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We study the electron transport through silicon serial triple quantum dots (TQDs) formed effectively in a
lithographically-defined multiple quantum dot system on a silicon-on-insulator substrate at a tempera-
ture of 4.2 K. Our serial TQDs are composed of two lithographically-patterned QDs and another one in-
between formed by stress during the pattern-dependent oxidation process. The TQDs formation is con-
firmed by equivalent circuit simulations, which show an excellent agreement with the experimental
results. With detailed analysis of the charge configurations in the TQDs, we discuss the distinct properties
of the TQDs, including electron transport at the charge quadruple points. In addition, we discuss higher
order tunneling processes of the TQDs. The analysis of electron states in the silicon TQDs is a crucial step
toward the future implementation of integrated silicon quantum information devices.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Silicon double quantum dots (DQDs) are promising candidates
for developing quantum information devices based on electronic
state or electron spin quantum bits (qubits). So far, coherent
manipulation of the qubits has been demonstrated mainly by
DQDs in GaAs systems [1–3]. However, several deleterious effects,
such as the hyperfine interaction, the spin–orbit interaction, and
the piezoelectric electron–phonon interaction, severely limit
coherence times [1–4]. Longer coherence times are expected in sil-
icon DQDs because of the predominantly spin-zero nuclei, weak
spin–orbit coupling, and the lack of piezoelectric electron–phonon
coupling [5]. In addition, silicon qubits have a great advantage in
integration because of the compatibility with conventional silicon
complementary metal–oxide–semiconductor processes.

In order to investigate electron transport through silicon DQDs,
several experimental studies have been carried out, including stud-
ies on gate-defined DQDs [6,7], ion implanted Si:P DQDs [8], and
Ge/Si core/shell nanowires [9]. Furthermore, the spin dependent
electron transport referred to as spin blockade due to the Pauli
exclusion principle in the tunneling characteristics [10,11] has
been demonstrated in DQDs in Si/Ge two-dimensional electron
gases [12] and in naturally-formed DQDs in silicon nanowires
[13]. This phenomenon is a valuable tool for the measurement
and manipulation of individual electron spins [2,3]. Additionally,
ll rights reserved.
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the multivalley conduction band structures of silicon in DQDs
[14] have been highlighted for further investigation.

A triple quantum dot (TQD) system is the natural extension of
the DQDs toward scalable multiqubit systems. Theoretical studies
of TQDs indicate strong potential for applications in quantum
information technology. To improve the coherence time, coded qu-
bits with TQDs have been studied [15,16]. Spin cluster qubits,
where no local control of spins is required, have also been pro-
posed with a TQD system as the minimum system [17]. Further-
more, entangled electron spins are expected to be created by
TQDs as spin-entangled currents [18]. In addition to applications
in quantum information processing, charging rectifiers using TQDs
have been proposed and demonstrated [19,20]. Recently, experi-
mental electron transport of TQDs has been investigated in Al-
GaAs/GaAs heterostructures [21–23], a single-wall carbon
nanotube [24], and self-assembled InAs quantum dots [25]. How-
ever, clear electron transport characteristics for silicon TQDs have
not been reported yet.

In this paper, we demonstrate electron transport through sili-
con serial TQDs formed effectively in a lithographically-defined
multiple quantum dot (QD) system which has several strong con-
strictions. Similar configurations have been studied as the sili-
con-on-insulator QCA cell [26,27]. The TQDs include a very small
quantum dot arising from the compressive stress during the ther-
mal oxidation process. The equivalent circuit simulation supports
the claim of the formation of the TQD system. In Section 2, we
introduce the device structure and the fabrication processes.
Section 3 is devoted to discussing the validity of the assumed QD
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Fig. 1. (a) Scanning electron microscope (SEM) image of the silicon multiple
quantum dot (QD) system. The bright (dark) region consists of silicon (silicon
dioxide). T1, T2, T3, and T4 are the terminals connected to the multiple QDs, and G1,
G2, G3, G4, G5, and G6 are the side gates. (b) The equivalent circuit of the multiple
QD system with the capacitors C, the voltage sources V, and the tunnel junctions t.
The tunnel junctions ti (i ¼ 1 � � �7) are modeled as capacitors Ci and resistors Ri

connected in parallel as shown in the bottom right region. The red circles indicate
the effectively formed QDs (QD1, QD2, QD3, and QDa). The two gates, G1 and G4,
which are used in the measurement are included in the circuit. C1p;C2p; and C3p are
parasitic capacitances, which arise from the couplings between QDs and other
electrodes neglected in the circuit. The parasitic capacitance for QDa can be
neglected because QDa is screened with QD1 and QD2.
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formation, by analyzing the electron transport characteristics. In
Section 4, we show a detailed analysis of electron transport
through the TQD system with calculated charge configurations.

