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Abstract

This survey guides the reader through the extensive open literature that is covering the family of

low-density parity-check (LDPC) codes and their rateless relatives. In doing so, we will identify the

most important milestones that have occurred since their conception until the current era and elucidate

the related design problems and their respective solutions.

I. INTRODUCTION

Looking back over the last five decades or so, one can reasonably surmise that the family of low-density

parity-check codes (LDPC) [1] and that of turbo codes [2], constitute the two most practical realizations

of Shannon’s theory [3], which have revolutionized the field of error correction coding [4].

It was precisely the year 1948, when Claude E. Shannon, who at that time was a researcher at Bell Labs,

published one of the most important theories, which inspired the research community for many years

to come. At that time, his theories disproved the widely supported belief that increasing the amount of

information-carrying bits transmitted over the channel per second, imposes an increase in the probability

of error. Shannon demonstrated that it is possible to transmit information arbitrarily reliably over any

unreliable channel, provided that the information transmission rate is lower than the capacity of the

channel [3]. Therefore, the channel capacity sets the bound on how much information we can transmit

over a channel.

Shannon’s claim can be realized by a technique referred to as forward error correction (FEC). The basic

idea is that of incorporating redundant bits, or check bits, together with the original information bits, thus

creating what is known as a codeword. If the check bits are introduced in a “appropriate manner” so as
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to make each codeword sufficiently distinct from each other, the receiver will then become capable of

determining the most likely codeword that has been transmitted. The channel capacity will determine the

exact amount of redundancy that has to be incorporated by the encoder in order to be able to correct the

errors imposed by the channel.

However, Shannon’s theory only quantifies the maximum attainable rate, but refrains from specifying

the means of achieving it. This triggered widespread research efforts resulting in diverse extensions,

deeper interpretations and practical realizations of Shannon’s original work, which reached its pinnacle in

the definition of LDPC and turbo codes. In this survey, we will only focus our attention on LDPC codes

and their rateless relatives. We will guide the reader through the extensive literature, commencing from

their conception and portray their evolution, including the current state-of-the-art. We will commence our

discourse by introducing the related preliminary terminology and definitions. We will then proceed to

provide further insights on the pertinent issues related to LDPC codes, such as their encoding and decoding

techniques, the convergence of their decoding and the associated design techniques. Subsequently, we

will also outline a range of hardware-implementation-related issues and detail a range of current research

endeavors. We will continue our discourse by explaining some basic principles of rateless coding and

attempt to bridge the well-understood fixed-rate codes and their rateless counterparts. Following a brief

historical perspective, we will discuss the related design problems and identify their solutions.

II. PRELIMINARIES

In this section, we will strive to explain, the basic principles and the LDPC code related terminology

in a simple and concise manner. Our discourse will be limited to the following topics:

• The basic principles of linear block codes;

• Their generator and parity-check matrices;

• The graph representation of LDPC codes and

• Some important graph-theoretic properties.

Each point will be treated separately in the forthcoming subsections. Those readers who are familiar with

the above-mentioned topics, might like to proceed directly to Section III. On the other hand, we would

like to direct the attention of those readers, who wish to delve into further detail, to some excellent

magazine papers and textbooks such as [5]–[14], amongst others.
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A. Basic Principles of Linear Block Codes

LDPC codes form part of a larger family of codes, which are typically referred to as linear block codes.

Figure 1 shows a simplified block diagram of a channel coded communication system using linear block

codes. A code is termed a block code, if the original information bit-sequence can be segmented into

fixed-length message blocks, hereby denoted by u = u1, u2, . . . , uK , each having K information digits.

This implies that there is 2K possible distinct message blocks. For the sake of simplicity, we will here

be giving examples for binary LDPC codes, i.e. the codes are associated with the logical symbols/bits of

(1, 0). The elements (1, 0) are said to constitute an alphabet or a finite field, where the latter are typically

referred to as Galois fields (GF). Using this terminology, a GF containing q elements is denoted by GF(q)

and correspondingly, the binary GF is represented as GF(2).

The LDPC encoder, is then capable of transforming each input message block u according to a

predefined set of rules into a distinct N -tuple (N -bit sequence) z, which is typically referred to as the

codeword. The codeword length N , where N > K, is then referred to as the block-length. Again,

there are 2K distinct legitimate codewords corresponding to the 2K message blocks. This set of the 2K

codewords is termed as a C(N,K) linear block code. The word linear signifies that the modulo-2 sum

of any two or more codewords in the code C(N,K) is another valid codeword. The number of non-zero

symbols of a codeword z is called the weight, whilst the number of bit-positions in which two codewords

differ is termed as the distance. For instance, the distance between the codewords z1 = (1101001) and

z2 = (0100101) is equal to three. Subsequently, codewords that have a low number of binary ones are

referred to as low-weight codewords. The minimum distance of a linear code, hereby denoted by dmin, is

then determined by the weight of that codeword in the code C(N,K), which has the minimum weight.

The reason for this lies in the fact that the all-zero codeword is always part of a linear code and therefore,

if a codeword zx has the lowest weight from the 2K legitimate codewords, then the distance between zx

and the all-zero codeword is effectively the minimum distance.

B. Generator and Parity-Check Matrices

The unique and distinctive nature of the codewords implies that there is a one-to-one mapping between

a K-bit information sequence u and the corresponding N -bit codeword z described by the set of rules

of the encoder. Clearly, if both K and N are small, then the 2K distinct message blocks and the

corresponding codewords can be stored in a look-up table (LUT). However, for large K and N , the

N -entry LUT encoder will be prohibitively complex. This complexity is significantly reduced by the fact
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that LDPC codes are linear codes and thus the codeword z can be calculated by multiplying the input

message sequence u with a (K × N)-element matrix G as shown in Figure 1, which is referred to as

the generator matrix (GM). So, if we consider the simple example of having a four-bit input message

sequence u and assume that the ith column of G is given by [1101], then the ith bit of the codeword z

will be equal to the modulo-2 sum of the first, second and fourth bit of u.

We also note that G can also be transformed into what is referred as the systematic matrix form, i.e. to

G = [IK A], where IK is a (K × K)-element identity matrix and A has K × (N −K)-elements.

This transformation is carried out by using the so-called row and column operations, which include

permutations of the rows/columns, multiplication of a row/column with a non-zero scalar and the addition

of a scalar multiple of one row to another. When G is expressed in its systematic form, the resultant N -bit

codeword z can be divided into two parts. The first K bits of z constitute of the information segment u

of the code; whilst the second segment consists of the (N −K) redundant parity-check bits, which are

calculated by means of the previously described modulo-2 addition.

There is however another useful matrix associated with a linear block code. This matrix is referred to as

the parity-check matrix (PCM), which is typically denoted by H and contains (N −K)×N elements. If

the GM is in the systematic matrix form, then the PCM of the code is given by H =
[−AT IN−K

]
, where

IN−K is an identity matrix of dimension (N −K) × (N −K). A characteristic of the PCM of LDPC

codes is that it is sparse, i.e. there are fewer ones than there are zeros. As a result, their PCM is said to have

a ‘low-density’ - hence the terminology of low-density parity-check codes. If the PCM has no redundant

rows; i.e. H is a full rank matrix, then the rate of the code becomes R = K/N = 1− (N −K)/N . The

PCM is also said to be the generator matrix of the so-called dual code C⊥.

We will provide a simple example in order to illustrate our discourse. Let a (7, 4) code be described by

means of the generator matrix G given by

G =




1 1 1 1 1 1 1

1 0 0 0 1 0 1

1 1 0 0 0 1 0

0 1 1 0 0 0 1



. (1)

The generator matrix seen in (1) can be converted to its standard form with the aid of the previously
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described row and column operations which results in

G =




1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1



. (2)

The PCM H is then given by

H =




1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1


 . (3)

The resultant codewords corresponding to the linear (7, 4) block codes and its dual code C⊥(7, 3) are

subsequently shown in Table I, which were generated according to z = uG. Observe in Table I that the

first four bits of a codeword are the systematic information bits, followed by three parity bits, each of

which checks the parity of the specific information bits as determined by the generator matrix represented

in (2).

C. Graph Representation of LDPC Codes

The PCM can also be represented graphically by what is known as a bipartite graph, as exemplified in

Figure 2. Let us consider as an example the LDPC code having N = 6, associated with the PCM shown

in Figure 2(a). The corresponding graph is then illustrated in Figure 2(b). It can be observed that this

graph can be divided in two parts (and hence the name bipartite), whereby the left-hand side (LHS) of

the graph shows the so-called parity-check nodes, which correspond to a row of the PCM H, whilst the

right-hand side contains the variable nodes, which relate to the columns of the PCM H. A variable node

is essentially a transmitted bit in the codeword z. The ones in the PCM H of Figure 2(a) represent the

edges that interconnect the parity-check nodes and the variable nodes located on the graph of Figure 2(b).

For example, one can observe from Figure 2(b) that the first parity-check node c1 is checking the result

of the modulo-2 sum (called the parity) of v1, v3, v6 and v7, which is also seen in the first row of the

corresponding PCM; i.e. if the transmitted bits represented by v1, v3, v6 and v7 are received correct, then

the value of v1 ⊕ v3 ⊕ v6 ⊕⊕v7 = 0, where ‘⊕′ denotes the modulo-2 sum.
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D. Important Graph Theoretical Properties

Let us once again focus our attention on the bipartite graph illustrated in Figure 2(b). The bipartite

graph representing an LDPC code is also said to be undirected since its edges do not posses any sense

of direction. Following this, the term chain is used to refer to the series of successive edges that form a

continuous curve passing from one node to another located on an undirected graph. A cycle in a graph

refers to a particular chain of nodes forming a closed loop, where the initial and final node are the same

and no edge is used more than once. The number of edges in a cycle is then called the length of the cycle

and the shortest cycle-length of the graph corresponds to what is referred to as the girth. The girth in a

bipartite graph is always even and its smallest value is four. The graph depicted in Figure 2(b) has a girth

of four and the corresponding cycle of four is shown by the dashed bold edges. A cycle of six is also

shown marked by the continuous bold edges. An LDPC code is also said to be regular, if it is associated

with a PCM having a fixed row and column weight. A regular LDPC code will then posses a Tanner

graph, in which each node has the same number of edges emanating from it and this is said to have the

same degree or valency. On the other hand, the row and column weights of a PCM associated with an

irregular LDPC code are not constant. For example, the graph shown in Figure 2(b) can be described as

being right-regular, since all the variable nodes located in the graph have the same degree.

