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Abstract nificant behavioural assumptions on the environment, rang-
ing from frame assumptiond?asulaet al., 2004 to struc-
tured motion of physical robot§Eliazar and Parr, 2004;
Stronger and Stone, 20p5Against this background, in this
paper we relax these environment behavioural limitations b

; ) . concentrating on a control framework with discrete abstrac
vironment's model. ~ This enables_ us to resolve state models. More specifically, we concentrate on solving
the problem of performance deterioration due to  , jine model calibration for the Dynamics Based Control
model incoherence, a negative problem in all model (DBC) framework[Rabinovichet al., 2007, which allows
based cont_rol methods. The new _e}lgorlthm,_ En- application of the model based control methodology to an
semble Actions EMT (EA-EMT), utilises the ini- even wider range of domains (e.g. environments with abistrac

t'f"‘.l environment model as a I|bra_ry .Of state tran- discrete state spaces and generic behaviour) than hitasto
sition functions and applies a variation of predic- possible

tion with experts to assemble and calibrate a re- . . . -
vised model. By so doing, this is the first control In more detail, the DBC framework is almost unique in its
algorithm that enables on-line adaptation within the ~ aPility to capture dynamic control tasks from the subjegtiv
Dynamics Based Control (DBC) framework. In our point of view, i.e. in terms of agent’s bgllefs and obsemaﬂ;l
experiments, we performed a range of tests with in- of the changgs t_hat occur in the environment, and is based
creasing model incoherence induced by three types ~ ON WO key principles. First, a part of the perceptual cdntro
of exogenous environment perturbations: catas- ~ ParadigmlPowers, 1978 it states that changes in the envi-
trophic, periodic and deviating. The results show ~ fonmentare a means to altering and controlling perceptions
that EA-EMT resolved model incoherence and sig- For instance, if we feel colq, we adjusy temperature in a room
nificantly outperformed the best currently available ~ t© feél warmer, thus changing the environment to produce the
DBC solution by up t®)5%. required perception. Second, is that the dynamics of the sys
tem, rather than a momentary system state, are a means of
] describing the control task and modulation of environment
1 Introduction dynamics are a means of solving the task. Notice, for exam-

Model based control methodologies have found their expresPle, that in our cold room example it was necessary to pro-
sion in a wide range of Al techniques. From basic planningduce a change —increase the temperature — rather than bring
methods like STRIPs to complex PID controllers, the mainit to a certain value. Combined together, these principeew
principle remains the same: the decision on what action témplemented in a model based control algorithm terried
take is based on a mathematical model of the environmerignded Markov Tracking (EMT) control. The algorithm has
response to an action application. However, in spite of bebeen shown to be an effective polynomial time solution to the
ing mathematically sound with provable properties, modelPBC framework in discrete Markovian environments, where
based control methods suffer from one common pitfall. Ifthe next system state depends only on the current systeen stat
the model is incoherent, that is a discrepancy exists betweeand the control action takdRabinovichet al., 2007.
the actual reaction of the environment to an action aptinat However, as with any model based control algorithm, EMT
and the reaction described by the model, the decision made lmontrol is subject to deteriorating effects of model inavhe
a model based controller will be suboptimal. Now, a commorence. In particular, our experiments further reveal that th
approach to resolve this problem is model calibration:egith standard EMT controller can not recover from persistent or
through off-line or on-line interaction with the environnte  catastrophic incoherence, where the environment behaves i
the model is adjusted (or even entirely reconstructed) 1o rea way not captured by the model. Nevertheless, EMT Control
duce incoherence and facilitate better decision making. remains the sole solution within the DBC framework. There-
Although model calibration has received increasing atfore, it is the only algorithm capable of operating in envi-
tention in recent years, the existing approaches make sigonments with a control task description that is both subjec

In this paper we extend the control methodology
based on Extended Markov Tracking (EMT) by
providing the control algorithm with capabilities

to calibrate and even partially reconstruct the en-



tive and dynamic. The algorithm’s polynomial running time e S'is the set of all possible environment states;

underlines its importance even further, making its ex@msi o 5 is the initial state of the environment (which can also

imperative. We thus modify the EMT control algorithm to in- be viewed as a distribution ové):;

clude model calibration, which resolves the performance de Ais th t of all acti licable in th . "

terioration induced by a model incoherence. ¢ Alsthe setotal actions appiicable in the environment,
The adaptive algorithm we have developed, the Ensemble ® 7' is the environment's probabilistic transition function:

Action EMT (EA-EMT), enables model calibration through amappingl’ : S x A — A(S). Thatis,T'(s'|a, s) is the

the use of expert ensemblé&esa-Bianchi and Lugosi, 2006 probability that the environment will move from state

For our purposes, each expert in the ensemble represents an to states’ under actior;

alternative way to capture and model effects that an action e O is the set of all possible observations. This is what the

has on the environment. EA-EMT dynamically merges the sensor input would look like for an outside observer;

expert alternatives together, thus building a new enviremm Qs the ob ti bability function: ;
model. Over time EA-EMT changes the properties of that ¢ 0 I:SS iilsfgaflrzrg).aﬁ]laxc i:né(lg\g; 32??3&:%

merger, reflecting the performance of each expert in captur- - qhapility thato will be observed given that the envi-
ing environment behaviour, thus calibrating the environtne ronment moved from stateto states’ under action.

model it uses. . . .
The rest of the paper is organised as follows. In Section 2 This naturally connects with the EMT algorithm, as knowl-

we detail the operation of the standard EMT Control algo-edge about the system is summa_lrised_ by a distribution vector
rithm. Section 3 follows with the description of our new EA- gver thg systt(_em ?tat% Et %(t;q ) EII(]/H\{V E'Ch tﬁasfe the ?ystem di
EMT algorithm, detailing how it reconstructs and calibgate ynamics estimator created by as the form ot a conal-

the environment model through the use of expert ensemblefional probabilityr : S — A(S).
Experimental support for the effectiveness of our apprasich

3 . . . . EMT Controller
given in Section 4. The experiments take special focus on the R ————— %
on-line property of the EA-EMT model calibration, under- EMTL o | setefipdate — Model
lining the algorithm’s ability to work in environments with
changing behavioural trends. Section 5 summarises the re- @.‘“_"1 Reference (Dynamice Signal
sults and gives future directions of this research. Observation
2 EMT Control Figure 1: Closed loop of EMT Control

The standard EMT algorithm continually maintains an esti-
mate of system dynamics. To do so, the algorithm assumes

that the system is an autonomous discrete Markov chain. Th ?l?JSrgdllggpig?sn:g ;\gaheamSfe_:_?]gcree?é?ﬁeengielﬁ zallgé)r]?co des
is, the system state stochastically develops over time-with 9 P X 9

: task to be performed and takes the form of the conditional
out external influence, and the next system state depends (I)IPF o
the current state only. This allows EMT to describe the esti-prObab'l'tyT : § — A(S). The standard EMT Control (see

mate of the system dynamics by a single stochastic matrix, Tg'9Ure 2) can be summarised as a greedy one-step look ahead
correction action selection. At every point in time, thealg

maintain the estimate, the EMT algorithm performs a conser ithm attempts to predict the reaction of an estimation algo

vative update of the system dynamics matrix, minimisin the! ) ) . /
Kullbacli)—LeibIer diver)g/;ence b)(/atween the new and the oﬁj es['thm (EMT in this case) to the changes induced by an action

timate, with the limitation that the new estimate has to fatc (€S 2-7 of the algorithm), and then chooses the action tha

the observed system transition that triggered the update. Shm? the* EMT estlmator.closest (line 8) to t.he reference dy
To put it formally, assume that two probability distribu- gﬁmgsngoeggfn;qgﬁg“?hne hcisagegg i?lpfk:ls?a'nf/ri]r%::rasgr?tnisse

tions, p; andp;,1, are given that describe two consecutive ~_ - ) 9 .

states of knowledge about the system, afid’” is the old registered (line 11), and the control loops to make its next

estimate of the system dynamics. Then the EMT uPdatgelc\:lIg;ic::r; that the controller action selection in lines 2-8 is
mEAT is the solution of the following optimisation problem