2. Device structure and fabrication process

We fabricated a lithographically-defined silicon multiple QD
system, in which TQDs are effectively formed. Fig. 1a shows the
scanning electron microscope (SEM) image of the silicon multiple
QD system, which has the eight constrictions, defined on a sili-
con-on-insulator (SOI) substrate with a silicon layer thickness of
about 20 nm on a 200-nm-thick buried oxide layer. The multiple
QDs are connected to the four terminals (T1, T2, T3, and T4), where
bias voltages are applied. The electrochemical potentials in the QDs
can be modulated with six side gates (G1, G2, G3, G4, G5, and G6).

First, the 40-nm-thick SOI film, whose thickness was reduced
via thermal oxidation, was heavily doped by ion implantation (n-
type, phosphorous, doping concentration � 1� 1019 cm�3). Multi-
ple QDs were then patterned using high-resolution electron beam
lithography with the positive resist ZEP520A. Electron cyclotron
resonance reactive ion etching was used to transfer the resist pat-
tern into the SOI layer with CF4 used as the etching gas. Thermal
oxidation was then performed for 30 min at 1000 �C in order to
passivate the surface states and reduce the size of the QDs. The
thickness of the SOI layer was also reduced to about 20 nm during
this process. Finally, 300-nm-thick Al electrodes were formed by
evaporation.

3. Discussion for the formed QDs

Fig. 1b shows the effectively formed QDs in the multiple QD sys-
tem with the equivalent circuit, where the dotted blue1 lines indi-
cate the outer shape of the multiple QD system. From the detailed
analysis of the experimental and simulated results discussed below,
it was concluded that the four QDs (QD1, QD2, QD3, and QDa) illus-
trated by the four red circles in Fig. 1b were formed effectively with
1 For interpretation of color in Figs. 1-6, the reader is referred to the web version of
this article.
the seven tunnel junctions ti ði ¼ 1—7Þ. In this paper, we focus on
electron transport through the serial TQDs formed on the left side
of the multiple QDs as indicated by the green square in Fig. 1b.

All measurements were performed using the Agilent 4156A
parameter analyzer at a temperature of 4.2 K in liquid helium.
Since capacitive coupling between the gate G1(G4) and QD1(QD2)
is expected to be strong, the voltages applied to G1 and G4
ðVG1 and VG4Þ were used to efficiently control the electrochemical
potentials in the TQDs. Fig. 2a–d shows the contour plots of the
currents IT1; IT2; IT3; and IT4 measured at the terminals T1, T2, T3,
and T4, respectively, as a function of the gate voltages
VG1 and VG4, where the voltages applied to T1, T2, and T3
ðVT1;VT2; and VT3Þ are �6 mV and the voltage to T4 (VT4) is
0 mV. The electron configurations of the multiple QDs strongly
influence these characteristics, which are referred to as charge sta-
bility diagrams [29].

Then we simulated these properties using a Monte Carlo tech-
nique with the equivalent circuit (Fig. 1b). We carefully extracted
the gate capacitances from the experimental results and optimized
the tunnel junction parameters with more than 200 iterations. The
simulated charge stability diagrams as shown in Fig. 2e–f, corre-
sponding to the experimental results in Fig. 2a–d, respectively,
show an excellent agreement with the experimental results. In par-
ticular, the charge configurations are almost perfectly reproduced.
Therefore, the simulations support the assumed QDs formation. In
addition, since VT1;VT2; and VT3 have the same potentials and the
current paths are from T1, T2, and T3 to T4, the current peaks of
these charge stability diagrams, particularly IT1, strongly reflect
the electron configurations of the serial TQDs (QD1, QD2, and
QDa). To the best of our knowledge, this is the first demonstration
of electron transport through silicon serial TQDs.

