology to an
even wider range of domains (e.g. environments with abstract
discrete state spaces and generic behaviour) than hithertowas
possible.

In more detail, the DBC framework is almost unique in its
ability to capture dynamic control tasks from the subjective
point of view, i.e. in terms of agent’s beliefs and observations
of the changes that occur in the environment, and is based
on two key principles. First, a part of the perceptual control
paradigm[Powers, 1973], it states that changes in the envi-
ronment are a means to altering and controlling perceptions.
For instance, if we feel cold, we adjust temperature in a room
to feel warmer, thus changing the environment to produce the
required perception. Second, is that the dynamics of the sys-
tem, rather than a momentary system state, are a means of
describing the control task and modulation of environment
dynamics are a means of solving the task. Notice, for exam-
ple, that in our cold room example it was necessary to pro-
duce a change – increase the temperature – rather than bring
it to a certain value. Combined together, these principles were
implemented in a model based control algorithm termedEx-
tended Markov Tracking (EMT) control. The algorithm has
been shown to be an effective polynomial time solution to the
DBC framework in discrete Markovian environments, where
the next system state depends only on the current system state
and the control action taken[Rabinovichet al., 2007].

However, as with any model based control algorithm, EMT
control is subject to deteriorating effects of model incoher-
ence. In particular, our experiments further reveal that the
standard EMT controller can not recover from persistent or
catastrophic incoherence, where the environment behaves in
a way not captured by the model. Nevertheless, EMT Control
remains the sole solution within the DBC framework. There-
fore, it is the only algorithm capable of operating in envi-
ronments with a control task description that is both subjec-



tive and dynamic. The algorithm’s polynomial running time
underlines its importance even further, making its extension
imperative. We thus modify the EMT control algorithm to in-
clude model calibration, which resolves the performance de-
terioration induced by a model incoherence.

The adaptive algorithm we have developed, the Ensemble
Action EMT (EA-EMT), enables model calibration through
the use of expert ensembles[Cesa-Bianchi and Lugosi, 2006].
For our purposes, each expert in the ensemble represents an
alternative way to capture and model effects that an action
has on the environment. EA-EMT dynamically merges the
expert alternatives together, thus building a new environment
model. Over time EA-EMT changes the properties of that
merger, reflecting the performance of each expert in captur-
ing environment behaviour, thus calibrating the environment
model it uses.

The rest of the paper is organised as follows. In Section 2
we detail the operation of the standard EMT Control algo-
rithm. Section 3 follows with the description of our new EA-
EMT algorithm, detailing how it reconstructs and calibrates
the environment model through the use of expert ensembles.
Experimental support for the effectiveness of our approachis
given in Section 4. The experiments take special focus on the
on-line property of the EA-EMT model calibration, under-
lining the algorithm’s ability to work in environments with
changing behavioural trends. Section 5 summarises the re-
sults and gives future directions of this research.

2 EMT Control
The standard EMT algorithm continually maintains an esti-
mate of system dynamics. To do so, the algorithm assumes
that the system is an autonomous discrete Markov chain. That
is, the system state stochastically develops over time with-
out external influence, and the next system state depends on
the current state only. This allows EMT to describe the esti-
mate of the system dynamics by a single stochastic matrix. To
maintain the estimate, the EMT algorithm performs a conser-
vative update of the system dynamics matrix, minimising the
Kullback-Leibler divergence between the new and the old es-
timate, with the limitation that the new estimate has to match
the observed system transition that triggered the update.

To put it formally, assume that two probability distribu-
tions, pt andpt+1, are given that describe two consecutive
states of knowledge about the system, andτEMT

t is the old
estimate of the system dynamics. Then the EMT update
τEMT
t+1 is the solution of the following optimisation problem,

whereDKL is the Kullback-Leibler divergence:

τEMT
t+1 = arg min

τ
DKL(τ × pt‖τ

EMT
t × pt)

s.t.pt+1(x
′) =

∑

x

(τ × pt)(x
′, x)

andpt(x) =
∑

x′

(τ × pt)(x
′, x)

The update is abbreviated:τEMT
t+1 = H

[

pt → pt+1, τ
EMT
t

]