; ; : . ' heavily dependent on the environment model, as it uses the
whereDj is the Kullback-Leibler divergence: mappingT, to predict action effects. If the model is incoher-
EMT _ . EMT ent the reaction of EMT can not be estimated correctly, which
Te+1 T atgmin Dicr (1 % pe X D) in turn will lead to selection of a suboptimal action. In what
St.piy1(a) = 2 2(7 x pe)(a', ) follows, we modify the action selection process to vary the

z environment model it uses.
andp:(x) = > (7 x pe)(2', x)

The update is abbreviated}/” = H [p, — pyy1, 77M7]. 3 Ensemble Action EMT

Although EMT can work with more general environmen- As already stated, the performance of the standard EMT Con-
tal descriptions (see e.gAdam et al., 2009), it has been trol algorithm deteriorates if the environment model isginc
more commonly used with a discrete Markovian environmenterent. However, by providing the algorithm with an addi-
with partial observability, described by a tuplé Fnv =< tional method to correct model incoherences, it is possible
S, s0,A,T,0,Q >, where: rectify the deterioration.

The overall control algorithm, termdeMT Control, forms



Require: ) making a prediction or a decision, a readily available set of
Set the system state estimato(s) = so € A(S) feasible alternatives (the expert ensemble) can be meoged t
Set the system dynamics estimator gether to form a prediction which is potentially better than
Settime tot :Tg (5]s) = prior(s]s) any of the alternatives standing alone. In our caseeqe
1: loop ‘ pert gnsemble is the setT’y, where each expert attempts to
2 foralac Ado predict the effects an action would have on the environment
3: SetT, = T, {use transition model directly} state. From this point of view, the weight, (b) expresses
4: Setpd, 1 = Ty * i how much the expeff, € T4 is trusted to capture the effects
5: SetD, = H [pe — piq, 7M7) of t_he acti(_)na cA correctly._Once EA-EMT has applied an
6. SetV(a) = (DL (Dall77)),, action,a”, it measures the discrepancy between the etfect
7:  endfor had and the effect predicted by exp&st The lower the dis-
8:  Selec” = argminV(a) crepancy, the higher will be the weiglt,- (b) when the next
9:  Applya*, receive observation € O control decision is made.
10:  Computep; 1 due to the Bayesian update:
pe41(s) < Qo|s,a) > T(s|a, s )p:(s) Require:
s’ Set the system state estimagors) = so € A(S)
11:  ComputerZY™ = H [pr — pesr, 77 Set the system dynamics estimator
12:  Sett:=t+1 70 T (3]s) = prior(s]s)
13: end loop Set action weight vectors, (a’) o d,(a’) + €
Set time tot = 0.
Figure 2: EMT control algorithm 1: loop
) ) 2: forallae Ado
3: SetT, = > Tur * we(a)
Now, there are many incoherences a Markovian model, 4: Setpf = Ty * p:
MEnv =< S,s0,A,T,0,Q >, may have. While the choice | 5: SetD, = H [pr — piy1, 7™M ]
of the state, action and observation spaces, as well as the gb 6: SetV(a) = (Dkr (Da||77)),,
servability function, may be dictated by subjective coesid 7:  endfor
ations (e.g. to make it more readable for the human domain 8: Selecta” = argmin V'(a)
designers), the transition functidnis always dictated by the 9:  Applya*, receiveaobservation cO
environment. Thus, in this work we choose to concentrate 0n10:  Computep.,1 due to the Bayesian update:

the quality of the transition functiof’. This function maps Pet1(8) o Q(o|s,a) 3 Tu(s|s)pe(s)
actions into stochastic matrices, so that for each aetianA ] EMT s EMT
the matrixT,, = 7'(|-,a) models the effects of that action | 1~ Computeriy'" = H [p — per, 7]
on the system state. The difference between the matrix 12. forallac.Ado

and the true effects of the actienc A is the incoherence Bf Sty = Ta % pe q EMT

. . - 14: SetD, = H [pt — Dit1, Tt ]
type we have resolved in the EA-EMT algorithm (Figure 3). 15 s —Der (Do lEMT
Thus, while the standard EMT Control views the transition| - etV (a) = (Drcr (Dalmh )>pf,

mapping,a — T,, to be constant, the EA-EMT algorithm | 16: Setw,- (a) o wa-(a)3"
modifies its transition mapping over time, reducing the mapt 17:  end for

ping’s incoherence. However, before we go into the detdils o 18:  Sett:=t+1

how it was implemented, we would like to explain the princi- _19- €nd loop

ples of the approach taken by EA-EMT.