III. LOW-DENSITY PARITY-CHECK CODES

Following this rudimentary introduction to the related terminology, we will now proceed with a glimpse

of history. LDPC codes were conceived by Gallager in his doctoral dissertation in 1962 [1], [15]. However,

having limited computing resources prevented him from proving the near-capacity operation of these

codes and from finding rigorous performance bounds of the decoding algorithm. In addition to this, the

introduction of Reed-Solomon (RS) codes a few years earlier [16], and the widely accepted belief that

concatenated RS and convolutional codes [17] were perfectly suited for practical error-control coding

resulted in Gallager’s work becoming neglected by researchers for approximately 30 years. Exceptions

to this which are worth mentioning are the work of Zyablov, Pinsker and Margulis from the Russian

school [18]–[20] and by Tanner [21]. Margulis proposed a structured regular construction for a half-rate

Gallager code based on the Cayley graph, which is nowadays known as the ‘Margulis’ code [20].

The algebraic construction rules for LDPC codes given by Margulis were still found to be valid and

applicable by Rosenthal and Vontobel [22] 20 years later, who proposed a similar code known as the

‘Ramanujan-Margulis’ code. Later, MacKay and Postol [23] discovered the existence of near-codewords
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in the Margulis codes and the presence of low-weight codewords in Ramanujan-Margulis codes.

Tanner [21] was first to propose the previously described graphical representation of LDPC codes using

bipartite graphs. Tanner also introduced the min-sum as well as the sum-product decoding algorithms

and demonstrated their convergence on cycle free-graphs. It was Wiberg [24]–[26], who first referred

to these graphs as ‘Tanner graphs’ and extended them to include trellis codes. Forney in [27] called

these graphs as Tanner - Wiberg - Loeliger (TWL) graphs. Another contribution related to that of

Tanner [21] was later made by Kschischang et al. [28], when they introduced the so-called factor graphs.

The natural association of factor graphs with the sum-product algorithm (SPA) was also discussed. The

forward/backward algorithm [27], the Viterbi algorithm and the Kalman filter were also considered as

instances of the SPA. The work of [28] can also be considered as an alternative approach to that taken

by Ali and McEliece in [29], in which they view various algorithms as generalized message passing

algorithms (MPA)1 and grouped them under the term of ‘generalized distributive law’. Forney [30] later

extended the concept of factor graphs to normal graphs.

The excellent performance of turbo codes reported during the mid-1990s [2], [31], [32] demonstrated the

benefits of using low-complexity constituent codes and iterative decoding, but since they were patented,

this fact rekindled the community’s interest in LDPC codes [33]. Sipser and Spielman [34], [35] analyzed

LDPC codes in terms of various code-construction expansions and introduced a sub-class of LDPC codes

based on the so-called expander graphs which were appropriately referred to as ‘expander codes’ and

decoded them with the aid of what is known as Gallager’s ‘Algorithm A’, devised by Gallager [1], [15].

An encoder for these expander graphs was designed in [36].

The advantages offered by linear block codes having low-density PCMs were rediscovered by MacKay

and Neal, who proposed the MacKay-Neal (MN) [37] codes and showed that pseudo-randomly constructed

LDPC codes can perform within about 1.2 dB of the theoretical upper bound of the Shannon limit [38]–

[40]. Mao and Banihashemi in [41], [42] employed a heuristic technique, which compares LDPC codes

using pseudo-randomly generated PCMs for short block lengths according to the ‘girth distribution’

performance criterion. Their method is based upon the intuition that the presence of short cycles (i.e.

having a graph with a low girth) severely violates the independence assumption between the messages

exchanged between the left and right vertices of the graph, potentially propagating errors propagate at a

faster rate than they can be corrected.

1In this context, it is worth mentioning that LDPC decoding algorithms are referred by a number of names, the most common
being the sum-product algorithm (SPA), the message passing algorithm (MPA) and the belief propagation algorithm (BPA).



8

Alon and Luby [43] made the first attempt to design an LDPC code capable of correcting erasures.

A more practical algorithm based on cascading random bipartite graphs was then devised in [44]. It is

important to note that up to this point in time the understanding of LDPC codes was mostly limited to the

regular codes. The understanding of both regular and irregular graphs was further deepened in [45]–[47]

and it was demonstrated that the performance of the latter may be superior to that exhibited by the former.

In [48], Luby et al. devised a new probabilistic tool, which significantly simplified the analysis of the

probabilistic decoding algorithm proposed by Gallager [1], [15]. Richardson et al. further improved the

results of [47] by using a technique referred to as density evolution [49] for analysing the behaviour of

irregular LDPC codes. Discrete density evolution was used by Chung et al. in [50] in order to simulate a

half-rate code having a block length of 107 exhibiting a performance within 0.04 dB of the Shannon limit

at a bit error ratio (BER) of 10−6.

The non-binary counterparts of LDPC codes were proposed and investigated by Davey and Mackay [51],

who demonstrated that non-binary LDPC codes constructed over higher-order Galois fields may

achieve a superior performance in comparison to binary codes for transmission over binary symmetric

channels (BSCs) and binary Gaussian channels. The achievable performance improvement may be

attributed to two main factors; namely the reduced probability of forming short cycles when compared

to their binary counterparts, and to the increased number of non-binary check and variable nodes, which

ultimately improves the achievable decoding performance. However, non-binary LDPC codes suffer from

the disadvantage of having an increased number of possible values, which renders the classification of

symbols more complex and hence naturally increases the decoding complexity imposed. Non-binary codes

have been applied for transmission over non-dispersive Rayleigh fading channels [52], over frequency

selective channels [53] and multiple-input multiple-output (MIMO) channels [54]–[57]. The results in [51]

were also substantiated by Hu et al. [58], who proposed a construction for irregular non-binary LDPC

codes defined over GF(q) constructed using the so-called progressive edge growth (PEG) algorithm and

demonstrated that the performance of these codes improves upon increasing the Galois field size 2q.

Lentmaier et al. [59] as well as Boutros et al. [60] proposed a more generalized version of the

classic LDPC codes of Gallager [1], [15], which were referred to as generalized low-density (GLD)

codes (sometimes also known as generalized LDPC (GLDPC)) codes. Instead of having each check node

corresponding to a single-parity check (SPC) equation as in the conventional LDPC codes proposed by

Gallager [1], [15], the check nodes of GLDPC codes are associated with more powerful codes such as
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Hamming codes,2 Bose Chaudhuri Hocquenghem (BCH) codes [61], [62] and RS codes [63]. As shown

in Figure 3, the PCM construction of a GLDPC code having a block length of N is divided into J

levels, where each level corresponds to what is commonly referred to as a super-code [64], [65]. If we

assume that the GLDPC code employs a constituent code C0(n, k) having an [(n − k) × n]-element

PCM H0, then the first parity-check sub-matrix (PCSM) H1, corresponding to the first super-code C1,

and located on the first level of the GLDPC code’s PCM portrayed in Figure 3 is constructed by means of

the concatenation of N/n number of constituent codes C0(n, k) [65]. The remaining levels of the PCM

of the (N,K) GLDPC code, which correspond to the PCSMs H2, . . . ,HJ are then derived by applying

pseudo-random permutations on the columns of the first PCSM H1. GLDPC codes have been investigated,

for instance in [66]–[71]. Irregular GLDPC codes have also been proposed by Liva et al. [72].3 Recently,

Wang et al. [74] proposed the doubly-GLDPC (D-GLDPC), which represent a wider class of codes than

those GLDPC codes proposed in [59], [60], where linear block codes can be used as component codes

for both the check and variable nodes. The investigation of D-GLDPC codes for transmission over the

binary erasure channel (BEC) was carried out by Paolini et al. [75]. Further developments on GLDPC

and D-GLDPC codes were provided recently in [76], [77].

A. Encoding of Low-Density Parity-Check Codes

As we have seen in Section II-B, an LDPC code is characterized by its sparse PCM H, while the

encoding operation requires the calculation of the generator matrix G, by invoking a process which is

similar to that of matrix inversion, whose complexity is typically a quadratic function of the size of the

matrix and hence the block length. In this sense, this property may be viewed as a disadvantage of LDPC

codes, when compared to turbo codes, considering that the latter have a low encoding complexity.

Several authors have proposed complexity reduction measures in order to address this issue. For

example, Luby et al. [78], [79] investigated the performance of cascaded graphs instead of bipartite

graphs for transmission over the BEC. Careful selection of the number of cascaded graph stages as well

as of the size of each stage may result in codes, which are encodable (and decodable) at a complexity,

which is a linear function of the block length. Likewise, Spielman [34], [35] promoted the employment

2Hamming codes are considered to be a very efficient class of short codes having a minimum distance equal to 3. The
resultant GLDPC codes constituted from Hamming component codes, are characterized by a relatively high minimum distance.
This conjecture was verified in [60].

3Liva et al. in [72], [73] also refer to these codes as doped LDPC codes due to the presence of more powerful (doped)
nodes created by replacing any node by a linear block code.



10

of another concatenated scheme employing expander codes. However, in both cases, the performance

exhibited by the resultant codes based on cascaded graphs appeared to be inferior to that of standard

LDPC codes4 since clearly, the block length of each stage of the cascaded code is lower than that of the

overall length of the standard LDPC code. MacKay et al. in [80] suggested that the parity-check matrix

must be constrained to be in an approximate lower triangular (ALT) form depicted in Figure 4 which

guarantees a linear increase of the encoding complexity. Richardson and Urbanke in [81] proved that in

general, the encoding complexity increases nearly linear with the block length, being quadratic only in a

small term g2, where g is referred to as the gap [82], which is a measure of the ‘distance’ [82] between the

PCM and the lower triangular matrix as shown in Figure 4. For example, a regular LDPC code associated

with a PCM having a column weight of γ = 3 and row weight of ρ = 6 has a gap of g = 0.017. There

are many LDPC code families with the gap of g = 0. For a more detailed discussion on the topic, we

would like to refer the interested reader to Section 4 of [82].

Haley et al. [83] described a method, which performs LDPC encoding using an iterative matrix inversion

technique. It was shown in [83] that if the matrix satisfies certain conditions, then the proposed iterative

encoding algorithm will converge after a finite number of iterations and more importantly, the resultant

codes exhibits no performance loss when compared to the corresponding classic LDPC codes. This was

only verified for regular LPDC codes. In [58], Hu et al. constructed PCMs having a lower triangular form

using the PEG algorithm, and thus creating code that have a linear block-length dependent complexity.

Burshtein et al. in [84] proposed the ALT-LDPC code ensemble, which has an inherent tradeoff between

the gap size (and hence the encoding complexity) as well as the achievable performance for any given

block length.

Another class of codes, which attracted the attention of many researchers due to having linearly

increasing block-length-dependent encoding complexity is that of the repeat accumulate (RA) codes, first

proposed Divsalar et al. in [85], which encompass the attractive characteristics of both LDPC codes

and serial turbo codes. In the RA encoder, the source message is repeated a given dv-number of times

and then passed through an interleaver. The parameter dv would then correspond to what is known

as the variable node degree. The interleaved bits are then grouped into groups of dc bits, where dc

denotes the so-called check node degree, and the modulo-2 sum of each group is then calculated. The

resultant bits, corresponding to the modulo-2 sum of each group of interleaved and repeated source bits,

4By ‘standard’ code, we are referring to those codes that can only be encoded by using the conventional encoded method [1],
[15].