.
Although EMT can work with more general environmen-

tal descriptions (see e.g.[Adam et al., 2008]), it has been
more commonly used with a discrete Markovian environment
with partial observability, described by a tupleMEnv =<
S, s0, A, T,O,Ω >, where:

• S is the set of all possible environment states;

• s0 is the initial state of the environment (which can also
be viewed as a distribution overS);

• A is the set of all actions applicable in the environment;

• T is the environment’s probabilistic transition function:
a mappingT : S ×A → ∆(S). That is,T (s′|a, s) is the
probability that the environment will move from states
to states′ under actiona;

• O is the set of all possible observations. This is what the
sensor input would look like for an outside observer;

• Ω is the observation probability function: a mapping
Ω : S × A × S → ∆(O). That is,Ω(o|s′, a, s) is the
probability thato will be observed given that the envi-
ronment moved from states to states′ under actiona.

This naturally connects with the EMT algorithm, as knowl-
edge about the system is summarised by a distribution vector
over the system statespt ∈ ∆(S), in which case the system
dynamics estimator created by EMT has the form of a condi-
tional probabilityτ : S → ∆(S).
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Figure 1: Closed loop of EMT Control

The overall control algorithm, termedEMT Control, forms
a closed loop control with a reference signal[Stengel, 1994]
(Figure 1 depicts the scheme). The reference signal encodes
the task to be performed and takes the form of the conditional
probabilityτ∗ : S → ∆(S). The standard EMT Control (see
Figure 2) can be summarised as a greedy one-step look ahead
correction action selection. At every point in time, the algo-
rithm attempts to predict the reaction of an estimation algo-
rithm (EMT in this case) to the changes induced by an action
(lines 2-7 of the algorithm), and then chooses the action that
shifts the EMT estimator closest (line 8) to the reference dy-
namicsτ∗. Once the action has been applied, the response
of the EMT estimator to the changes in the environment is
registered (line 11), and the control loops to make its next
decision.

Notice that the controller action selection in lines 2-8 is
heavily dependent on the environment model, as it uses the
mappingTa to predict action effects. If the model is incoher-
ent the reaction of EMT can not be estimated correctly, which
in turn will lead to selection of a suboptimal action. In what
follows, we modify the action selection process to vary the
environment model it uses.

3 Ensemble Action EMT
As already stated, the performance of the standard EMT Con-
trol algorithm deteriorates if the environment model is inco-
herent. However, by providing the algorithm with an addi-
tional method to correct model incoherences, it is possibleto
rectify the deterioration.



Require:
Set the system state estimatorp0(s) = s0 ∈ ∆(S)
Set the system dynamics estimator

τEMT
0 (s̄|s) = prior(s̄|s)

Set time tot = 0.
1: loop
2: for all a ∈ A do
3: SetT̄a = Ta {use transition modelT directly}
4: Setp̄a

t+1 = T̄a ∗ pt

5: SetDa = H
ˆ

pt → p̄a
t+1, τ

EMT
t

˜

6: SetV (a) = 〈DKL (Da‖τ
∗)〉

pt

7: end for
8: Selecta∗ = arg min

a
V (a)

9: Apply a∗, receive observationo ∈ O
10: Computept+1 due to the Bayesian update:

pt+1(s) ∝ Ω(o|s, a)
P

s′
T̄ (s|a, s′)pt(s

′)

11: ComputeτEMT
t+1 = H

ˆ

pt → pt+1, τ
EMT
t

˜

12: Sett := t + 1
13: end loop

Figure 2: EMT control algorithm.

Now, there are many incoherences a Markovian model,
MEnv =< S, s0, A, T,O,Ω >, may have. While the choice
of the state, action and observation spaces, as well as the ob-
servability function, may be dictated by subjective consider-
ations (e.g. to make it more readable for the human domain
designers), the transition functionT is always dictated by the
environment. Thus, in this work we choose to concentrate on
the quality of the transition functionT . This function maps
actions into stochastic matrices, so that for each actiona ∈ A
the matrixTa = T (·|·, a) models the effects of that action
on the system state. The difference between the matrixTa

and the true effects of the actiona ∈ A is the incoherence
type we have resolved in the EA-EMT algorithm (Figure 3).
Thus, while the standard EMT Control views the transition
mapping,a 7→ Ta, to be constant, the EA-EMT algorithm
modifies its transition mapping over time, reducing the map-
ping’s incoherence. However, before we go into the details of
how it was implemented, we would like to explain the princi-
ples of the approach taken by EA-EMT.