EA-EMT assumes that, a|th0ugh the mappmg A — Figure 3: The EA-EMT control algorithm.
A(S)% is incoherent, the set of matricégy, = {7, =

T'(-[-,a) }oea represents feasible effects that the actions may Given the above principles, we have modified the standard
have. The algorithm then attempts to assemble a better mapontroller algorithm. Specifically, line 3, previously eatly
ping, T : A — A(S)®, based on the séf4. More specif-  supstituted into the calculations the transition functiam
ically, for each actiom € A the transition matrixl, is @  the provided model. Whereas now it uses a weighted com-
weighted linear combination of matrices in the $&t thatis  pination of the matrices iff’s. The rest of the computations
To = > peaTh * wa(b). Intuitively, the weightw, (b) rep-  proceed as before until the EMT estimat&,}/”, of the ac-
resents the similarity between the matifix € 74 and the  tjon outcome is computed in line 11: the algorithm predicts

effects that the actiom € A has on on the environment state. the effects of each action on the EMT estimate, chooses the
As the interaction between the EA-EMT algorithm and thegction that would bring-Z}™ closest to the reference sig-
environment progresses, the weights-) are updated, mod- nal 7=, applies the action and receives an observation. At
ifying the mappindl” : A — A(S)® toreduce its incoherence that point, the algorithm has to measure the performance of
with the environment. each expert, and update the weights. Now, recall that the al-
The update of the weights, (-) is based on the approach gorithm operates in terms of subjective beliefs, the refeva
of predictions with expert ensemblESesa-Bianchi and Lu- effects of the action are thus those expressed in the EMT esti

gosi, 2006. The intuition behind this approach is that, when materﬁr]‘fT. This means that the performance of each expert




can be expressed by the distance between the est"n;ﬁré@ In all our experiments the reference dynamics for the con-

and the estimate that would have been obtained based on theller is given by7*(s’|s) o« ds<(s’) + €, wheree > 0

expert prediction. This distance is computed in lines 13-15is small. In other words, the target prescribes that the en-

and the weight of the expert is updated accordingly. Specifivironment should almost surely move to the ideal state

cally, the old weight of the expert is multiplied 3¢, where  from any other state. In our experiments the state space was

B3 € (0,1) is the parameter of the update ahi the distance S = {0, ..., 12}, and the ideal state" = 6.

above. Once all weights are updated, they are normalised to Notice that, due to the probabilistic nature of the domain,

sum to 1, so thaf, at the next step will be a stochastic ma- any reasonablecontrol scheme set to accomplish the task

trix. Notice that all these operations take time polynorimial would result in a bell shaped empirical distribution of the-s

the model parameters, such as the size of state, action amein state. Success of the control scheme can then be readily

observation spaces. appreciated visually by the difference of the expectedevalu

and the ideal system state, as well as the standard deviation

: : of the empirical state distribution. To present an ovenal-e

4 Experimental Evaluation uation of a control scheme’s performance, rather than a com-

To test the effectiveness of the EA-EMT algorithm, we haveparison of multiple parameters, we also measured the distan
devised a set of comparative tests with the standard EMPetween the empirical distribution adg usingl; norm.
Controller. To support comparability with previous work in I .

this area, all tests were based on modifications of the Drung-1 Deviating Perturbation

Man (D-Man) domain: a controlled random walk over a lin- In this experiment we introduce a deviating perturbation.
ear graph (see Figure 4 for the principle structure) with acThat is, beyond the usual probabilistic step, the envirartme
tions weakly modulating the probability (only a small dsier ~ has also deterministically shifted in one direction alohg t
set of probabilities in the rande, 1 — €) with e > 0 is attain-  linear graph. For example (referring to Figure 4) if the sys-
able) of the left and the right steps. A task within the domaintem reached state € {0, ...,n — 1}, the additional step will

is represented by a conditional probability(s’|s), the refer-  shift it to statek + 1.