11

are then passed through a rate-1 encoder, which is also referred to as an accumulator (or a recursive

systematic convolutional (RSC) code). Jin et al. [86] also extended the concept of RA codes to the

family of irregular repeat-accumulate (IRA) codes, where the bits of the information block are repeated

in an irregular manner and where the interleaved bits are grouped into sets of different sizes. In [87],

Roumy et al. demonstrated that these codes exhibit a near-capacity performance and have a linearly

block-length-dependent encoding complexity. Abbasfar et al. [88] have also proposed the further enhanced

accumulate-repeat-accumulate (ARA) which may be considered to be a precoded RA code. Divsalar et

al. [89] extended these concepts to accumulate-repeat-accumulate-accumulate (ARAA) codes, which are

basically punctured ARA codes concatenated with another accumulator. Both ARA and ARAA codes

enjoy the benefits of having low-complexity encoding due to the sparse matrix multiplication based

encoder and fast decoding due to their appropriately structured graph construction.

The class of algebraically constructed codes [90] may also be encoded at a complexity, which increases

linearly as a function of the block length, which is a benefit of the cyclic or quasi-cyclic (QC) nature of

their PCM. A QC code is defined as that code in which any cyclic shift of a constituent codeword by x

number of bits is also a codeword. For a cyclic code, we have x = 1. For instance, each row of the PCM

of a cyclic code, such as the balanced incomplete block design (BIBD)-based LDPC codes [91]–[93],

is constituted by a cyclic shift of the previous row and the first row is the cyclic shift of the last row.

We also define a circulant matrix as a square matrix, where each row is constructed from a single right

cyclic shift of the previous row, and the first row is obtained by a single right cyclic shift of the last

row [12]. A QC code, such as those proposed in [94]–[99] has a PCM, which is constituted from circulant

sub-matrices. For example, Figure 5 shows the PCM of a quarter-rate QC LDPC code constituted from

circulant matrices of size 5. For a cyclic or a QC code, the generator matrix is also cyclic/QC and hence

only the first row of the each circulant will be stored, while successive rows can be generated by a shift

register generator. The encoding of QC codes was detailed by Li et al. in [100]–[102]. Another class

of algebraically constructed, cyclic or QC codes is constituted by the family of FG-based LDPC codes,

which were rediscovered by Kuo [103]. The PCM of FG-LDPC codes does have some redundant checks

(similar to MacKay’s constructions [40]) and the row as well as the column weights tend to be higher than

those of other LDPC codes. This implies that although FG-LDPC codes benefit from the same linearly

block-length-dependent encoding complexity of cyclic or QC codes, they achieve their relatively high

performance at the price of a higher decoding complexity owing to their increased logic depth.
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B. BER/BLER Performance Metrics

The performance of any channel code is typically assessed by means of plots of the BER or block error

ratio (BLER) versus the channel’s signal-to-noise ratio (SNR) or versus the ratio of the energy-per-bit

to the noise power spectral density, commonly denoted by Eb/N0. The overall BER/BLER versus SNR

performance of an LDPC code is generally described by two different regions and a threshold.

The first region is commonly referred to as the ‘waterfall’ or the ‘turbo-cliff’ region, which corresponds

to the low-to-medium SNR region of the BER/BLER versus SNR plot. By contrast, the error floor is

located at the bottom of the ‘waterfall’-shaped curve, where it can be observed that the BER/BLER no

longer exhibits the rapid improvement as in the ‘waterfall’ region. More often than not, the error floor is

not explicitly visible in the corresponding BER/BLER plot, since it is below the BERs readily generated

by the simulation performed. There is also the parlance of ‘turbo-cliff’ SNR or the convergence SNR

threshold, above which the BER/BLER performance improves rapidly upon increasing the SNR. The

word ‘cliff’ is again another figure of speech used to signify that the SNR threshold occurs at that point

where the ‘waterfall’-shaped BER/BLER curve exhibits a rapid drop.

The SNR threshold phenomenon was first observed by Gallager [1], [15], when using regular graph

constructions and by Luby et al. [46] for randomly constructed irregular graphs. Richardson and

Urbanke [81] generalized these observations and argued that LDPC codes will exhibit a decoding

threshold phenomenon, regardless of the channels encountered and the iterative decoders considered.5 An

arbitrarily small BER/BLER can be achieved with the aid of a high-girth LDPC code provided that the

noise level is lower than this SNR threshold, as the block length tends to infinity. This SNR threshold can

be determined using either the density evolution technique [49], [50] or by minimizing the area of the

open extrinsic information transfer (EXIT) tunnel between the CND and variable node decoder (VND)

EXIT chart curves.6 Both techniques assume having an infinite block length,7 a high-girth and an infinite

number of decoder iterations.

The achievable BER/BLER performance in the ‘waterfall’ region is predetermined by the girth. As we

have briefly described in Section II-D, short cycles prevent the decoder from gleaning independent parity-

5The observation was generalized to include a wide range of binary-input channels, including the binary erasure as well as
the BSCs and the Laplace as well as the additive white Gaussian noise (AWGN) channels, when employing various message
passing decoding algorithms [81].

6The EXIT chart will be explained in more detail in Section III-D.
7A number of authors have also considered finite-length codes, such as Lee and Blahut [104]–[106] as well as Tüchler [107]

for turbo codes, and the authors of [108]–[111] for LDPC codes, where the emphasis was mostly placed on communications
over the BEC.
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check information. Therefore, the higher the girth, the faster the iteration-aided BER/BLER improvement.

This is in fact the reason why we find quite a number of LDPC constructions [42], [99], [103], [112]–[119],

which attempt to maximize the girth8 of the bipartite graph. One of the most attractive example is the

aforementioned PEG algorithm proposed by Hu et al. [58], [120], [121] since they have excellent error

correction capabilities, especially for codes having short block lengths.

The performance in the error floor region depends on three main factors, namely (a) on dmin as well as

the presence of particular graphical structures in the underlying graph, which are referred to as (b) stopping

sets and (c) trapping sets.9 We will continue our discourse by discussing each of these factors in more

detail.

Coding theory has always placed strong emphasis on trying to design codes that have a large dmin,

which is clearly justified when one recalls the fact that a code can correct up to b(dmin − 1) /2c errors,

where bxc denotes the floor function that rounds x that is less than or equal to x. Tanner [21] derived

the lower bounds on the achievable dmin of an LDPC code and demonstrated that this increases with both

the PCM column weight as well as with the girth of the underlying graph. According to these bounds, a

regular LDPC code having a girth of 10 and with a γ = 3 will attain a dmin ≥ 10, whilst that code having

the same girth but with a γ = 4 will attain a dmin ≥ 17. Moreover, a regular LDPC code having the same

γ = 4 but with a higher girth of 12 will achieve a dmin ≥ 26. However, the relationship between these

parameters is quite intricate, since whilst increasing the girth or the column weight of the associated PCM

improves the minimum distance, an increase in the column weight will degrade the girth. Hence, if we

consider two LDPC codes having the same rate but different column weights, the code having the highest

column weight will exhibit a lower error floor owing to its higher dmin, but a worse BER/BLER in the

‘waterfall’ region due to its lower girth.

A code having a small dmin is characterized by the presence of low-weight codewords. These will cause

the so-called undetected errors, which occur when the decoding process will find a valid codeword that

satisfies all the parity-check nodes, but it is not the originally transmitted codeword. However, given the

fact that dmin of most LDPC codes increases linearly with N , undetected errors are relatively uncommon,10

8These techniques are collectively referred to by the term girth conditioning.
9Besides the attributes mentioned in this treatise, contemporary research is also focusing on the effects of

pseudocodewords [122], [123], instantons [124], [125] and absorbing sets [126]. The exact nature of the relationship
between these range of parameters and the achievable performance of LDPC-coded transmission over AWGN and fading
channels remains still to be found.

10This is in contrast with turbo codes, which do not possess a large dmin and therefore their error floor is largely contributed
by the low-weight codewords [4].
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unless the block-length is short (less than a few hundred bits) or the code-rate is high. Nonetheless, it is

was shown in [127] that it is computationally complex to directly design codes having a high dmin.

An indirect way of increasing dmin is to increase the girth of the bipartite graph. However rather

than using the conventional girth conditioning techniques, which only focus on increasing the shortest

cycle length, Tian et al. [127] revealed that it is also important to consider the specific connectivity of

the cycles with the other parts of the bipartite graph, rather than only the length of the cycles. This is

because not all cycles are equally harmful - those which are well-connected to the rest of the graph

are acceptable, whilst poorly connected long cycles may be more detrimental. This technique, which is

commonly referred to as cycle conditioning - as opposed to girth conditioning - requires the identification

of the so-called stopping sets,11 which are a particular group of variable nodes that is connected to a

group of neighboring parity-check nodes more than once. One example of a stopping set exemplified in

Figure 2(b) is constituted by the variable nodes v2, v3 and v6, because all the neighboring parity-check

nodes c1, c2 and c3 is connected to this variable node set twice. If the underlying graph does not contain

any degree-one variable nodes, then it will not be possible to locate any cycle-free stopping set in that

graph. Furthermore, most stopping sets are constituted by multiple cycles, unless the variable nodes in

the stopping set have a degree of 2. This can also be verified from the previously mentioned stopping-set

example containing v2, v3 and v6 in the graph of Figure 2(b), which only contains one cycle of six.

By means of avoiding small stopping sets, the technique of Tian et al. [127] succeeded in significantly

reducing the error floor of irregular LDPC codes, whilst only suffering from a slight BER degradation in

the waterfall region.

The so-called trapping sets also have a direct influence on the error floor of LDPC codes. A trapping

set (a, b) refers to that particular set of a variable nodes in the associated bipartite graph which are

connected to b odd-degree and an arbitrary number of even-degree parity-check nodes. For example, a

trapping set (5, 2) can be observed in the bipartite graph of Figure 2(b) constituted by the variable nodes

v1, v2, v3, v4 and v6 and the parity-check nodes c2 and c3. When the values of a and b are relatively

small, the variable nodes in the trapping set are not well-connected to the rest of the graph and therefore

the corresponding bits have a weak protection. In some research literature [23], [128], trapping sets are

described as near-codewords, because when the parameters a and b are relatively small, an incorrectly

11The study of stopping sets gained importance when Di et al. [108] managed to derive exact analytical BER performance
curves for the LDPC-coded transmission over the BEC in terms of the distribution of the stopping set sizes. It is an often
quoted result that the size of the smallest stopping set in the graph, which is called the stopping number or stopping distance,
lower bounds the minimum distance of the code and essentially corresponds to the smallest number of erasures which cannot
be recovered under iterative decoding.
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decoded codeword may only be slightly different from that transmitted. We emphasize that the errors

resulting from the presence of small trapping sets as well as small stopping sets are detected by the

decoder; i.e. the decoder will be aware that the no legitimate codeword was found owing to having

some unsatisfied (non-zero-valued) parity-check nodes after the affordable maximum number of decoding

iterations. The problems that arise from the presence of trapping sets/near-codewords can be mitigated

by either altering the PCM [129] (without changing the actual code) or by modifying the decoder [130],

[131].