EA-EMT assumes that, although the mappingT : A →
∆(S)S is incoherent, the set of matricesTA = {Ta =
T (·|·, a)}a∈A represents feasible effects that the actions may
have. The algorithm then attempts to assemble a better map-
ping, T̄ : A → ∆(S)S , based on the setTA. More specif-
ically, for each actiona ∈ A the transition matrixT̄a is a
weighted linear combination of matrices in the setTA, that is
T̄a =

∑

b∈A
Tb ∗ wa(b). Intuitively, the weightwa(b) rep-

resents the similarity between the matrixTb ∈ TA and the
effects that the actiona ∈ A has on on the environment state.
As the interaction between the EA-EMT algorithm and the
environment progresses, the weightswa(·) are updated, mod-
ifying the mappingT̄ : A → ∆(S)S to reduce its incoherence
with the environment.

The update of the weightswa(·) is based on the approach
of predictions with expert ensembles[Cesa-Bianchi and Lu-
gosi, 2006]. The intuition behind this approach is that, when

making a prediction or a decision, a readily available set of
feasible alternatives (the expert ensemble) can be merged to-
gether to form a prediction which is potentially better than
any of the alternatives standing alone. In our case theex-
pert ensemble is the setTA, where each expert attempts to
predict the effects an action would have on the environment
state. From this point of view, the weightwa(b) expresses
how much the expertTb ∈ TA is trusted to capture the effects
of the actiona ∈ A correctly. Once EA-EMT has applied an
action,a∗, it measures the discrepancy between the effecta∗

had and the effect predicted by expertTb. The lower the dis-
crepancy, the higher will be the weightwa∗(b) when the next
control decision is made.

Require:
Set the system state estimatorp0(s) = s0 ∈ ∆(S)
Set the system dynamics estimator

τEMT
0 (s̄|s) = prior(s̄|s)

Set action weight vectorswa(a′) ∝ δa(a′) + ǫ
Set time tot = 0.

1: loop
2: for all a ∈ A do
3: SetT̄a =

P

a′

Ta′ ∗ wa(a′)

4: Setp̄a
t+1 = T̄a ∗ pt

5: SetDa = H
ˆ

pt → p̄a
t+1, τ

EMT
t

˜

6: SetV (a) = 〈DKL (Da‖τ
∗)〉

pt

7: end for
8: Selecta∗ = arg min

a
V (a)

9: Apply a∗, receive observationo ∈ O
10: Computept+1 due to the Bayesian update:

pt+1(s) ∝ Ω(o|s, a)
P

s′
T̄a(s|s′)pt(s

′)

11: ComputeτEMT
t+1 = H

ˆ

pt → pt+1, τ
EMT
t

˜

12: for all a ∈ A do
13: Setp̄a

t+1 = Ta ∗ pt

14: SetDa = H
ˆ

pt → p̄a
t+1, τ

EMT
t

˜

15: SetV (a) =
˙

DKL

`

Da‖τ
EMT
t+1

´¸

pt

16: Setwa∗(a) ∝ wa∗(a)βV (a)

17: end for
18: Sett := t + 1
19: end loop

Figure 3: The EA-EMT control algorithm.