We will now discuss the validity of the absence of the right side
tunnel junction as indicated by A in Fig. 1b. Fig. 3a shows the elec-
trical characteristics of IT1; IT2; IT3; and IT4 as a function of VT1,
where VT2;VT3; and VT4 are 0 mV. In the low biased region, which
is the inside of the two red dotted lines, only IT1 and IT3 flow, indi-
cating the electron transport only through QD1 and QD3. In the
high biased region, IT2 and IT4 start to flow indicated by red ovals
in Fig. 3a because Coulomb blockade among QD1, QDa, and QD2
is lifted. However, when we apply just the voltage VT3 as shown
in Fig. 3b, only IT1 and IT3 are detected. In this case, the conduction
path is just QD1 and QD3. This is attributed to the weak or almost
disconnected right side interconnection. Additionally, in Fig. 2a
and c, the current peaks of IT3 are very weak compared to those
of IT1, in spite of the same bias voltages being applied to T1 and
T3. As the connection A is absent, the four QDs exist in the conduc-
tion path from T3 to T4, resulting in the low current amplitude.

Next, the connection B indicated in Fig. 1b is discussed. At the
lower left region of Fig. 2b ðIT2Þ, the electron configurations of
the TQDs have a strong influence on the current peaks, whereas
parallel current peak lines are observed at the upper right region
of Fig. 2b, in which the currents through the TQDs are blocked
[see Fig. 2a], indicating that a single QD is responsible for the cur-
rent oscillation. In addition, IT2 and IT4 have almost the same cur-
rent levels in Fig. 3a. If there had been a QD between t5 and B in
Fig. 1b, IT2 would be different from IT4. Therefore, only QD2 is
formed in the left bottom region of the multiple QD system.

Here, we discuss the possible formation mechanism of the
effectively formed four QDs. Since the bottom of the conduction
bands rises due to the quantum-mechanical size effects in the lith-
ographically-defined strong constrictions, the seven tunnel barri-
ers are formed. However, at the two constrictions indicated by A
and B in Fig. 1b, the tunnel junctions are not effective as discussed
previously; the coupling at the constriction A is weak because of
the very strong constriction, whereas the coupling at the constric-
tion B is strong because of the very weak constriction. In the re-



Fig. 2. (a)–(d) The contour plots of IT1; IT2; IT3; and IT4, as a function of VG1 and VG4, where VT1;VT2; and VT3 are �6 mV and VT4 is 0 mV (T = 4.2 K). (e)–(h) The simulated
contour plots of IT1; IT2; IT3; and IT4, respectively, as a function of VG1 and VG4, where VT1;VT2; and VT3 are �6 mV and VT4 is 0 mV (T = 4.2 K). The circuit parameters are as
follows: C1 ¼ C2 ¼ C3 ¼ 16 aF, R1 ¼ R2 ¼ R3 ¼ 500 kX ðt1; t2; and t3Þ, C4 ¼ C5 ¼ 5:5 aF, R4 ¼ R5 ¼ 500 kX ðt4 and t5Þ, C6 ¼ 1:0 aF, R6 ¼ 1 MX ðt6Þ, C7 ¼ 0:5 aF, R7 ¼ 1 MX ðt7Þ,
C11 ¼ 1:258 aF, C12 ¼ 0:409 aF, C13 ¼ 0:05 aF, C1a ¼ 0:018 aF, C41 ¼ 0:546 aF, C42 ¼ 1:097 aF, C4a ¼ 0:014 aF, C23 ¼ 0:5 aF, Ca3 ¼ 0:1 aF, C1p ¼ 2 aF, C2p ¼ 2 aF; and C3p ¼ 2 aF.
The gate capacitances are estimated from the experimental results. The parasitic capacitances are assumed to have the same order value of the other gate capacitances.
Typical values of tunnel resistances for silicon systems are used [6,7,28]. The offset gate voltages of 1.6 V for VG1 and 1.7 V for VG4 are used to correct the effects of the
background charges.