ence signal for the controller, specifying what sort of rooti

through the state space has to be induced. During an experi- 03
ment run, the control algorithm was provided with a Marko- T EwT Contl
vian environment model) Env =< S, s9, A, T,0,Q >, 028 |l m BT Contok model
incoherent with the true behaviour of domain. The incoher-
ences were created by introducing exogenous perturbations
to the behaviour of the D-Man domain. In particular, three
perturbations, making the model of the standard D-Man do-

Empirical frequency

main increasingly incoherent with the actual environment b 00s
haviour, were used: o
e Deviating. An additional deterministic step (to the right) T BN NIRRT
was done. s

e Periodic. An additional deterministic step was done, but Figure 5: EA-EMT performance under persistent shift
its direction changed with time.

e Catastrophic. A random permutation of actions was se- In this context, Figure 5 shows the empirical distribution
lectedo : A — A. When the controller applied action of system states under three control strategies: the EA-EMT
a € A, the environment responded instead{a). controller and the standard EMT Controller equipped with th

Three basell here obtained o binati standard D-Man model (thus excluding the shift modellmg)
¢ dr d Eal\jTlgeStWI : tham in tvarl us COT |Qad|0nsand the standard EMT Controller equipped with the environ-
standar ontrol algorithm operating in a perturbed en; ment model that explicitly captures the additional shifheT
vironment, standard EMT Control operating within an unper-¢

. _—— ure shows the complete empirical distribution of the EA-
turbed environment, and standard EMT Control operating in %?\/IT obtained during Fzhe first 200 control choices made in
perturbed environment with its model correctly encoding th

: ; . this experiment, and marks a definitive improvement in per-
environment perturbation. At least two baselines are piese ¢, .1\ - 00 * This can be seen from the fact that the standard
in each experimental setting to provide comparative perfor

EMT Control fails to enforce the reference dynami¢swith

e system spendmg the majority of its time away from the
ideal state,s* 6, while EA-EMT manages to force the
state distribution to concentrate closersto In fact, the dis-

R (l—a)p D tance between,- and the EA-EMT distribution induced in
ub\ lUnreasonable, for instance, would be choosing a constant ac-
tion to equalise the left and the right step probabilities, as this would
. L . result in an almost uniform distribution, utterly defeating the con-
Figure 4: Principle structure of the Drunk Man domain.  troller purpose.
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Figure 6: EA-EMT adaptation to various perturbations: (@dstent Shift, (b) Random Permutation, (c) SwitchingtShi

the first 200 steps i40% less than the comparable distancelent to that of applying no control at &ll In contrast, EA-

for the EMT controller. This, however, does not fully reflect EMT easily adapts to scrambling and performs increasingly
the adaptability of EA-EMT. To this end, Figure 6(a) showswell, as can be seen in Figure 6(b). Following the develop-
how the mean of the empirical distributions of the 200 stepment of the empirical distribution within a sliding 200 step
windows behave. The distributions induced by EMT Con-window, the figure shows thie norm distance from the dis-
trol do not change over time, resulting in straight horizon-tribution formed by the standard EMT algorithm in the non-
tal lines depicting the constancy of the mean. On the otheperturbed environment. This data demonstrates that EA-EMT
hand, the data shows that EA-EMT quickly adapts, the algoexponentially quickly discovers the true effects of actiand
rithm induces the empirical state distribution with the mea approaches the performance of the EMT control in a non-
approaching the ideal stat&é = 6. In this respect, EA-EMT  perturbed environment. Even though the empirical distribu
even slightly surpasses the performance of the standard EMflon of the first 200 steps includes the first decisions made
algorithm with the correct environment model. This is due tobased on the scrambled model, it already recov@¥s of the

the adaptive portion of EA-EMT contributing to the tie break performance lost due to the model incoherence and, through
ing when considering similar actions — this tie breaking isfurther adaptation, it reach®5% recovery.

rigid in EMT Control. Similar pictures occur with respect to

the variance of the empirical distributions. This meang tha

EA-EMT overcomes the model incoherence and increasingly o2 EA-euT
concentrates the state empirical distribution arounddeali 05| -~ vt connm
state, which is exactly what the reference dynamics,re-
quires.