Given the above principles, we have modified the standard
controller algorithm. Specifically, line 3, previously directly
substituted into the calculations the transition functionfrom
the provided model. Whereas now it uses a weighted com-
bination of the matrices inTA. The rest of the computations
proceed as before until the EMT estimate,τEMT

t+1 , of the ac-
tion outcome is computed in line 11: the algorithm predicts
the effects of each action on the EMT estimate, chooses the
action that would bringτEMT

t+1 closest to the reference sig-
nal τ∗, applies the action and receives an observation. At
that point, the algorithm has to measure the performance of
each expert, and update the weights. Now, recall that the al-
gorithm operates in terms of subjective beliefs, the relevant
effects of the action are thus those expressed in the EMT esti-
mateτEMT

t+1 . This means that the performance of each expert



can be expressed by the distance between the estimateτEMT
t+1

and the estimate that would have been obtained based on the
expert prediction. This distance is computed in lines 13-15,
and the weight of the expert is updated accordingly. Specifi-
cally, the old weight of the expert is multiplied byβd, where
β ∈ (0, 1) is the parameter of the update andd is the distance
above. Once all weights are updated, they are normalised to
sum to 1, so that̄Ta at the next step will be a stochastic ma-
trix. Notice that all these operations take time polynomialin
the model parameters, such as the size of state, action and
observation spaces.

4 Experimental Evaluation

To test the effectiveness of the EA-EMT algorithm, we have
devised a set of comparative tests with the standard EMT
Controller. To support comparability with previous work in
this area, all tests were based on modifications of the Drunk
Man (D-Man) domain: a controlled random walk over a lin-
ear graph (see Figure 4 for the principle structure) with ac-
tions weakly modulating the probability (only a small discrete
set of probabilities in the range(ǫ, 1−ǫ) with ǫ ≫ 0 is attain-
able) of the left and the right steps. A task within the domain
is represented by a conditional probabilityτ∗(s′|s), the refer-
ence signal for the controller, specifying what sort of motion
through the state space has to be induced. During an experi-
ment run, the control algorithm was provided with a Marko-
vian environment model,MEnv =< S, s0, A, T,O,Ω >,
incoherent with the true behaviour of domain. The incoher-
ences were created by introducing exogenous perturbations
to the behaviour of the D-Man domain. In particular, three
perturbations, making the model of the standard D-Man do-
main increasingly incoherent with the actual environment be-
haviour, were used:

• Deviating. An additional deterministic step (to the right)
was done.

• Periodic. An additional deterministic step was done, but
its direction changed with time.

• Catastrophic. A random permutation of actions was se-
lectedσ : A → A. When the controller applied action
a ∈ A, the environment responded instead toσ(a).

Three baselines where obtained in various combinations:
standard EMT Control algorithm operating in a perturbed en-
vironment, standard EMT Control operating within an unper-
turbed environment, and standard EMT Control operating in a
perturbed environment with its model correctly encoding the
environment perturbation. At least two baselines are present
in each experimental setting to provide comparative perfor-
mance bounds. Unless specified otherwise, the confidence
envelope of99.5% is depicted in all data graphs.

s*0 1 2

(1−p)

.......... n

(1−a)p

ap

Figure 4: Principle structure of the Drunk Man domain.

In all our experiments the reference dynamics for the con-
troller is given byτ∗(s′|s) ∝ δs∗(s′) + ǫ, whereǫ > 0
is small. In other words, the target prescribes that the en-
vironment should almost surely move to the ideal states∗

from any other state. In our experiments the state space was
S = {0, ..., 12}, and the ideal states∗ = 6.

Notice that, due to the probabilistic nature of the domain,
any reasonable1 control scheme set to accomplish the task
would result in a bell shaped empirical distribution of the sys-
tem state. Success of the control scheme can then be readily
appreciated visually by the difference of the expected value
and the ideal system state, as well as the standard deviation
of the empirical state distribution. To present an overall eval-
uation of a control scheme’s performance, rather than a com-
parison of multiple parameters, we also measured the distance
between the empirical distribution andδs∗ usingl1 norm.