Fig. 3. (a) and (b) Electrical characteristics IT1; IT2; IT3; and IT4 as a function of (a) VT1 and (b) VT;3, where VT2 and VT4 are grounded and the all gates are floating (T = 4.2 K).
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gions of QD1, QD2, and QD3, the bottoms of the conduction band
are lower than those at the constrictions, resulting in the formation
of the QDs. However, the region of QDa is just on a constriction.
Therefore, the mechanism of quantum confinement for QDa is dif-
ferent from that of the other QDs. Quantum confinement in QDa is
presumably due to the compressive stress generated during the
pattern-dependent oxidation [30] (PADOX) after electron beam
lithography. If a connection sandwiched with two large areas is
very narrow, compressive stress arises in the connection, lowering
the bottom of the conduction band. As a results, QDa is formed at
the constrictions. In contrast to the gate-defined TQDs [21], the
very small QD is formed in silicon by the PADOX mechanism.
Therefore single-electron tunneling in the TQDs can be observed
at a relatively high temperature (T = 4.2 K).

4. Detailed analysis for electron transport through the silicon
serial TQDs

4.1. Charge configurations in the charge stability diagram

To analyze the electron transport through the TQDs in detail, we
examine the charge configurations in the charge stability diagram
of the TQDs. The charge stability diagram is determined by the
electrostatic energy (the calculation is shown in Appendix A) and
the quantum-mechanical confinement in the system. Since the
quantum level spacings of our QDs (with radii of a few tens of
nm) are estimated to be a few hundred leV [31], which is compa-
rable to the thermal energy at the base temperature of 4.2 K
(�362 leV) the quantum-mechanical confinement effects are
smeared.

Fig. 4 shows the calculated charge stability diagram from the
equivalent circuit simulation, corresponding to the inside of the
white square in Fig. 2a. The gray lines mark the boundaries of
the charge stable cells in which the stable charge configurations
ðN1;Na;N2Þ are shown, where N1, Na, and N2 correspond to the
charge numbers of QD1, QDa, and QD2, respectively. For simplicity,
we assume that ðN1;Na;N2Þ ¼ ð0; 0; 0Þ at the hatched region,
although there are actually many electrons in the system because
of the high doping concentration.

At the boundaries of the charge stable cells, the total electro-
static energies of the neighboring charge states are degenerate.
There are three types of boundary in the charge stability diagram
of the TQDs. Firstly, since a charging event with a single charge
in a QD of the TQDs occurs across, for example, the red lines in



Fig. 5. (a) Schematic diagrams of the electrochemical potentials l1;la; and l2 of
the QD1, QDa, and QD2, respectively, at the charge quadruple point Q in Fig. 4.
lT1 and lT4 are the electrochemical potentials at T1 and T4, respectively. The values
inside the parentheses next to the electrochemical potentials indicate the electron
configurations of QD1, QDa, and QD2. (b) Schematic diagram of the non-linear
transport at the charge quadruple point QA . The electrochemical potentials of
charge configurations (1,0,0), (0,1,0), and (0,0,1) are illustrated in the potential
diagrams. lL and lR are the electrochemical potential of the leads.
VGx;VGy ; and VGz are three gate voltages. The red triangle indicates the two-
dimensional slice of the triangular pyramid in the VGx—VGy plain.

Fig. 4. The simulated charge configurations in the stability diagram of the TQDs. In
order to show the sharp boundaries of the charge stable regions, almost zero bias
voltages and the temperature of 10 mK are used in the simulation. The stable charge
configuration in each cell is denoted by ðN1;Na;N2Þ, where N1;Na; and N2

correspond to the electron numbers of QD1, QDa, and QD2, respectively. These
electron numbers are the relative values from those of the hatched region, where
N1;Na; and N2 are assumed to (0,0,0) for simplicity.
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Fig. 4, these lines are referred to as the charging lines. These three
red lines correspond to the charging lines of QD1, QD2, and QDa as
indicated in Fig. 4. Many charging lines exist in the stability dia-
gram. Secondly, at the blue line with the mark R in Fig. 4, a charge
at QD2(a) moves to QDa(2), but the total numbers of charges in the
TQDs stay constant. This type of line is the charge reconfiguration
line, which arises from the electrostatic coupling (and also quan-
tum-mechanical tunnel coupling which is neglected in the simula-
tion). In the charge stability diagram of DQDs, these two types of
line also appear [29]. However, the other kind of line indicated
by the green line in Fig. 4 is identified in the TQDs, where both a
charging event and a charge reconfiguration event occur simulta-
neously. Since the two charges simultaneously move in the TQDs
at this line, in a similar way to quantum cellular automata (QCA)
processes [32], this line is referred to as the QCA line [21]. In the
experimental results, a strong current peak at the QCA line is ob-
served as indicated by the white arrow in Fig. 2d.