~ = EMT Control+nonperturbed

Empirical frequency

4.2 Catastrophic Perturbation

The action space of the D-Man domain has a simple intuitive
interpretation — the action sets how quickly the systenestat
will shift left or right. The deviating perturbation did nek-
ceed this interpretation, it simply meant that the systeth wi
naturally move in one direction faster than the other. In g wa
it also meant that the perturbation induced a very mild modeFigure 7: EA-EMT performance under random permutations.
incoherence — principally the model remained correct. How-

ever, EA-EMT can adapt to much more severe model incoher-

ences. In fact, in the next set of experiments the environmert.3  Periodic Perturbation

model is completely incorrect. For each run in this experi-ginajly, it is important to evaluate whether the algorithm
ment set a random permutatien: A — A was selected. can also perform well in a dynamically changing environ-
Then, when actiom < A was applied, the environment re- ment. For example in robotics, even if everything else re-
acted as if the action was(a). ~ mains the same, the robot body will behave differently over
In more depth, Figure 7 shows the empirical distributionstime due to natural wear-and-tear. To test EA-EMT in such
Obtaine_d in the first 200 Steps _Of decision making. Permutin@nvironmentsl we consider yet another perturbation: an ad-
the action breaks any connection between what EMT Contradjitional deterministic step is made, and the direction @f th

expects the action to do and what actually occurs in the envistep switches between left and right with constant perio6 (5
ronment, essentially the actions are scrambled and the EMT

Control chooses a random action. This results in the failure 2Since left and right steps fail in respective terminal states, the
of the algorithm — the empirical state distribution is e@uiv empirical probability there is higher.




control steps in our experiments). The shape of the distribupossibility of using EA-EMT as an opponent recognition and

tions formed by the controllers are equivalent to those @ th classification method in multi-agent adversarial sceisario

persistent shift experiment (see Figure 5), and we omit the However, EA-EMT also fuses and arbitrates between the

respective graph. On the other hand, the development of thearious expert predictions. Specifically, the action model

empirical distribution over time is quite different. In piar is essentially a weighted combination of the expert alterna

ular, Figure 6(c) shows the behaviour of the mean value fotives, which links it to behaviour-based robotics (BBR). In

empirical distributions calculated within a 200 step slgli BBR [Arkin, 1999 a collection of simple (usually reactive)

window. While the standard algorithm literally switchesrfro  control algorithms is fused by an arbitration mechanisnt tha

one value to another, depending on the direction of the,shifttombines their control signal. Given that this arbitrataam

the performance of EA-EMT always shows recovery after anclude mutual inhibition or activation of other controbsi

direction switch occurs. Notice also, that the magnitude ofals, the resulting system can exhibit complex, adaptive be

the mean variation at the switch point becomes significanthhaviour (see e.dMataric, 1998; Buffett al., 2004 and ref-

(25%) less for EA-EMT than the standard EMT. This sug- erences therein) through the modulation and adaptatidreof t

gests that, beyond its ability to recover fromirrelevarg@atd-  arbitration process itself. Ideologically similar addjuta oc-

tions, the adaptive controller version learns to reducetime  curs in EA-EMT, where individual experts gain higher weight

trol inertia. In other words the algorithm reduces the intpacin assembling the model with respect to their performance in

of the sudden change in the environment behaviour, makingredicting the effects of an action. Thus we plan to exploit

the overall performance more stable. this connection to construct new hybrid control schemas tha
combine the subjective dynamics task specification of EMT

5 Conclusionsand Future Work con_trol with the structural_task d_ecom_position of BBR.

Finally, we also would like to investigate the possibilitfy o

In this paper we present the Ensemble Action EMT algorithmaltering the weight adaptation to incluéi@getting. That is,

— a polynomial time solution to the Dynamics Based Controlover time the weights should have an inherent tendency to

framework with capabilities of on-line adaptation to eovir  equalise. By so doing, the controller could possibly praduc

ment model incoherences. The EA-EMT algorithm, uses thdiigher frequency adaptability, enabling even better respo

transition matrices contained within the model as an experto periodic perturbations.
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