Carefully designed irregular LDPC codes can attain a lower ‘turbo-cliff’ SNR than regular codes of

the same rate; i.e. their exhibited BER/BLER starts to rapidly decrease at a lower SNR value and hence

their BER/BLER performance is superior in the ‘waterfall’ region. The reason for this phenomenon

lies in the conflicting (ideal) requirements of the variable and parity-check nodes, whereby the variable

nodes benefit from having large degrees, which strongly protects them. By contrast, a parity-check node

should have a low degree to prevent error propagation, when it is corrupted. In this regard, irregular

codes are well-capable to compromise between these seemingly competing variable and parity-check node

requirements. We note however that the superior BER/BLER performance of irregular LDPC codes is

achieved at the expense of a potentially increased implementational complexity.

Previously, we have emphasized that irregular LDPC codes must be ‘carefully designed’ for two main

reasons. Firstly, the design of irregular codes necessitates the use of sophisticated techniques such as

the aforementioned density-evolution or else EXIT charts, both of which can predict the value of the

‘turbo-cliff’ SNR. Both density-evolution and EXIT charts can also provide the actual (non-uniform)

distributions for the row and column weights of the irregular PCM. Secondly, the BER/BLER performance

exhibited by irregular LDPC codes is inferior to that exhibited by regular LDPC codes in the error floor

region, unless we employ the previously outlined techniques, which attempt to reduce the error floor. In

fact, the achievable BER performance of relatively unconditioned irregular LDPC codes will show an

error floor at slightly below 10−6, which is higher than that exhibited by their regular counterparts.

For the case of irregular LDPC codes, especially for those having a high proportion of degree-2 and 3

check-nodes, the construction is more difficult, since having large girths does not automatically results in

a good distance properties. Chen et al. [132] provides an insightful example that flipping all the variable

nodes in a cycle which are constituted of only degree-2 variable nodes will still leave the checks all

satisfied and will therefore lead to an undetected error. Therefore, the dmin value of this code would be

equal to the number of degree-2 variable nodes in that cycle. This observation led some authors [133],
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[134] to suggest that irregular codes should preferably have no degree-2 variable nodes.

Another important design aspect that has to be considered at an early stage of the LDPC construction

is the issue of having a random (or more precisely pseudo-random) versus a more structured construction.

It is widely accepted that in general, the former construction achieves a better performance in the

waterfall region than structured LDPC codes having comparable parameters. However, we have already

seen in Section III-A that structured constructions, such as for example, cyclic or QC codes, have

lower-complexity encoding than most pseudo-random codes. The fact that the BER/BLER performance

exhibited by carefully designed structured LDPC codes can be comparable to that of pseudo-random

constructions has been shown in a number of publications, for example in [95], [135]–[138].

C. Iterative Decoding Techniques for Low-Density Parity-Check Codes

The underlying principle of the different decoding techniques used for LDPC codes is that of having

messages exchanged between the left and right nodes of the Tanner graph representing the code. The

first decoding algorithm was introduced by Gallager in [1], [15] and is commonly referred to as the

bit-flipping (BF) algorithm. This hard-decoding technique was later improved by Kuo et al. [103], who

proposed a similar algorithm, referred to as the weighted bit-flipping (WBF) algorithm, which further

exploits the bit-reliability information whilst still retaining the appealing conceptual and implementational

simplicity of the BF algorithm. The BER performance and decoding complexity of the WBF algorithm

were later improved by Nouh and Banihasehemi, using the so-called bootstrapped WBF (BWBF)

algorithm [139]. The basic principle of the BWBF algorithm is to identify the symbols, which are less

reliable than some predefined threshold (i.e. spotting the ‘unreliable symbols’) and then estimate their

values as well as their corresponding reliabilities by exchanging information both with the more ‘reliable’

symbols and with the check nodes.12 Inaba and Ohtsuki [140] investigated the performance of LDPC

decoding using the BWBF technique for transmission over fast fading channels.

The WBF algorithm of [103] was also improved by Zhang and Fossorier [141] using a technique

which is different from the BWBF solution of [139], by considering both the parity information supplied

by the check nodes and that gleaned from the variable nodes. Their algorithm, which is referred to as

the modified WBF (MWBF), was invoked for the decoding of LDPC codes based on FGs. Liu and

Pados [142] modified the check node output in the decoding algorithm of [141]. Guo and Hanzo [143]

improved the algorithm of [142] by using a reliability-based ratio and without relying on any off-line

12A ‘reliable’ check node is defined as the check node, which is only connected to one ‘unreliable’ bit node [139], [140].
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preprocessing. The BER performance exhibited by the bootstrap version of the MWBF was characterized

by Inaba and Ohtsuki in [144], where it was shown than the bootstrap MWBF (BMWBF) is capable of

outperform the WBF, the MWBF and the BWBF algorithms, despite its lower decoding complexity.

As previously mentioned in Section III, soft decoding of LDPC codes is typically performed using the

SPA, which achieves a better performance than hard decoding using the BF algorithm, at the expense of

an increased complexity. We have also mentioned in Section III that the SPA comes under a number of

different names, largely due to its independent discovery by different researchers. Its use has not been

limited to the decoding of LDPC codes, it has also found employment in solving inference problems in

artificial intelligence, in computer vision and in statistical physics.

The first soft decoding method proposed for LDPC codes was also introduced by Gallager in [15] and

was referred to as the probabilistic decoding method (please refer to Section 5.3 of [15]). In principle, this

method is identical to Pearl’s belief propagation (BP) [145], which was proposed in 1988 in the context

of belief networks for solving inference problems. Although it gained popularity within the artificial

intelligence community, it remained unknown to information theorists until it was employed by MacKay

and Neal [37] as well as by McEliece et al. [146]. The latter work [146] created the link between turbo

decoding and Pearl’s BP algorithm. Kschischang et al. [28] demonstrated that the SPA constitutes an

instance of Pearl’s BP operating on a factor graph [147].

Other researches focused their attention on reducing the complexity of the SPA. One of these reduced

complexity algorithm is the min-sum algorithm (MSA) introduced by Wiberg in [24], which is very much

related to the Viterbi algorithm and to Tanner’s ‘Algorithm B’ [21]. A few years later, Fossorier et al. [148]

proposed the universally most-powerful (UMP) - BP technique, which reduces the complexity of the

check-to-source bit message passing by using a combination of hard- and soft-decisions. The normalised

BP technique was later introduced by Chen and Fossorier [149], which improves the accuracy of soft

values of the UMP-BP by multiplying the log-likelihood ratios (LLRs) during the check-to-source bit

message exchange with a normalization factor. A genetic algorithm (GA) [150] based decoder designed

for the LDPC codes was detailed by Scandurra et al. in [151]. In contrast to the SPA decoder, the proposed

GA-based decoder does not require the signal-to-noise ratio (SNR) value.13 Its BER performance and its

computational complexity can be readily modified by optimizing the GA’s fitness function and the other

GA’s parameters.

13The independence of the performance exhibited by an LDPC code on the assumed and actual noise level was investigated
by MacKay and Hesketh in [152] both for the binary symmetric and Gaussian channel.



18

Improving the performance of the conventional BP algorithm was also the focus of the contribution of

Yedidia et al. [153] who introduced the generalized BP (GBP) algorithm. The achievable performance

improvement can be attributed to the fact that the GBP focuses its efforts on the messages exchanged

by a group nodes rather than single nodes. Wang et al. [154] introduced the ‘plain shuffled’ and the

‘replica shuffled’ BP algorithm, as reduced-latency variants of the conventional BP and investigated

their performance using both density evolution and EXIT charts. Further efforts were invested by

Fossorier [155], who suggested the combination of ordered statistical decoding (OSD) and the SPA for

the decoding of LDPC codes. The output of the decoder is reprocessed using OSD in an attempt to bridge

the gap between the performance exhibited by the SPA and the optimum maximum likelihood (ML)

decoding, which has a potentially excessive complexity.

D. Convergence of the Iterative Decoding

The structure of the LDPC decoder is essentially constituted by a serial concatenation of two decoders;

a VND and a CND separated by the so-called edge interleaver, as portrayed in Figure 6. In parlance, the

VND is referred as being the inner decoder, since it is the nearest to the communications channel, whilst

the CND is referred to the outer decoder. Elaborating slightly further, each decoder can be mathematically

described by a so-called EXIT function, which describes the average extrinsic mutual information of the

respective decoder. The performance of the decoder can be then characterized by monitoring the exchange

of extrinsic information between the two component decoders, which is pictorially represented by EXIT

charts. EXIT charts were introduced by ten Brink in [156] and became a popular tool for determining the

convergence behavior14 of any iterative decoding scheme.

An example of an EXIT chart is shown in Figure 7, which portrays the EXIT chart for a half-rate regular

LDPC code that is associated with a PCM having a column weight of γ = 3 and a row weight of ρ = 6.

We also assume binary phase shift keying (BPSK) modulated transmissions over the AWGN channel at

Eb/N0 = 2 dB. In Figure 7, we have explicitly marked the two EXIT curves, which correspond to the

aforementioned EXIT function of the respective inner or outer constituent decoder, and the corresponding

EXIT trajectory. The trajectory gives an estimate of the number of decoding iterations that are required

to reach the perfect convergence to a vanishingly low BER, which corresponds to the (1, 1) point of the

EXIT chart. A single decoding iteration will correspond to one step on the corresponding EXIT trajectory.

14The convergence behavior of a code can also be analyzed by means of the aforementioned density evolution [49].
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Assuming this EXIT chart-based framework, there are three basic requirements to be satisfied in order

to design a near-capacity system. Firstly, it is required that both the inner as well as the outer decoder’s

EXIT curves should reach the (1, 1) point on the EXIT chart, in order to attain near-error-free decoding.

Secondly, the inner decoder’s curve should always be above the outer decoder’s curve and hence should

never intersect. This will result in an a so-called open tunnel between the two EXIT curves. If the two

EXIT curves intersect and therefore no open tunnel will be available, the EXIT trajectory will fail to

reach the error-free (1, 1) point of the EXIT chart. Consequently, the resultant BER/BLER performance

will exhibit high error floors.