4.2. Charge triple and quadruple points

The meeting points of two charging lines or a charging line and
a QCA line are charge triple points, where three charge configura-
tions are degenerate. Although sequential tunneling is allowed at
the charge triple points in the case of the serial DQDs [29], electron
transport at the charge triple points in the serial TQDs is a second
order tunneling process. However, almost all the current peaks of
IT1 (Fig. 2a) correspond to the charge triple points because our
measurement is performed in the non-linear transport region,
namely with relatively high bias voltages, and the three electro-
chemical potentials of QD1, QD2, and QDa located in the bias win-
dow. In the region where the current peaks disappear in Fig. 2a, the
electrochemical potential of the QDa is far from the bias window
due to the very wide spacing of the charging lines of QDa. This
indicates that the charging energy of QDa is very large (the calcu-
lation is discussed below) compared with those of QD1 and QD2,
i.e. the size of the QDa is very small, which is also supported by
the SEM observation (Fig. 1a).

Although a two-dimensional charge stability diagram is enough
to describe charge configurations in DQDs, a three-dimensional
charge stability diagram spanned by three gates is necessary in or-
der to obtain full charge configurations in TQDs, because there are
three discrete charges in TQDs. This is referred to as a beehive dia-
gram [21]. In three-dimensional space, charging lines and triple
points turn into charging plains and triple lines, respectively, and
the meeting points of the two triple lines form charge quadruple
points, where the four electron configurations are degenerate.
Sequential tunneling in the linear transport region for the serial
TQDs is allowed only at the charge quadruple points. At the elec-
tron configurations from (0,0,0) to (1,1,1) in a three-dimensional
charge stability diagram of the TQDs, there are the four charge qua-
druple points [21]:

Q A½ð0; 0; 0Þ $ ð1; 0; 0Þ $ ð0; 1; 0Þ $ ð0; 0; 1Þ�;
QB½ð1; 1; 1Þ $ ð1; 1; 0Þ $ ð1; 0; 1Þ $ ð0; 1; 1Þ�;
Q C ½ð1; 0; 0Þ $ ð0; 1; 0Þ $ ð1; 1; 0Þ $ ð1; 0; 1Þ�;
Q D½ð0; 0; 1Þ $ ð1; 0; 1Þ $ ð0; 1; 1Þ $ ð0; 1; 0Þ�:

At QA and QB, a single charge is transferred through the TQDs,
whereas two charges are involved in the transport at QC and QD.
These two charge transport processes can only occur in QD systems
comprising more than two QDs.

At the black closed circle indicated by Q in Fig. 4, the charge
quadruple point which involves three electrons appears. The four
charge configurations (0,0,2), (1,0,2), (0,1,2), and (0,1,1) are
degenerate at Q, corresponding to Q D with an extra single charge
on QD2. Fig. 5a shows the schematic potential diagrams at Q,
where the left, center, and right potential wells correspond to
those of QD1, QDa, and QD2, respectively. The electrochemical
potentials l1, l2, la, lT1, and lT4 are those of QD1, QD2, QDa,
the terminal T1, and T4, respectively. In the (0,1,1) configuration,
the electron on QDa can move to QD2 because
lað0; 1; 1Þ ¼ l2ð0; 0; 2Þ. This transfer occurs below the electro-
chemical potentials of T1 and T4. Then one electron fills



Fig. 6. (a) The extended figure corresponding to the blue square as shown in Fig. 2b.
The electron configurations extracted from the calculation (Fig. 4). (b) and (c)
Schematic potential diagrams of the TQDs at the left and the right black broken line
in Fig. 6a.
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l1ð1; 0; 2Þ from T1, resulting in the (1,0,2) configuration. The con-
figuration of l1ð1; 0; 2Þ ¼ lað0; 1; 2Þ allows the tunneling of the
electron from QD1 to QDa. Finally, the electron on QD2 escapes
to T4 and the configuration returns to the initial state (0,1,1).
Note that the sequential tunneling at Q is different from that at
Q A and Q B because of the different number of charges. In addition,
spin blockade between QDa and QD2 is expected to appear in this
charge configuration because the two specific conditions (0,1,1)
and (0,0,2) are involved, where the two electron spins can form
the spin singlet or triplet. The study of spin blockade in TQDs re-
mains as a matter to be discussed further.