4.1 Deviating Perturbation
In this experiment we introduce a deviating perturbation.
That is, beyond the usual probabilistic step, the environment
has also deterministically shifted in one direction along the
linear graph. For example (referring to Figure 4) if the sys-
tem reached statek ∈ {0, ..., n − 1}, the additional step will
shift it to statek + 1.
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Figure 5: EA-EMT performance under persistent shift

In this context, Figure 5 shows the empirical distribution
of system states under three control strategies: the EA-EMT
controller and the standard EMT Controller equipped with the
standard D-Man model (thus excluding the shift modelling),
and the standard EMT Controller equipped with the environ-
ment model that explicitly captures the additional shift. The
figure shows the complete empirical distribution of the EA-
EMT obtained during the first 200 control choices made in
this experiment, and marks a definitive improvement in per-
formance. This can be seen from the fact that the standard
EMT Control fails to enforce the reference dynamicsτ∗, with
the system spending the majority of its time away from the
ideal state,s∗ = 6, while EA-EMT manages to force the
state distribution to concentrate closer tos∗. In fact, the dis-
tance betweenδs∗ and the EA-EMT distribution induced in

1Unreasonable, for instance, would be choosing a constant ac-
tion to equalise the left and the right step probabilities, as this would
result in an almost uniform distribution, utterly defeating the con-
troller purpose.
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(b) Notice the log-scale of theY axis.
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Figure 6: EA-EMT adaptation to various perturbations: (a) Persistent Shift, (b) Random Permutation, (c) Switching Shift

the first 200 steps is40% less than the comparable distance
for the EMT controller. This, however, does not fully reflect
the adaptability of EA-EMT. To this end, Figure 6(a) shows
how the mean of the empirical distributions of the 200 step
windows behave. The distributions induced by EMT Con-
trol do not change over time, resulting in straight horizon-
tal lines depicting the constancy of the mean. On the other
hand, the data shows that EA-EMT quickly adapts, the algo-
rithm induces the empirical state distribution with the mean
approaching the ideal states∗ = 6. In this respect, EA-EMT
even slightly surpasses the performance of the standard EMT
algorithm with the correct environment model. This is due to
the adaptive portion of EA-EMT contributing to the tie break-
ing when considering similar actions – this tie breaking is
rigid in EMT Control. Similar pictures occur with respect to
the variance of the empirical distributions. This means that
EA-EMT overcomes the model incoherence and increasingly
concentrates the state empirical distribution around the ideal
state, which is exactly what the reference dynamics,τ∗, re-
quires.

4.2 Catastrophic Perturbation

The action space of the D-Man domain has a simple intuitive
interpretation – the action sets how quickly the system state
will shift left or right. The deviating perturbation did notex-
ceed this interpretation, it simply meant that the system will
naturally move in one direction faster than the other. In a way
it also meant that the perturbation induced a very mild model
incoherence – principally the model remained correct. How-
ever, EA-EMT can adapt to much more severe model incoher-
ences. In fact, in the next set of experiments the environment
model is completely incorrect. For each run in this experi-
ment set a random permutationσ : A → A was selected.
Then, when actiona ∈ A was applied, the environment re-
acted as if the action wasσ(a).

In more depth, Figure 7 shows the empirical distributions
obtained in the first 200 steps of decision making. Permuting
the action breaks any connection between what EMT Control
expects the action to do and what actually occurs in the envi-
ronment, essentially the actions are scrambled and the EMT
Control chooses a random action. This results in the failure
of the algorithm – the empirical state distribution is equiva-

lent to that of applying no control at all2. In contrast, EA-
EMT easily adapts to scrambling and performs increasingly
well, as can be seen in Figure 6(b). Following the develop-
ment of the empirical distribution within a sliding 200 step
window, the figure shows thel1 norm distance from the dis-
tribution formed by the standard EMT algorithm in the non-
perturbed environment. This data demonstrates that EA-EMT
exponentially quickly discovers the true effects of actions and
approaches the performance of the EMT control in a non-
perturbed environment. Even though the empirical distribu-
tion of the first 200 steps includes the first decisions made
based on the scrambled model, it already recovers70% of the
performance lost due to the model incoherence and, through
further adaptation, it reaches95% recovery.
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Figure 7: EA-EMT performance under random permutations.