Thirdly, in order to maximize the achievable throughput, the two constituent decoder curves must match

as accurately as possible, thus resulting in an infinitesimally low EXIT-chart-tunnel area. Indeed, a code

that operates close to capacity has EXIT curves, which have a similar shape, as it was demonstrated for a

variety of channels such as the BEC [157], single-input single-output (SISO) as well as MIMO Gaussian

channels [158], [159], for dispersive channels imposing inter-symbol interference (ISI) [160] and for

partial response [161] channels. As a consequence, it was also shown in [157] that the area between the

two EXIT curves is proportional to the SNR distance from capacity.15 In this context, irregular codes allow

for more flexibility in the design of their degree distribution and so, their corresponding EXIT curves can

be better matched in order to attain a near-capacity performance. This can also verified from Figures 8(a)

and 8(b), which portray the EXIT chart for a half-rate regular and irregular LDPC code, respectively. It

can be observed that the open-tunnel area in the EXIT chart of the irregular code is significantly smaller

than that of the corresponding regular counterpart. However, it is worth mentioning that the decoding

complexity of the irregular LDPC code will be higher, since it requires more decoding iterations to reach

the near-error-free (1, 1) point of the EXIT chart.

Zheng et al. [163] discovered that there is only a 0.01 dB difference between the results predicted

by using EXIT chart analysis in comparison to those determined by density evolution. However, EXIT

chart analysis may be deemed to be more convenient, especially when considering that no Fourier and

inverse Fourier transform computations are necessary. In the same paper [163], the EXIT chart analysis

provided for LDPC codes was also extended to flat uncorrelated Rayleigh flat fading channels. Jian

and Ashikhmin [164] utilize EXIT charts in order to determine the convergence SNR threshold for

LDPC coded systems transmitting over flat Rayleigh fading channels and exploiting the knowledge of

the channel impulse response (CIR). In Section III-B, we have mentioned that the convergence SNR

15The EXIT curve matching can be very easily obtained using linear programming [162].
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threshold can be determined by finding the minimum SNR, at which the two EXIT curves no longer

intersect and thus create a marginally open tunnel. In this context, we can observe from Figures 8(a)

and 8(b) that the convergence SNR threshold of the regular and irregular LDPC code is equal to -1.71 dB

(i.e. Eb/N0 = 1.3 dB) and -2.51 dB (i.e. Eb/N0 = 0.5 dB), respectively. The lower SNR threshold of the

irregular code reaffirms our previous argument, namely that irregular LDPC codes are capable of attaining

a superior performance in the waterfall region over their corresponding regular counterparts.

Typically, the variable-to-check and check-to-variable node information, as well as the channel’s output

messages are assumed to be Gaussian distributed [156], [158], [159], [165]–[167]. However, in practice

this is not an accurate assumption for the check-to-variable node messages. The reason is essentially due to

the fact that the check-node is performing a tanh operation and hence, the magnitude of the log-likelihood

ratio (LLR) at the output of the check node is typically smaller than that of the incoming messages at the

check node decoder (CND). Thus, one can argue that the CND is producing the minimum soft value. This

effectively makes the probability density function (PDF) of the check-to-variable node messages skewed

towards the origin, thus rendering their distribution non-Gaussian, especially at low SNR [168], [169].

However, according to Chung et al. [170], this approximation produces accurate result for codes having

a code-rate between R = 0.5 and R = 0.9, provided that the variable nodes have degrees less than or

equal to 10. Ardakani and Kschischang in [168], [169] prefer to use the true histogram-based probability

density function for the messages arriving from the check nodes and hence to produce a more accurate

EXIT chart analysis. The same authors in [171] consider a general code design for achieving a specific

desired convergence behavior and to provide the necessary as well as sufficient conditions satisfied by the

EXIT chart of the highest rate LDPC code.

EXIT charts were also employed in the design of systems amalgamating coded modulation (CM)

schemes and LDPC codes have been investigated in [172], [173]. The latter work by Francheschini et

al. [173] presents a novel bound and design criterion, which directly links the EXIT chart analysis to

the achievable BER performance, where the decoding convergence behavior has been characterized as a

function of the LDPC code’s degree distributions. This design criterion of [173] also provides a bound

for the degree distribution coefficients, which must be satisfied in order to attain convergence within a

specified number of iterations. Both density evolution and EXIT chart analysis were extended to the case

of non-binary LDPC codes by Rathi and Urbanke [174] as well as by Byers et al. [175], respectively.16

16Rathi and Urbanke in [174] only considered transmission over the BEC.
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E. Hardware Implementation of Low-Density Parity-Check Codes

The hardware implementation of any channel code is typically orders of magnitude faster than

their software-based counterparts, which results in a higher achievable bit rate. Hence it is desirable

that the LDPC construction can be conveniently implemented in hardware. Several LDPC hardware

implementations have been proposed, for example in [176]–[183], with many of them exploiting the speed

and flexibility of field programmable gate arrays (FPGA) and of digital signal processors.

Whilst it can never be denied that pseudo-random codes such as the classic regular MacKay LDPC

codes [40] and conditioned irregular codes [50], [127] exhibit an excellent BER/BLER performance,

the random selection of the connections between their parity-check and variable nodes makes it

particularly hard to create a convenient description for the code. Hence their implementation often results

in either inflexible hardwired interconnections or large inefficient lookup tables. On the other hand,

structured codes [113] benefit from simplified descriptions as well as from facilitating efficient read

and write operations from/to memory. This underlines the argument that the design of an LDPC code

construction has to maintain a good BER/BLER performance as well as to benefit from hardware-friendly

implementations.

The primary factor which substantially affects the ease (or difficulty) of building an LDPC encoder

is the description complexity, i.e. the amount of memory required to store the LDPC code’s description,

which is directly proportional to the number of non-zero bits in the PCM or the number of edges in the

corresponding Tanner Graph. For the case codes having a pseudo-random PCM, this simply means that the

locations of all the non-zero bits of the PCM must be enumerated. This is an important aspect to take into

consideration, especially for those encoders that will be positioned in a remote location with limited source

of power, for example in deep space [184]. In Section III-A, we have discussed the issue of the encoding

complexity of LDPC codes, in particular, we referred to the work of Richardson and Urbanke [81],

which demonstrated that in general, LDPC codes have a near-linearly block-length-dependent encoding

complexity. Therefore it becomes evident that a desirable characteristic is to have a small gap factor.

Preferably, the code construction will consist of circulant permutation matrices, which makes it possible

to carry out the encoding operation using shift registers.

The main challenge which has to be tackled, when implementing the SPA in hardware is that of

effectively managing the exchange of extrinsic messages between the check and variable nodes. Howland

and Blanskby [182] suggest two possible hardware architectures, namely a hardware-sharing and a parallel

decoder architecture. After contrasting the two architectures, the authors opt for advocating the parallel
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decoder architecture, mainly for the reasons of its lower power dissipation and the reduced amount amount

of control logic required, as well as owing to the inherent suitability of the architecture for the SPA.

Andrews et al. [184] argue that the so-called protograph LDPC codes structured on a base protograph

having a low number17 of edges Eb are well-suited to semi-parallel hardware architectures. In fact, Lee et

al. [185] proposed a hardware architecture, which is capable of simultaneously processing Eb edges per

cycle, and therefore requiring 2J cycles per iteration, where J is the number of base protographs in

the resultant protograph LDPC code. This implementation has the added advantage that the size of the

protograph can also be tailored to match the available hardware.

In this context, it is worth mentioning that the task of designing an LDPC code that achieves a good

BER/BLER performance and yet possesses implementational benefits is not at all simple. In [186], we

have outlined the intricate dependencies that exist between the design attributes of LDPC codes and

advocated code design techniques that aim for achieving the highest number of desirable attributes,

rather than closely approaching the ultimate bounds, which hence tend to possess impractical hardware

implementations. Constructions of LDPC codes using this design philosophy have been proposed in [137],

[138], [187], [188], amongst others. Further insights related to the hardware implementation of LDPC

codes are provided in [189].

F. Co-located versus Distributed Coding

A research area that has recently received substantial research attention lately is ‘cooperative

communications’, which was originally referred to as ‘cooperation diversity’ [190]–[193]. The design

of cooperative systems was motivated by the widely accepted fact that diversity is the most effective

strategy of mitigating the effects of time-varying multipath fading in a wireless communication system.

In practical terms, this directly implies that multiple antennas must be employed at the transmitter and

the receiver, thus creating a MIMO system. One of the main benefits of MIMO systems is the linear

increase in capacity with the number of transmitting antennas [194]–[197], provided that the number of

receiver antennas matches this number. A further benefit of MIMOs is that they are capable of reducing

the interference among different transmissions, they increase the diversity gain, the array and the spatial

multiplexing gain. However, while employing multiple antennas at cellular base stations is practically

realizable, it might be less feasible for the mobile terminals due to their limited size, battery power

17Andrews et al. [184] suggest that the number of edges in the base protograph, hereby denoted by Eb, should be less than
300.
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consumption and hardware complexity constraints.

This dilemma prompted researchers to move a further step away from having co-located MIMO

elements to having distributed MIMO elements [198], [199]. This prompted a similar idea, which is now

known as distributed coding. The most of the commonly used concatenated coding schemes are constituted

by a number of constituent encoders/decoders. In this light, we may view traditional concatenated coding

schemes as being a code having co-located components, since its constituent encoders/decoders are

literally located within the same transmitter/receiver. On the other hand, a distributed code involves

having constituent components allocated to a number of geographically dispersed transmitters/receivers.

For example, Zhao and Valenti [200] investigated a distributed turbo coded system, which effectively

emulates a parallel concatenated convolutional code (PCCC) by encoding the data twice, first at the source

and then at the relay (after interleaving). The data is then iteratively decoded at the destination by means

of a classic turbo decoder.

In 2005, Bao and Li [201]–[204] proposed a solution that may be viewed as the first distributed LDPC

code. Their strategy was in fact based on systematic low-density generator matrix (LDGM) based codes

and on LDPC codes associated with lower triangular PCMs. These two families of LDPC codes possess

a PCM that is comprised of the horizontal concatenation of a sparse matrix and a lower triangular (or

in the case of systematic LDGM codes, an identity) matrix. In [201], [204], Bao and Li related these

two matrices to two transmission phases of a cooperative communication system, whereby the first phase

consists of what is known as the broadcast phase, whilst the second phase corresponds to the so-called

relaying phase. In doing so, the authors allocated the function of the check-combiner to the relay, rather

than being also performed by the original transmitter. However, Bao and Li do not portray their system

as being a distributed LDPC coded system, rather they make the interesting proposal of representing the

cooperative network by a Tanner graph, and in so doing, a code-on-graph [30] such as an LDPC code

may be viewed in the above-mentioned context as ‘network-on-graph’ [201]–[204].18 Subsequently, the

information theoretic analysis of network-on-graphs was carried out in [205], [206]. Interestingly enough,

the principles underlying networks-on-graph can be traced back to the roots of network coding [207]. The

employment for LDPC codes for transmission over relay-aided channels was also suggested by Razaghi

and Yu [208], Chakrabarti et al. [209] as well as by Hu and Duman [210], amongst many others.

