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ABSTRACT

The dynamics of transcriptional control involves small
numbers of molecules and result in significant fluctua-
tions in protein and mRNA concentrations. The correla-
tions between these intrinsic fluctuations then offer, via
the fluctuation dissipation relation, the possibility of cap-
turing the system’s response to external perturbations, and
hence the nature of the regulatory activity itself. We study
time-dependent noise correlations in simple networks of
activators and repressors, varying the topology of causal
influence, and using different mechanisms or parameter
choices. The distinct correlated fluctuations could be used
as signatures for mechanism identification. To that end,
we present analytical and numerical results on peaks and
delays in correlations between proteins within networks,
and the dependence of these features on parameter and
mechanism.

1. INTRODUCTION

A gene regulatory network (GRN) consists of nodes rep-
resenting genes and edges representing regulation of gene
expression by proteins encoded by the genes. Since the
set of processes of transcription and translation are inher-
ently stochastic within a cellular environment, the levels
of mRNA and protein for each species is a fluctuating
quantity, and referred to as noise in gene expression(1).
The rate of production of the average levels of protein ex-
pression of a gene as a function of its regulatory factors is
used to describe the kinetics of each node in a GRN, from
which the dynamics of the network, represented as a cou-
pled set of ordinary differential equations (ODE), forms a
model for the functional properties of the network. Exper-
imental access to distributions of protein levels by flow cy-
tometry (1) have demonstrated the observability of noisy
genes, and there is further evidence that noise drives bi-
ologically meaningful behaviours in living systems (2).
Given the stochasticity of the very processes that consti-
tute regulatory responses to stimuli, it is likely that corre-
lated fluctuations will illuminate the dynamics of regula-
tory interactions. Indeed, the intuition behind Onsager’s
regression hypothesis (3) is that the regression to an equi-
librium state after a short-lived external perturbation or

an intrinsic fluctuation are identical, which has been de-
veloped further in several fluctuation-dissipation theorems
even away from equilibrium (3). Regulation of expres-
sion can be viewed as a set of responses to endogenous
signals or exogenous stimuli organised by the cell to form
functional pathways. In this paper, we consider correlated
fluctuations in elementary fragments of GRN to illustrate
what they can tell us about the nature of the regulatory
function enacted by the network.

Experimental protocols circumscribe the nature of the
observations of gene noise, which then determine the na-
ture of the theoretical tools used to describe or model the
data. Time-independent single-variable statistics charac-
terise histograms of levels of fluorescent proteins in a pop-
ulation of cells accumulated using flow cytometric tech-
niques (1), which can also be described using the fluctuation-
dissipation relations (4; 5). Single molecule methods (6)
quantify bursts of protein production, fitted to geometric
distributions.

Instead of flow cytometry which leaves out the tempo-
ral aspects, time-lapse fluorescence measurements(7) are
needed to track the causal dynamics as revealed by noise,
and thereby facilitate our understanding of the link be-
tween regulatory implementation and correlative effects.
Indeed, recent reports suggest that the presence of regula-
tory activity shows up in the time dependent correlations
of fluctuations in protein levels(8; 7). That is the object of
our study.

The analytical framework of this paper builds upon re-
lations between the macroscopic dynamics and the fluc-
tuation properties of the system, such as the fluctuation-
dissipation relations(3). In the context of biochemical re-
action systems, it emerges naturally out of an expansion
of the chemical master equation in terms of the inverse of
large system size(9; 10) assuming gaussian deviates from
average concentrations of molecules. This linear noise
approximation (LNA) is equivalent to the Fokker-Planck
equation for these process(9).

Our main focus in this work is to derive the time-
correlation functions in a sum-of-exponentials form (eq.
(1)) to study the dynamic correlations between two molec-
ular species in a GRN, such as proteins of the regula-
tor and regulated genes. We demonstrate the distinct be-



havioural patterns in the protein correlations for changes
in the regulatory networks. For such a study, we con-
sidered simple two-gene networks where, the changes in
these networks were introduced by employing three strate-
gies: (1) varying the values of the reaction rate constants
(2) varying the regulatory mechanisms, say, activation with
or without co-operative mechanisms, and repression (3)
introducing additional player i.e., a gene into the model,
thus varying the parameters, regulatory mechanisms and
the network structure respectively.