4.3 Periodic Perturbation
Finally, it is important to evaluate whether the algorithm
can also perform well in a dynamically changing environ-
ment. For example in robotics, even if everything else re-
mains the same, the robot body will behave differently over
time due to natural wear-and-tear. To test EA-EMT in such
environments, we consider yet another perturbation: an ad-
ditional deterministic step is made, and the direction of the
step switches between left and right with constant period (500

2Since left and right steps fail in respective terminal states, the
empirical probability there is higher.



control steps in our experiments). The shape of the distribu-
tions formed by the controllers are equivalent to those in the
persistent shift experiment (see Figure 5), and we omit the
respective graph. On the other hand, the development of the
empirical distribution over time is quite different. In partic-
ular, Figure 6(c) shows the behaviour of the mean value for
empirical distributions calculated within a 200 step sliding
window. While the standard algorithm literally switches from
one value to another, depending on the direction of the shift,
the performance of EA-EMT always shows recovery after a
direction switch occurs. Notice also, that the magnitude of
the mean variation at the switch point becomes significantly
(25%) less for EA-EMT than the standard EMT. This sug-
gests that, beyond its ability to recover from irrelevant adapta-
tions, the adaptive controller version learns to reduce thecon-
trol inertia. In other words the algorithm reduces the impact
of the sudden change in the environment behaviour, making
the overall performance more stable.

5 Conclusions and Future Work

In this paper we present the Ensemble Action EMT algorithm
– a polynomial time solution to the Dynamics Based Control
framework with capabilities of on-line adaptation to environ-
ment model incoherences. The EA-EMT algorithm, uses the
transition matrices contained within the model as an expert
library for the feasible action effects in the environment,and
treats any possible action as an ensemble predictor based on
this experts set. Following the relevance of experts to the
exhibited effects an action has on the EMT dynamics esti-
mate, the weights within each ensemble action predictor are
updated. We have experimentally verified the efficiency of
the EA-EMT algorithm and shown that it quickly adapts to
deviating, periodic and catastrophic exogenous perturbations
of the environment. Furthermore, the data from the periodic
perturbation experiment suggests reduced control inertia.

These adaptive capabilities of the EA-EMT algorithm al-
low a wider range of problems to be solved within the DBC
framework than could hitherto be addressed. For example,
previously a precise environment model was required to solve
a type of search problem called area sweeping[Rabinovich
et al., 2007]. In contrast, the EA-EMT algorithm is capa-
ble of operating with environment behaviour described by a
set of dynamic primitives that may occur in response to an
action. This allows the algorithm to be applied in environ-
ments whose behaviour is only partially known, making pre-
cise modelling impossible.

Speaking more generally, the use of the expert ensem-
ble method has a close association with plan recognition
techniques[Bui, 2003; Riley and Veloso, 2002; Pynadath
and Wellman, 2000], where a library (ensemble) of poten-
tial plans is commonly used. Plan recognition algorithms,
through observation and causal interpretation of events, se-
lect a most likely explanation from the library. Similarly,EA-
EMT views expert alternatives as explanations to changes in
the environment state (which are not unlike the behaviours
of plans in a library). Specifically, EA-EMT evaluates the
performance of each expert based on the observed effects of
an action within the environment. This parallel opens up the

possibility of using EA-EMT as an opponent recognition and
classification method in multi-agent adversarial scenarios.

However, EA-EMT also fuses and arbitrates between the
various expert predictions. Specifically, the action model
is essentially a weighted combination of the expert alterna-
tives, which links it to behaviour-based robotics (BBR). In
BBR [Arkin, 1998] a collection of simple (usually reactive)
control algorithms is fused by an arbitration mechanism that
combines their control signal. Given that this arbitrationcan
include mutual inhibition or activation of other control sig-
nals, the resulting system can exhibit complex, adaptive be-
haviour (see e.g.[Mataric, 1998; Buffetet al., 2002] and ref-
erences therein) through the modulation and adaptation of the
arbitration process itself. Ideologically similar adaptation oc-
curs in EA-EMT, where individual experts gain higher weight
in assembling the model with respect to their performance in
predicting the effects of an action. Thus we plan to exploit
this connection to construct new hybrid control schemas that
combine the subjective dynamics task specification of EMT
control with the structural task decomposition of BBR.

Finally, we also would like to investigate the possibility of
altering the weight adaptation to includeforgetting. That is,
over time the weights should have an inherent tendency to
equalise. By so doing, the controller could possibly produce
higher frequency adaptability, enabling even better response
to periodic perturbations.
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