4.3. Charging energies of the TQDs

From the parameters used for the equivalent circuit simulation,
the charging energies of QD1, QD2, and QDa ðEQD1; EQD2; and EQDaÞ,
and the electrostatic coupling energies between QD1(2) and QDa
½E1ð2Þa� are calculated from the electrostatic energies of the system
(a full derivation is shown in Appendix A). These energies obtained
are EQD1 � 5:6 meV, EQD2 � 10:4 meV, EQDa � 101 meV, E1a �
3:6 meV, and E2a � 3:3 meV. Note that EQDa is very large, resulting
in the very wide spacing of the charging lines of QDa, correspond-
ing to a very small size for QDa (� a few nm radius). The PADOX
process in the silicon nanostructures allows us to realize such a
small QD.

In contrast, for the estimation of the charging energies from the
experimental results, the conversion factors by which gate voltages
are converted into energies, must be extracted from the non-linear
transport results [29]. Fig. 5b shows the schematic image of the
non-linear transport of the charge quadruple point QA in the
three-dimensional stability diagram spanned by the three gate
voltages VGx;VGy; and VGz for TQDs. In non-linear transport, the
charge quadruple point turns into the triangular pyramid (the
black bold and dotted lines). On the VGx—VGy plain, a two-dimen-
sional slice appears as illustrated by the red triangle in Fig. 5.
The configurations of the electrochemical potentials at the four
vertices A, B, C, and D are also shown. The line AD corresponds
to the charge reconfiguration line for the three QDs. To extract
the accurate conversion factors for three QDs, the two side of the
triangular pyramid must be identified.

In the experimental results (Fig. 2a), several triangular current
peaks appear, corresponding to just the two-dimensional slice of
the triangular pyramids. However, the charging energies can be
roughly estimated from the triangles in two-dimensional space.
Since G1(G4) is strongly coupled to QD1(QD2), we obtain the con-
version factors of the QD1 and QD2 (c1 and c2) from the triangle of
the VG1—VG4 plain. We chose the clearest triangle indicated by the
white arrow in Fig. 2a. If we assume that the bias voltages drop
only at the tunnel junctions, c1ð2Þ is calculated as 0.061
(0.071) eV/V. From the conversion factor and the current peak
spacing of QD1(2), the charging energy of QD1(2) is estimated as
7.7 (10.3) meV. These values are consistent with the charging ener-
gies calculated from the equivalent circuit parameters, probably
because the triangle shape is close to the side of the triangular pyr-
amid due to the small capacitive couplings between QDa and G1 or
G4.

4.4. Higher order tunneling processes

Finally, we explore the higher order tunneling processes of the
TQDs. In the transport of the TQDs, several kinds of tunneling pro-
cesses appear. The charge quadruple points and the charge triple
points correspond to first and second order tunneling processes,
respectively. The leakage currents of the Coulomb blockade region
are due to fourth order tunneling processes. On the QCA lines (the
green line in Fig. 4), where two charges move simultaneously, an-
other higher order tunneling process occurs, which is referred to as
QCA cotunneling processes [21].

Here, we compare the other two kinds of higher order tunneling
processes. Fig. 6a shows the extended figure corresponding to the
blue square in Fig. 2b, where the electron configurations assumed
in Fig. 4 are denoted. In this gate voltage region, the three electron
configurations (0,0,1), (0,1,1), and (1,1,1) are distinguished. Be-
tween (0,0,1) and (0,1,1), only the electrochemical potential of
QDa locates in the bias window. As a result, two successive second
order tunneling processes with a tunneling rate of C2�2 are re-
quired in the electron transport as schematically shown in
Fig. 6b. Conversely, at the boundary of (0,1,1), and (1,1,1), there
is only the electrochemical potential of QD1 in the bias window
and the electron transport is dominated by the third order tunnel-
ing processes with a tunneling rate of C3 shown in Fig. 6c. The
black broken lines in Fig. 6a indicate these two tunneling pro-
cesses. Note that the tunneling rate of the two successive second
order tunneling process is higher than that of the third order pro-
cesses, leading to the different current amplitudes in Fig. 6a. This
fact is consistent with other TQD systems [21,24].