2. DYNAMIC CORRELATIONS

The Chemical Master equation,

∂tP (X, t) =
M
∑

j=1

{P (X − νj , t)aj(X − νj)−P (X, t)aj(x)}

represents the updates in the probability distributions of a
collection of numbers of moleculesX due to reactions Rj

(j = 1 . . . ,M ) occurring with probability aj(x)dt in an
infinitesimal time interval(t, t+dt) in a volume Ω, result-
ing in changes νji in the number of Si molecules. In this
paper, the molecules of interest are mRNAs and proteins
encoded by genes. The corresponding reactions studied
are given in Table 1.

By multiplying with Xi and XiXj and taking expec-
tation values, it is easy to show that the means 〈Xi〉 and
covariances Cov(Xi,Xj) = 〈XiXj〉 − 〈Xi〉〈Xj〉 satisfy

d

dt
〈Xi〉 =

M
∑

j=1

νji〈aj(X)〉, and

d

dt
Cov(Xi,Xj) =

M
∑

k=1

〈Xiνkjak(X)〉 + 〈Xjνkiak(X)〉

+ 〈νkiνkjak(X − νk)〉.

In terms of concentrations xi = Xi/Ω, the expectation
values yield mass action kinetics description of the chem-
ical system:

d

dt
〈xi〉 =

M
∑

j=1

νjiRj(x), where Rj(x) := lim
Ω→∞

1

Ω
〈aj(

X

Ω
)〉.

(1)
Only when the propensity functions are linear in its argu-
ments do the covariance equations form a closed set, else
higher-order statistics are necessary for finding the covari-
ances. By linearising that the kinetic rates Rj(x) around
the steady state solutions ˙〈xi〉 = 0, where the means are
time independent, we get

∂C

∂t
= AC + CA

T + BB
T (2)

whereC stands for the matrix of covariancesCij =Cov(xi, xj),
A andB are defined as :

Aik =
∂

∂xk
(

M
∑

j=1

νijRj(x)), BB
T = ν diag(R(x)) ν

T .

Network Structure Regulatory Elementary
Mechanism Reactions

X → Y

Monomers Px + Gy

kf
−−⇀↽−−
kr

C

C
k1
−−→ C + My

Dimers 2Px

ka
−−⇀↽−−
kb

Px2

Px2
+ Gy

kf
−−⇀↽−−
kr

C

Direct activation C
k1
−−→ C + My

X → Z → Y

Monomers Px + Gz

kf1
−−−⇀↽−−−
kr1

C1

C1

k1
−−→ C1 + Mz

Mz
tz
−−→ Mz + Pz

Pz + Gy

kf2
−−−⇀↽−−−
kr2

C2

Activation via intermediary C2

k2
−−→ C2 + My

X → Y ← Z

Monomers Px + Gy

kf1
−−−⇀↽−−−
kr1

c

Pz + c
kf2
−−−⇀↽−−−
kr2

C

Processive activation C
k1
−−→ C + My

Monomers Px + Gy

kf1
−−−⇀↽−−−
kr1

C1

Pz + Gy

kf1
−−−⇀↽−−−
kr1

C2

C1

k1
−−→ C1 + My

Combined activation Parallel activation C2

k2
−−→ C2 + My

X & Y
Monomers

Px + Gy

kf
−−⇀↽−−
kr

C

Direct repression Gy
k1
−−→ Gy + Py

Table 1. Table showing Network Topologies of simple acti-
vator and repressor systems and their regulatory mechanisms.
Only those elementary reactions that distinguish the regulatory
network are shown in the table above. Reactions such as pro-
duction and decay of upstream mRNAs and their translation into
proteins are not shown, but are included in the analysis.

The time evolution of the averages in the linearised equa-
tions is

〈x(t)〉 = V eΛ(t−t0)U
T
x(t0),

with V and U
T being the matrices comprising of the left

and right eigenvectors of the Jacobian matrix A respec-
tively, and Λ the eigenvalues.