18These networks-on-graph were commonly referred to as adaptive network coded cooperation (ANCC) or progressive
network coding.
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G. Quantum Error Correction Codes

In the last decade or so, we have witnessed the emergence of what is now known as quantum

information theory and quantum error correction [211]–[214]. It was Feyman who originally proposed

the idea of processing information by means of quantum systems. A fundamental problem that arises is

that of protecting the fragile quantum states from unwanted evolutions, whilst guaranteeing the robust

implementation of the quantum processing devices. This phenomenon, referred to as decoherence, can

be reduced by what is now known as quantum error correction.19 Following the landmark papers of

Shor [216] in 1995 and Steane [217], it was Calderbank and Shor [218] who provided the proof of

existence of ‘good’ quantum error correction codes, even though they did not provide any explicit

guidelines for their construction. These codes are often referred to as Calderbank-Shor-Steane (CSS)

codes.20 These contributions further motivated researchers to construct interesting quantum codes based

on classic binary codes, such as those proposed in [219]–[221]. Other quantum codes were based on the

family of algebraic-geometric codes (see [222]–[225] amongst others).

In 2001, Postol proposed the first quantum CSS code constructed from classic finite-geometry (FG)-

based LDPC codes [103]. This contribution was followed by MacKay et al. [226], who proposed quantum

LDPC codes constructed with the aid of cyclic matrices. Camara et al. [227] presented two methods for

constructing quantum LDPC codes and adopted the MPA for employment in generic quantum LDPC

codes. Recently, Hagiwara and Imai [228] realized a CSS code with the aid of quantum QC LDPC codes.

The first non-CSS quantum LDPC code was then proposed by Tan and Li in [229]. Recently, Djordjevic

also proposed BIBD-based quantum LDPC codes [230] as well as quantum LDPC encoders and decoders

for employment in an all-optical implementation [231].

IV. RATELESS CODES

In order to make our arguments conceptually appealing, we can commence by saying that the analogy

between rateless and fixed-rate channel codes may be viewed in the same way as the correspondence

between the continuous and the discrete representation of the same signal or mathematical function. A

fixed-rate code Cx having a rate Rx, which corresponds to a discrete signal in our simplified analogy,

can be carefully designed in order to attain a performance that is close to the capacity target C(ψx) at

19The interested reader is referred to [215] for a thorough discussion on quantum error correction.
20It is worth noting that CSS codes [217], [218] are suitable for both quantum error correction and for privacy improvements

in quantum cryptography.
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a specific channel SNR value of ψx dB, for which it was originally contrived for. However, having a

fixed-rate will impose two limitations. Firstly, if the channel SNR encountered is actually higher than

ψx dB, the fixed-rate channel code Cx essentially becomes an inefficient channel code, albeit it exhibits

a good performance at ψx dB, since the code incorporates more redundancy than the actual channel

conditions require. Secondly, if on the other hand, the channel SNR encountered becomes lower than

the SNR value of ψx dB, then the link is said to be in outage for the simple reason that the channel

code Cx is failing to supply sufficient redundancy to cope with the channel conditions encountered. The

channel code Cx can be modified in order to become more suitable or more efficient for employment in

channels of higher or lower quality by using code puncturing [232] or code extension techniques [233].

Code puncturing involves removing some of the codeword bits and thus creating a code having a rate that

is higher than the original rate Rx whilst code extension is used to add more parity bits and thus reducing

the code-rate.

On the other hand, rateless codes solve this problem from a slightly different perspective. By delving

into their fundamental principles and thus portraying their philosophical differences, rateless codes do not

fix their code-rate before transmission. This is essentially the interpretation of the terminology ‘rateless’.

More explicitly, their code-rate can only be determined by taking into account the total redundancy that

had to be transmitted in order to allow the receiver to correctly recover the transmitted data. Rateless

codes were also intended to be employed in situations, where channel state information is unavailable at

the transmitter. However, we particularly emphasize that this does not automatically imply that rateless

codes do not require a feedback channel; on the contrary, there is still the necessity of having a reliable

low-rate feedback channel for the receiver to acknowledge the correct recovery of the data by sending its

acknowledgment flag and thus to allow for the next codeword’s transmission to start. Another significant

characteristic of rateless codes, which makes them eminently suitable for employment on time-varying

channels is their inherent flexibility and practicality when it comes to the calculation of the transmitted

codeword.

A. Important Milestones in Rateless Coding

Rateless codes were originally contrived for erasure channels and hence they were sometimes referred

to as erasure-filling codes or simply, erasure codes. The foundation of erasure codes can be traced back to

the proposal of the BEC in 1955 by Elias [234]. The encoded symbols transmitted over this channel can

either be correctly received or completely erased with a probability of (1− Pe) and Pe, respectively. It
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was also demonstrated that a vanishingly low probability of error can be attained if random linear codes

with rates close to (1− Pe) are decoded using an ML decoder. The encoding and decoding complexity is

at most a quadratic function of the block length.

However, research focusing on codes designed for the BEC remained dormant until the Internet became

used on a large-scale basis during the mid-1990s. The only codes which can be regarded as being

erasure-filling codes are the popular RS codes proposed in 1960 [63] and their relatives, such as the BCH

codes [61], [62] as well as redundant residue number system (RRNS) codes [235]–[237]. Nonetheless,

their employment for transmission over the BEC modeling the Internet channel has been hampered by the

fact that a priori estimation of the channel’s erasure probability has to be known and hence the code-rate

has to be fixed before the actual transmission commences.

The quest for more efficient erasure-filling codes was initiated by Alon et al. [43], [238] and was first

realized in the form of erasure-filling block codes designed on irregular bipartite graphs, which were

termed as Tornado codes [44]. Their performance is however dependent on the validity of the assumption

that the erasures are independent, which is not always true, especially when taking into account the binary

erasures of the Internet channel imposed by statistical multiplexing-induced Internet protocol (IP)-packet

loss events. Moreover, their rate is still fixed like that of RS codes and hence, they cannot be used to serve

multiple users communicating over channels having different qualities. Another effective erasure code

was proposed by Rizzo in [239] based on a class of generator matrix based codes, where the generator

matrix was constructed to inherit the structure of the Vandermonde matrix [240].

Luby transform (LT) codes [241], proposed by Luby in 2002, can be considered as the first practical

rateless code family, which are reminiscent of the ideal digital fountain code concept advocated by

Byers et al. in [242], [243]. Metaphorically speaking, a fountain code can be compared to an abundant

water supply capable of sourcing a potentially unlimited number of encoded packets (water-drops) [244].

The receiver is capable of recovering K out of the N transmitted packets on a BEC, if N is sufficiently

larger than K.

The encoding and decoding process of an LT code is conceptually appealing. Assume a message

consisting of K input (source) symbols v = [v1 v2 . . . vK ], where each symbol contains an arbitrary

number of bits.21 The LT encoded symbol cj , j = 1, . . . ,N , is simply the modulo-2 sum of dc distinct

input symbols, chosen uniformly at random. The actual degree of each symbol to be encoded is then

chosen from a pre-defined distribution, which is typically either the robust soliton distribution or the

21The terminology used in [241] refers to the original data message as a ‘file’.
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so-called truncated Poisson 1 distribution. Given the nature of this encoding scheme, there is no limit on

the possible number of encoded symbols that can be produced and for this reason, fountain codes such as

LT codes are described as being rateless codes. LT codes also benefit from having a low encoding and

decoding cost, avoiding an excessive complexity upon increasing the source’s codeword length. Due to

these characteristics, LT codes are considered to be universal in the sense that they are near-optimal and

thus applicable for every type of erasure channels.

Similarly to the previously described LDPC codes, the connection between the input and output symbols

can also be diagrammatically represented by means of a bipartite graph, which is commonly referred to as

a Tanner [21] or a factor graph [28], as shown in Figure 9. In this context, an input source symbol can be

treated as a variable node, whilst an LT encoded symbol can be regarded as a check node. The terminology

of input/output symbols, source/LT-encoded symbols and variable/check nodes is interchangeably used in

the open literature.

The decoding process as detailed by Luby in [241] commences by locating a self-contained symbol,

i.e. a so-called degree-one input symbol which is not combined with any other. The decoder will then

add (modulo-2) the value of this symbol to all the LT-encoded symbols relying on it and then removes

the corresponding modulo-2 connections. The decoding procedure will continue in an iterative manner,

each time commencing from a degree-one symbol. If no degree-one symbol is present at any point during

the decoding process, the decoding operation will abruptly halt. However, a carefully designed degree

distribution, such as the robust soliton distribution [241], guarantees that this does not occur more often

than a pre-defined probability of decoding failure. This LT decoding process is illustrated in Figure 2

of [79]. Clearly, using this decoding technique for LT codes designed for transmission over noisy channels

constitutes an additional challenge, since a single corrupted symbol will produce uncontrolled error

propagation. This have led the authors in [245] to formalize the concept of a ‘wireless erasure’. A cyclic

redundancy check (CRC) sequence is appended to a block of LT encoded symbols and are consequently

declared to be erased if the CRC fails. In such a manner, the noisy channel can be effectively treated as

a block erasure channel. A superior decoding strategy designed for LT codes transmitted over channels

such as the BSC and the AWGN channel is to allow the exchange of soft information between the source

and LT-encoded symbols [245]–[247] in a fashion akin to that used for the decoding of LDPC codes.
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B. Other Rateless Codes And Their Performance Over Noisy Channels

Palanki and Yedidia [247], [248] were the first to document the achieved performance of LT codes for

transmission over the binary symmetric and the binary-input additive white Gaussian noise (BIAWGN)

channels. More particularly, it was demonstrated that the BER and BLER performance of LT codes over

these channels exhibit high error floors [247], [248]. For this reason, LT codes used for transmission

over noisy channels have always been concatenated with other forward error correction (FEC) schemes,

such as iteratively detected bit-interleaved coded modulation (BICM) [249], generalized LDPC [250],

convolutional and turbo codes [245], [251], [252]. In the literature, the concatenation of LT codes with

turbo codes was referred to as the turbo fountain [252] code.

Recently, we have also witnessed the emergence of Raptor codes [253], [254], which do not share the

error floor problem of their predecessors. In fact, the results published in [247], [248], [255]–[262] attest

near-capacity performance and ‘universal-like’ attributes on a variety of noisy channels. Note that our

emphasis is on the phrase ‘universal-like’; since it has been shown in [255] that Raptor codes are not

exactly universal on symmetric channels, since their degree distribution is in fact dependent on the channel

statistics. The benefits provided by Raptor codes were then exploited in a number of practical scenarios,

such as for wireless relay channels [263]–[265] as well as for multimedia transmission [266]–[271].

Other types of rateless codes proposed in the literature are the systematic LT codes [272]–[275], the

online codes [276], [277], the codes based on linear congruential recursions [278] as well as the LDPC-

like Matrioshka codes [279], [280]. The latter codes were proposed as a solution to the Slepian-Wolf

problem [281]. Caire et al. [246] delved into the applicability of rateless coding for variable-length data

compression.