5. Conclusion

Experimental electron transport through the silicon serial TQD
system has been successfully observed for the first time at a tem-
perature of 4.2 K. The TQD system is composed of two lithograph-
ically-patterned QDs and another one in-between formed by
compressive stress generated during the PADOX process [30].
The equivalent circuit simulation shows an excellent agreement
with the experimental results, which support the assumed forma-
tion of the TQDs. The calculated charge configurations of the TQDs,
which are defined by three types of lines (the charging lines, the
charge reconfiguration lines, and the QCA lines), provide a detailed
analysis of the electron transport for the TQD system, including a
discussion of the charge quadruple point which involves three
electrons. We also discussed the charge quadruple point at the
non-linear transport region for the estimation of the charging ener-
gies. From the experimental data, we can roughly estimate the
charging energies, which are consistent with the calculated values
from the simulation. In addition, we discussed the several kinds of
higher order tunneling processes, including the comparison be-
tween the two successive second order tunneling processes and
the third order tunneling processes. The TQD system provides an
essential prerequisite for the future implementation of silicon-
based quantum information processing devices because of its high
functionality.
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Appendix A. Charging energies for the multiple QDs

The charging energies for the multiple QDs can be derived from
the electrostatic energy of the system [29]. In a N conductors sys-
tem, the node j is connected to the other nodes with the capaci-
tances cjk and the stored charge Q j is given by:

Q j ¼
X

k

cjkðVj � VkÞ: ð1Þ

where Vj is the electrostatic potential of the node j. This equation
can be expressed in the matrix form

~Q ¼ C~V : ð2Þ

Here C is the capacitance matrix, which consists of the diagonal
matrix elements Cjj ¼

P
k–jcjk and the off-diagonal matrix elements

Cjk ¼ Ckj ¼ �cjk. To consider the voltage sources in the network, the
matrix equation is separated as

~Q N

~Q S

 !
¼

CNN CNS

CSN CSS

� � ~VN

~VS

 !
; ð3Þ

where ~QNðSÞ and ~VNðSÞ are the charges and the voltages on the charge
nodes (the voltage sources), respectively, and CNN , CNS, CSN , and CSS

are the four capacitance sub-matrices derived from C. In this
expression, the voltage sources are treated as nodes with large
capacitances to the ground. Although many voltage sources are
set in our systems, it is not necessary to obtain CSN and CSS because
the values of the voltage sources are already known. Therefore, from
the voltages on the charge nodes

~VN ¼ C�1
NN

~QN � CNS
~VS

� �
; ð4Þ

the electrostatic energy of the charge nodes can be determined as
follows:

U ¼ 1
2
~VN � CNN

~VN : ð5Þ

From the equivalent circuit for our multiple QDs (Fig. 1b), the
charges on QDi (i ¼ 1; 2; 3; a), which are expressed such that
Qi ¼ �Nijej, where Ni is the number of electrons on QDi and �jej
is the electron charge, are given by

Q 1 ¼ C1ðV1 � VT1Þ þ C2ðV1 � V3Þ þ C6ðV1 � VaÞ
þ C11ðV1 � VG1Þ þ C41ðV1 � VG4Þ þ C1pV1; ð6Þ

Q 2 ¼ C4ðV2 � VT2Þ þ C5ðV2 � VT4Þ þ C7ðV2 � VaÞ
þ C12ðV2 � VG1Þ þ C42ðV2 � VG4Þ þ C23ðV2 � V3Þ þ C2pV2; ð7Þ

Q 3 ¼ C2ðV3 � V1Þ þ C3ðV3 � VT3Þ þ C13ðV3 � VG1Þ
þ Ca3ðV3 � VaÞ þ C23ðV3 � V2Þ þ C3pV3; ð8Þ

Qa ¼ C6ðVa � V1Þ þ C7ðVa � V2Þ þ C1aðVa � VG1Þ
þ C4aðVa � VG4Þ þ Ca3ðVa � V3Þ: ð9Þ