To solve for the stationary covariance matrix Ċ = 0,
in eq.(2) we can derive

〈 δxi(t+ τ) δxj(t) 〉 =
N

∑

l=1

eλlτVil

(

N
∑

k=1

UT
lkCkj

)

, (3)

where δxi(t) := xi(t) − xs
i and xs

i satisfies ẋi = 0 in
eq. (1). We observe that the relaxation to a steady state,
governed by the Jacobian matrix A is related to the fluc-
tuation terms BB

T which makes it possible to compute
the covariances; this is the power of the fluctuation dissi-
pation relation. For effective comparison of results from
various networks below, we use the dynamic correlations
Corr [δxi(t + τ), δxj(t)] by normalising the covariances
by the stationary standard deviations.



3. RESULTS

3.1. Elementary Activator

The effect of a transcription factor on its target protein is
studied. Here we have used the cha4 −→ cha1 regula-
tory link (11) and parameters for the various decay rates
and half-lives are obtained from the data compiled in (12).
The proteins of the regulated and regulating genes are pos-
itively correlated, but with a delay τ∗ in the attainment of
the peakCorr∗, indicating the time scales for signal prop-
agation through the transcriptional dynamical system to
perturbations introduced. Note, positive corelations indi-
cate activation. For the mRNA correlations, the peak oc-
curs at τ∗ = 36mins, while the peak is at τ∗ = 49mins
for protein correlations.

Figure 1. In all these figures, the dashed line is the covariance
plot in the base case, the cha4 −→ cha1 parameters, while solid
lines are due to the step changes by 20% in the rate constants.
(a)-(d) are labelled clockwise from top left. (a) k+

Mx
and k−

Mx
,

the production and decay rates of Mx varied. While Corr∗ de-
creases rapidly for increase in k+

Mx
and k−

Mx
, τ∗ experiences

slight reduction from 56 to 46 minutes. (b) Translation and pro-
tein decay rates tx and k−

Px
are varied. τ∗ decreases from 55

to 45 minutes. (d) ty and k−

Py
varied. τ∗ drops from 102 to 36

minutes. (c) Transcription rate constant k1, and decay rate k−

My

are varied. τ∗ drops from 87 to 43 minutes.

We notice that for the same mean steady state val-
ues for the proteins and mRNAs, the dynamic correlations
vary for changes in the reaction rate constants. For ex-
ample, the pair of parameters [k+

Mx
, k−

Mx
] are varied from

their base values in equal measures so that the mean value
of 〈Mx〉 = k+

Mx
/k−

Mx
remains unaffected. This is il-

lustrated with the help of the figure 3.1. The observa-
tions can be explained with the help of the eigenvalues of
the Jacobian – 3 out of 5 eigenvalues are the decay rates
−k−

Mx
, −k−

My
, −k−

Py
, and in the limit Kd ' [Gy] (Kd is

the dissociation constant for protein-DNA binding, [Gy]
concentration of gene), the remaining two are −k−

Px
and

−kr/[Gy]. It is this dependence on decay constants that
accounts for the variability in τ∗ observed.

3.2. Co-operative activation

In this model, Gy is activated by the action of dimers Px2

that are formed by a dimerization process whose dissoci-
ation constant (for protein-protein interactions) is taken to
be Kdim = kb/ka = 200 nM . Here, we shall see the ef-
fect that dimerization and its dissociation constant has on
the activator system. The effective transcription rate for
species y (using the quasi-steady state assumption) is pro-
portional to P 2

x/(KdKdim + P 2
x ), Kd being the protein-

DNA dissociation constant. The effects of dimerization
on the correlation functions are threefold: firstly, the peak
correlation is larger than for monomers; secondly, τ∗ is
advanced by a few minutes; and thirdly, the shape is flat-
ter. For both monomers and dimers, only the dissociation
constants (the ratio, not the forward and reverse rates) af-
fect the covariances. Also, while the covariances of Py

with Px and Px2
differ, their normalized dynamic correla-

tions do not.

Figure 2. Activation by dimers: The dimer dissociation con-
stant kdba

is varied [by varying kb, while ka is held constant] in
steps of ±20% from its base value of 200 nM corresponding to
the stationary mean dimer concentration of Px2

= 783 nM . As
the dissociation constant is altered, Px2

= P 2
x /kdba

and con-
sequently the transcription rate k1 = k−

My
My/C varies. τ∗

new

shows negligible variation from 53 to 51 minutes.