From another point of view, we can consider the family of rateless codes for the provision of incremental

redundancy (IR) [282]–[285]; for example in the context of adaptive-rate schemes or as an instance of the

so-called type-II hybrid automatic repeat-request (HARQ) [8], [286], [287] schemes. In such schemes,

the transmitter continues to send additional incremental redundancies of a codeword until a positive ACK

is received or all redundancy available for the current codeword was sent. If the latter case happens, i.e.

the decoding is still unsuccessful after all the parity-bits have been sent, the codeword is either discarded

or rescheduled for retransmission. The FEC codes that are employed in conjunction with IR are typically

referred to as rate-compatible (RC) codes [288]. The techniques applied in order to design RC codes

either use puncturing [288]–[290] of the parity bits from a low rate mother code in order to obtain higher

rate codes or employ code extension [233] for concatenating additional parity bits to a high-rate code in
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order create a low-rate code. Both methods have their own limitations and typically a combination of both

techniques is generally preferred [233], [291]. The striking similarities of rateless coding with HARQ

were first exploited by Soljanin et al. in [292], [293], who compared the performance of Raptor codes as

well as punctured LDPC codes for transmission over the BIAWGN channel. Their results demonstrated

that the family of Raptor codes represents a more suitable alternative than punctured LDPCs for covering

an extensive range of channel SNRs (and thus rates).

The state-of-the-art rateless codes employ a fixed degree distribution [241]; i.e. the degree distribution

used for coining the degree dc for each transmitted bit is time invariant and thus channel-independent.

Consequently, such rateless codes, can only alter the number of bits transmitted (i.e. the code-rate) in

order to cater for the variations of the channel conditions encountered. However, it was shown in [294]

that a degree distribution designed for rateless coded transmissions over time-varying noisy channels

will depend on the underlying channel characteristics, and therefore a fixed degree distribution can

never be optimal22 at all code rates. Motivated by this, the so-called reconfigurable rateless codes were

proposed in [295]. These codes are capable of not only varying the block length (and thus the rate) but

also adaptively modify their encoding strategy according to the prevalent channel conditions. Figure 10

compares the achievable throughput of the reconfigurable rateless codes with that of Raptor codes [254]

and with punctured regular as well as with optimized irregular LDPC codes. It can be observed that

reconfigurable rateless codes perform approximately 1 dB away from the discrete-input continuous-output

memoryless channel’s (DCMC) capacity over a diverse range of channel signal-to-noise (SNR) ratios.

Moreover, it can verified that the performance of of the proposed rateless reconfigurable codes is superior

to that of punctured regular and irregular LDPC codes at all SNRs, and superior to that of the Raptor

codes for all SNRs higher than -4 dB.

Similarly to the case of LDPC codes, rateless codes have also been advocated in cooperative networks.

Castura and Mao [263] proposed a half-relaying protocol using Raptor codes that naturally allows for

their extension to multiple antennas and relays. A different approach was also suggested by Molisch et

al. in [296], [297]. Puducheri et al. proposed what are known at the time of writing as distributed LT

codes, when considering a scenario, where the data is independently encoded from multiple sources and

then combined at a common relay. The authors proposed the degree selection distribution to be employed

at the source to ensure that the resultant packet stream at the common relay has a degree distribution that

approximates that of a conventional LT code.

22In this context, we use the adjective ‘optimal’ in terms of attaining a near-capacity performance.
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C. Rateless Codes versus their Fixed-Rate Counterparts

In Section IV, we have presented simplified arguments, which helped us to create a link between the

well-understood fixed-rate coding and rateless coding families. In this context, it is worth elaborating

slightly further by noting that some rateless code families are very closely related to their fixed-rate

counterparts. For instance, an LT code [241] is analogous to a non-systematic LDGM-based code [298],

having a generator matrix that is calculated online (and thus allowing adaptive-rate configuration for

diverse channel conditions) and where the LT encoded codeword corresponds to a sequence of repeated

parity-check equation values, each checking the parity of dc information bits. We remark that LDGM

codes are essentially the dual codes of LDPC codes, where the latter codes where defined in Section II-B.

Similarly, we can regard Raptor codes [254] as a serial concatenation of a (typically) high-rate LDPC

code as the outer code combined with a rateless LDGM code as the inner code. Both the LT as well as

Raptor codes are decoded using the classic belief propagation (BP) algorithm, in a similar fashion to the

decoding of LDPC codes. However, in contrast to fixed-rate codes, code-design optimization techniques

such as the often used girth-conditioning [58] or cycle-connectivity analysis [127] are inapplicable

since the parity-check connections between the information and parity bits are determined “on-the-fly”.

Nonetheless, this is advantageous in terms of memory requirements, since there is no need to store the

code description (e.g. PCM or the GM).

V. CONCLUSIONS AND FUTURE DIRECTIONS

A. Summary of the Paper

In this article, we have provided a comprehensive survey of the associated open literature that is

related to LDPC codes and their rateless relatives. We have commenced our discourse by outlining

the related basic terminology and definitions in Section II. We have limited our elaborations to the

basic principles of linear block codes and to their GM, PCM and graphical representation. We have

also touched upon some basic graph theoretical foundations. Following this preliminary foundation, we

proceeded to provide a brief historical overview of LDPC codes. More specifically, in Section III-A,

we focused our attention on the literature concerning the encoding of LDPC codes. We stated that the

encoding of conventional LDPC codes has a complexity that increases as a quadratic function of the

block length. Subsequently, we detailed the proposed solutions, which mitigate these specific problems.

In Section III-B, we outlined the BER/BLER performance metrics of LDPC codes and associated these

metrics with the LDPC construction attributes. In Section III-C, we have summarized the majority of
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the previously presented LDPC decoding algorithms and discussed their complexity versus performance

tradeoffs. The iterative decoding convergence was then discussed in Section III-D, and we outlined the

basic principles of code design tools, such as the EXIT chart. In Sections III-F and III-G, we have focused

our attention on current research topics related to distributed coding in cooperative communications as

well as to the employment of LDPC codes in quantum error correction. We then proceeded by explaining

some basic principles of rateless coding in Section IV. More explicitly, we attempted to bridge the link

between the well-understood fixed-rate codes and their rateless counterparts. Finally, we have provided a

brief historical perspective and identified important milestones for rateless coding, discussed the related

design problems and identified their respective solutions.

B. Possible Future Research Directions

LDPC and rateless codes are expected to be employed in a myriad of other potential applications and

be included in the forthcoming standards. However, we do expect that research efforts will be shifted from

that of solely focusing on attaining further (minute) gains in their attainable BER/BLER performance (or

the achievable throughput in the case of rateless codes) to a more holistic approach, which attempts to

strike the best balance between the associated design tradeoffs. A stronger focus on the cost minimization

of the error correction units is certainly to be expected. Apart from the exploitation of such codes in

the quantum domain, we also anticipate further developments in the employment of error control at the

network layer. In this context, these advances will be expedited by a better understanding of the associated

performance bounds as well as by the extension of the well-understood code-design-related tools to these

upper layers.
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[26] N. Wiberg, H.-A. Löeliger, and R. Kotter, “Codes and iterative decoding on general graphs,” in Proceedings of the

IEEE International Symposium on Information Theory, p. 468, 1995.

[27] G. D. Forney Jr., “The forward-backward algorithm,” in Proceedings of the 34th Allerton Conference of Communications,

Control and Computing, (Monticello,IL), pp. 432–446, Oct. 1996.

[28] F. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Transactions on

Information Theory, vol. 47, pp. 498–519, Feb. 2001.

[29] S. M. Aji and R. J. McEliece, “The generalised distributed law,” IEEE Transactions on Information Theory, vol. 46,

pp. 325–343, Mar. 2000.

[30] G. D. Forney Jr., “Codes on graphs: normal realizations,” IEEE Transactions Information Theory, vol. 47, pp. 520–548,

Feb. 2001.



33

[31] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: Turbo codes,” IEEE Transactions on

Communications, vol. 44, pp. 1261–1271, Oct. 1996.

[32] S. L. Goff, A. Glavieux, and C. Berrou, “Turbo-codes and high spectral efficiency modulation,” in Proceedings of the

IEEE International Conference on Communications, (New Orleans, LA), pp. 645–649, 1994.

[33] T. Richardson and R. Urbanke, “The renaissance of Gallager’s low-density parity-check codes,” IEEE Communications

Magazine, vol. 41, pp. 121–131, 2003.

[34] M. Sipser and D. A. Spielman, “Expander codes,” in Proceedings of the 35th Annual IEEE Conference on the

Foundations of the Computer Science, pp. 566–576, Nov. 1994.

[35] M. Sipser and D. A. Spielman, “Expander codes,” IEEE Transactions on Information Theory, vol. 42, pp. 1660–1686,

Nov. 1996.

[36] D. A. Spielman, “Linear-time encodable and decodable error-correcting codes,” IEEE Transactions on Information

Theory, vol. 42, pp. 1723–1731, Nov. 1996.

[37] D. J. C. MacKay and R. M. Neal, “Good codes based on very sparse matrices,” in Proceedings of the 5th IMA

Conference in Cryptography and Coding, Dec. 1995.

[38] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electronic

Letters, vol. 32, pp. 1645–1646, Mar. 1996.

[39] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check codes,” Electronic

Letters (Reprint), vol. 33, pp. 457–458, Mar. 1997.

[40] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Transactions on Information

Theory, vol. 45, pp. 399–431, Mar. 1999.

[41] Y. Mao and A. H. Banihashemi, “A heuristic search for good low-density parity-check codes at shortblock lengths,” in

Proceedings of IEEE International Conference on Communications, vol. 1, (Helsinki, Finland), pp. 41–44, June 11–14,

2001.

[42] Y. Mao and A. H. Banihashemi, “Design of good LDPC codes using girth distribution,” in Proceedings of IEEE

International Symposium on Information Theory, (Sorrento, Italy), June 25–30, 2000.

[43] N. Alon and M. Luby, “A linear time erasure-resilient code with nearly optimal recovery,” IEEE Transactions on

Information Theory, vol. 42, 1996.

[44] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann, “Error-resilient codes,” in

Proceedings of 29th Symposium on Theory of Computing, pp. 150–159, 1997.

[45] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman, “Analysis of low-density codes and improved

designs using irregular graphs,” in Proceedings of the 30th Annual Symposium on Theory and Computing, (San

Francisco, CA), pp. 249–258, May 1998.

[46] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. Spielman, “Analysis of low-density codes and improved

low-density parity-check codes using irregular graphs and belief propagation,” in Proceedings of the IEEE International

Symposium on Information Theory, (Boston, USA), p. 111, Aug. 1998.

[47] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved low-density parity-check codes

using irregular graphs,” IEEE Transactions on Information Theory, vol. 47, pp. 585–598, Feb. 2001.

[48] M. G. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of random processes via the And-Or tree evaluation,”

in Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, (Dallas, Texas), pp. 364–373, 1998.