These equations can be written in the matrix form as

Q 1 þ C1VT1 þ C11VG1 þ C41VG4

Q 2 þ C4VT2 þ C5VT4 þ C12VG1 þ C42VG4

Q 3 þ C3VT3 þ C13VG1

Qa þ C1aVG1 þ C4aVG4

0
BB@

1
CCA

¼

CQD1 0 �C2 �C6

0 CQD2 �C23 �C7

�C2 �C23 CQD3 �Ca3

�C6 �C7 �Ca3 CQDa

0
BB@

1
CCA

V1

V2

V3

Va

0
BB@

1
CCA; ð10Þ
where CQD1 ¼ C1 þ C2 þ C6 þ C11 þ C41 þ C1p, CQD2 ¼ C4 þ C5 þ C7þ
C42 þ C12 þ C23 þ C2p, CQD3 ¼ C2 þ C3 þ C13 þ C23 þ Ca3 þ C3p, and
CQDa ¼ C6 þ C7 þ C1a þ C4a þ Ca3. From the matrix equation Eq.
(10), we obtain ~VN . As a result, the electrostatic energy
UðN1;N2;N3;NaÞ can be calculated with Eq. (5).

The electrochemical potentials li, which are defined as the en-
ergy required to add the Nith electron to QDi, are given by

l1ðN1;N2;N3;NaÞ¼UðN1;N2;N3;NaÞ�UðN1�1;N2;N3;NaÞ; ð11Þ
l2ðN1;N2;N3;NaÞ¼UðN1;N2;N3;NaÞ�UðN1;N2�1;N3;NaÞ; ð12Þ
l3ðN1;N2;N3;NaÞ¼UðN1;N2;N3;NaÞ�UðN1;N2;N3�1;NaÞ; ð13Þ
laðN1;N2;N3;NaÞ¼UðN1;N2;N3;NaÞ�UðN1;N2;N3;Na�1Þ: ð14Þ

The charging energies (the addition energies) for the QD
are

EQD1 ¼ l1ðN1 þ 1;N2;N3;NaÞ � l1ðN1;N2;N3;NaÞ; ð15Þ
EQD2 ¼ l2ðN1;N2 þ 1;N3;NaÞ � l2ðN1;N2;N3;NaÞ; ð16Þ
EQD3 ¼ l3ðN1;N2;N3 þ 1;NaÞ � l3ðN1;N2;N3;NaÞ; ð17Þ
EQDa ¼ laðN1;N2;N3;Na þ 1Þ � laðN1;N2;N3;NaÞ; ð18Þ

giving

EQD1 ¼ jej2bð2C23C7Ca3 þ C2
a3CQD2 þ C2

23CQDa

þ CQD3ðC2
7 � CQD2CQDaÞÞ; ð19Þ

EQD2 ¼ jej2bð2C2C6Ca3 þ C2
a3CQD1 þ C2

2CQDa

þ CQD3ðC2
6 � CQD1CQDaÞÞ; ð20Þ

EQD3 ¼ jej2bðC2
7CQD1 þ CQD2ðC2

6 � CQD1CQDaÞÞ; ð21Þ
EQDa ¼ jej2bðC2

23CQD1 þ CQD2ðC2
2 � CQD1CQD3ÞÞ; ð22Þ

where

1=b ¼ 2C23C7ðC2C6 þ Ca3CQD1Þ þ 2C2C6Ca3CQD2 þ C2
a3CQD1CQD2

þ C2
7CQD1CQD3 þ C2

6CQD2CQD3 � CQD1CQD2CQD3CQDa

þ C2
23ð�C2

6 þ CQD1CQDaÞ þ C2
2ð�C2

7 þ CQD2CQDaÞ: ð23Þ

In addition, the electrostatic coupling energies between QD1(2) and
QDa [E1ð2Þa] are determined by

E1a ¼ l1ðN1;N2;N3;Na þ 1Þ � l1ðN1;N2;N3;NaÞ
¼ jej2bðC2

23C6 � C2C23C7 � C2Ca3CQD2 � C6CQD2CQD3Þ; ð24Þ
E2a ¼ l2ðN1;N2;N3;Na þ 1Þ � l2ðN1;N2;N3;NaÞ

¼ jej2bðC2
2C7 � C2C23C6 � C23Ca3CQD1 � C7CQD1CQD3Þ: ð25Þ
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