3.3. Elementary Repressor

We model repression as follows: the protein X blocks
the incorporation of the RNA polymerase molecule onto
the promoter of gene Y . The average steady state value
of My = k1Gy/k−

My
. The basal transcription rate k1

is taken to be 1.7 min−1 and the dissociation constant
Kd = 100 nM . Other rate constants are the same as in
the case of the elementary activator. Gy then is equal to
0.2 nM , simulating low probability of occupancy by the
TF in the presence of a repressor. By doing so, we retain
the mean values of the mRNAs and proteins.

If we artificially hold the mean values Py > Px, the
repressor covariances can be viewed as a reflection, by the
τ -axis, of the activator correlations. For Px > Py , by as-
suming concentrations of 〈My〉 = 0.1 nM and 〈Py〉 =
100 nM (by reducing k1, ty), the correlation plots in Fig-
ure 3 are similar except with reduced magnitudes (com-
pared to the activator case), Corr∗ = −0.47.

3.4. Activation via intermediaries

Here we consider the transcriptional chain X → Z → Y ,
where we explore the effect of the intermediary TF Z on



Figure 3. (a) [k−

My
, k1] are varied in pair in steps of ±20%

from their base values. While Corr∗ increases in magnitude, τ∗

decreases from 87 to 43 minutes for step-wise increase in these
parameters. (b) [k−

Py
, ty] are varied in pair in steps of ±20%.

While Corr∗ increases in magnitude, τ∗ once again reduces
from 102 to 36 minutes for step-wise increase in these param-
eters.

the 〈PxPy〉 correlations. In Figure 4, the dynamic corre-
lation between Px and Py is shown to be sensitive in the
decay rates of the intermediary element Z, k−

Mz
and k−

Pz
.

This is mainly due to the fact that four of the eight eigen-
values of the system are [−k−

Mx
,−k−

Mz
,−k−

My
,−k−

Py
]with

the other four being the roots of two quadratic equations
that are approximated as [−k−

Px
,−k−

Pz
,−

kr1

[Gz ] ,−
kr2

[Gy ] ]. Thus,
the effect of adding an intermediary regulatory element to
the original two-gene activator network is two-fold: firstly,
there is a large shift in the correlation along the time-axis.
τ∗new = 97minutes. Secondly, this τ∗new is sensitive in the
decay rates of Z. Note that, for mRNA and protein half-
lives of around 1minute each, of the intermediate element
Z, τ∗ ≈ 49. Hence, for rapidly decaying mRNA/proteins
the effect of the Z on the correlations between X and Y
are negligible.

Figure 4. X → Z → Y (a) The decay rate of the intermediary
mRNAMz is varied in steps of±20% from an initial half-life of
8 minutes. The new τ∗ and Corr∗ are sensitive to variations in
k−

Mz
. τ∗

new decreases through 134 to 92 minutes, for increase in
k−

Mz
. (b) k−

Pz
is varied in steps of±20% from an initial half-life

of 50 minutes. Once again, for increasing k−

Pz
, τ∗

new decreases
from 163 to 82 minutes. Corr∗new increases as well.

3.5. Activation with co-operation from other TFs

Figure 3.5 shows the sensitivity of correlations w.r.t de-
cay rates of Mz and Pz . The covariance peak Cov∗ is
insensitive to variations in these parameters but not the
correlations. Also, though the decay rates k−

Mz
and k−

Pz

show up as the eigenvalues, they do not influence the time-
characteristics. Thus, the method of parallel activation de-
sensitizes τ∗ and brings about variation only in Corr∗.

Figure 5. The presence of Z reduces the dynamic correla-
tions, leaving τ∗ unaltered at 49 minutes. (a) and (b) show the
variation in Corr∗ for changes in k−

Mz
and k−

Pz
for the pro-

cessive case. Parallel activation produces similar results, ex-
cept that Corr∗new is reduced to 0.4. Base values of k−

Mz
and

k−

Pz
correspond to half lives of 8 and 40 minutes respectively.

〈Mz〉 = 0.3 nM , 〈Pz〉 = 240 nM .

4. CONCLUSION

We have identified trends in changes in correlated fluctua-
tions in protein levels as a function of rates, mechanism
and structure. Thus the nature of the regulatory func-
tion leaves its signature via internal noise and can be used
to quantitatively characterise speeds and magnitudes of
transcriptional responses. While there are many networks
with the same correlation, the variations in the correla-
tions under modification could suggest putative structure
and mechanism of transcritional control.
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