34

[49] T. J. Richardson and R. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE

Transactions on Information Theory, vol. 47, pp. 619–637, Feb. 2001.

[50] S.-Y. Chung, G. D. Forney Jr., T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes

within 0.0045 dB of the Shannon limit,” IEEE Communications Letters, vol. 5, pp. 58–60, Feb. 2001.

[51] M. C. Davey and D. J. C. MacKay, “Low density parity check codes over GF(q),” IEEE Communications Letters,

vol. 2, pp. 165–167, June 1998.

[52] R. Peng and R.-R. Chen, “Application of nonbinary LDPC codes for communication over fading channels using higher

order modulations,” in Proceedings of the IEEE Global Telecommunications Conference, (San Francisco, CA, USA),

pp. 1–5, Nov. 2006.

[53] J. J. Boutros, A. Ghaith, and Y. Yuan-Wu, “Non-binary adaptive LDPC codes for frequency selective channels: code

construction and iterative decoding,” in Proceedings of the IEEE Information Theory Workshop, (Chengdu, China),

pp. 184–188, Oct. 2006.

[54] J. J. Boutros, A. Ghaith, and Y. Yuan-Wu, “Nonbinary and concatenated LDPC codes for multiple-antenna transmission,”

in Proceedings of the 7th Africon Conference in Africa, (Gaborne, Botswana), pp. 83–88, Sept. 15–17, 2004.

[55] F. Guo and L. Hanzo, “Low complexity non-binary LDPC and modulation schemes communicating over MIMO

channels,” Proceedings of the IEEE 60th Vehicular Technology Conference, vol. 2, pp. 1294–1298, Sept. 26–29, 2004.

[56] R.-H. Peng and R.-R. Chen, “Design of Nonbinary LDPC Codes over GF(q) for Multiple-Antenna Transmission,” in

Proceedings of the IEEE Military Communications Conference, (Washington, DC), pp. 1–7, Oct. 2006.

[57] O. Alamri, F. Guo, M. Jiang, and L. Hanzo, “Turbo detection of symbol-based non-binary LDPC-coded space-time

signals using sphere packing modulation,” Proceedings of the IEEE 62nd Vehicular Technology Conference, vol. 1,

pp. 540–544, Sept. 28–25, 2005.

[58] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive edge-growth Tanner graphs,” IEEE

Transactions on Information Theory, vol. 51, pp. 386–398, Jan. 2005.

[59] M. Lentmaier and K. S. Zigangirov, “On generalized low-density parity-check codes based on hamming component

codes,” IEEE Communications Letters, vol. 3, pp. 248–250, Aug. 1999.

[60] J. Boutros, O. Pothier, and G. Zemor, “Generalized low density (Tanner) codes,” in Proceedings of the IEEE

International Conference on Communications, (Vancouver,Canada), pp. 441–445, June 1999.

[61] A. Hocquenghem, “Codes correcteurs dı̈¿ 1
2

erreurs,” Chiffres, vol. 2, pp. 147–156, Sept. 1959.

[62] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group codes,” Information and Control,

vol. 3, pp. 68–79, Mar. 1960.

[63] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal Society of Industrial and Applied

Mathematics, vol. 8, pp. 300–304, June 1960.

[64] O. Pothier, L. Brunel, and J. Boutros, “A low complexity FEC scheme based on the intersection of interleaved block

codes,” in Proceedings of the IEEE Vehicular Technology Conference, (Houston, Texas, USA), pp. 274–278, May

16–20, 1999.

[65] O. Pothier, Compound codes based on graphs and their iterative decoding. PhD thesis, Ecole Nationale Supérieure des

Telecommunications, Paris, France, 2000.

[66] J. Chen and R. M. Tanner, “A hybrid coding scheme for the gilbert-elliot channel,” in Proceedings of the Allerton

Conference on Communications, Control and Computing, (Monticello, USA), Sept. 2004.

[67] N. Miladinovic and M. Fossorier, “Generalized LDPC codes with Reed-Solomon and BCH codes as component codes



35

for binary channels,” in Proceedings of IEEE Global Telecommunications Conference, (St. Louis, USA), pp. 1239–1244,

Dec. 2005.

[68] S. Abu-Surra, G. Liva, and W. Ryan, “Low-floor tanner codes via hamming-node or rscc-node doping,” in Proceedings

of the 16th Symposium on Applied Algebra, Algebraic Algorithms and Error Correcting Codes, (Las Vegas, NV, USA),

Oct. 2006.

[69] E. Paolini, M. Fossorier, and M. Chiani, “Analysis of generalized LDPC codes with random component codes for the

binary erasure channel,” in Proceedings of the 16th Symposium on Applied Algebra, Algebraic Algorithms and Error

Correcting Codes, (Seoul, Korea), Dec. 2006.

[70] G. Liva, W. E. Ryan, and M. Chiani, “Quasi-cyclic generalized LDPC codes with low error floors,” submitted to IEEE

Transactions on Communications.

[71] A. Moinian, B. Honary, and E. Gabidulin, “Generalized quasi-cyclic LDPC codes for wireless data transmission,” in

Proceedings of the IET International Conference on Wireless Mobile and Multimedia, (Hangzhou, China), Nov. 6–9

2006.

[72] G. Liva and W. E. Ryan, “Short low-error-floor Tanner codes with Hamming nodes,” in Proceedings of the IEEE

Military Communications Conference, pp. 208–213, Oct. 17–20, 2005.

[73] G. Liva and W. E. Ryan, “Design of quasi-cyclic tanner codes with low error floors,” in Proceedings of the 4th

International Symposium on Turbo Codes, pp. 208–213, Oct. 17–20, 2005.

[74] Y. Wang and M. Fossorier, “Doubly-generalized low-density parity-check codes,” in Proceedings of the IEEE

International Symposium on Information Theory, (Seoul, Korea), July 2006.

[75] E. Paolini, M. Fossorier, and M. Chiani, “Analysis of doubly-generalized LDPC codes with random component codes

for the binary erasure channel,” in Proceedings of the Allerton Conference on Communications, Control and Computing,

(Monticello, USA), Sept. 2006.

[76] N. Miladinovic and M. P. C. Fossorier, “Generalized LDPC codes and generalized stopping sets,” IEEE Transactions

on Communications, vol. 56, pp. 201–212, Feb. 2008.

[77] E. Paolini, M. Fossorier, and M. Chiani, “Doubly-generalized LDPC codes: Stability bound over the BEC,” IEEE

Transactions on Information Theory, vol. 55, pp. 1027–1046, Mar. 2009.

[78] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, “Practical loss resilient codes,” in Proceedings

of the 29th annual ACM Symposium on Theory of Computing, (Seattle, Washington), pp. 150–159, 1997.

[79] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Efficient erasure correcting codes,” IEEE

Transactions on Information Theory, vol. 47, pp. 569–584, Feb. 2001.

[80] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, “Comparison of constructions of irregular gallager codes,” in

Proceedings of the 36th Allerton Conference on Communication, Control and Computing, (Monticello, IL, USA), Sept.

23–25 1998.

[81] T. J. Richardson and R. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,”

IEEE Transactions on Information Theory, vol. 47, pp. 599–618, 2001.

[82] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity check codes,” IEEE Transactions on

Communications, vol. 47, pp. 808–821, Feb. 2001.

[83] D. Haley, A. Grant, and J. Buetefuer, “Iterative encoding of low-density parity-check codes,” in Proceedings of the

IEEE Global Telecommunications Conference, vol. 2, (Taipei, Taiwan), pp. 1289–1293, Nov. 17–21, 2002.

[84] D. Burshtein, S. Freundlich, and S. Litsyn, “Approximately lower triangular ensembles of LPDC codes with linear



36

encoding complexity,” in Proceedings of the IEEE International Symposium on Information Theory, (Seattle, Washington,

USA), pp. 821–825, July 9–14, 2006.

[85] D. Divsalar, H. Jin, and R. McEliece, “Coding theorems for “Turbo-Like” codes,” in Proceedings of the 36th Annual

Allerton Conference on Communinications, Control and Computing, pp. 201–210, Sept. 1998.

[86] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,” in Proceedings 2nd International

Symposium on Turbo Codes and Related Topics, (Brest, France), pp. 1–8, Sept. 2000.

[87] A. Roumy, S. Guemghar, G. Caire, and S. Verdu, “Design methods for irregular repeat-accumulate codes,” IEEE

Transactions on Information Theory, vol. 50, Aug. 2004.

[88] A. Abbasfar, D. Divsalar, and K. Yao, “Accumulate repeat accumulate coded modulation,” in Proceedings of the Military

Communications Conference, vol. 1, pp. 169–174, Oct. 31–Nov. 3, 2004.

[89] D. Divsalar, S. Dolinar, and J. Thorpe, “Accumulate-repeat-accumulate-accumulate-codes,” Proceedings of the IEEE

60th Vehicular Technology Conference, vol. 3, pp. 2292–2296, Sept. 26–29, 2004.

[90] R. E. Blahut, Algebraic Codes for Data Transmission. Cambridge University Press, jul 2002.

[91] N. Hamada, “On the p-rank of the incidence matrix of a balance or partial balanced incomplete block designs and its

application to error correcting codes,” Hiroshima Mathematical Journal, vol. 3, pp. 153–226, 1973.

[92] B. Ammar, B. Honary, Y. Kou, and S. Lin, “Construction of low density parity check codes: a combinatoric design

approach,” in Proceedings of the IEEE International Symposium on Information Theory, (Lausanne, Switzerland),

p. 311, June 30–July 5, 2002.

[93] B. Ammar, B. Honary, Y. Kou, J. Xu, and S. Lin, “Construction of low-density parity-check codes based on balanced

incomplete block designs,” IEEE Transactions on Information Theory, vol. 50, pp. 1257–1269, June 2004.

[94] S. Lin, L. Chen, J. Xu, and I. Djurdjevic, “Near Shannon limit quasi-cyclic low-density parity-check codes,” in

Proceedings of the IEEE Global Telecommunications Conference, vol. 4, pp. 2030–2035, Dec. 1–5, 2003.

[95] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-Shannon-limit quasi-cyclic low-density parity-check codes,” IEEE

Transactions on Communications, vol. 52, pp. 1038–1042, July 2004.

[96] H. Tang, J. Xu, Y. Kou, S. Lin, and K. Abdel-Ghaffar, “On algebraic construction of Gallager low density parity check

codes,” in Proceedings of the IEEE International Symposium on Information Theory, (Lausanne, Switzerland), p. 482,

June 30–July 5, 2002.

[97] H. Tang, J. Xu, Y. Kou, S. Lin, and K. Abdel-Ghaffar, “On algebraic construction of Gallager and circulant low-density

parity-check codes,” IEEE Transactions on Information Theory, vol. 50, pp. 1269–1279, June 2004.

[98] J. L. Fan, “Array codes as low-density parity-check codes,” in Proceedings 2nd International Symposium on Turbo

Codes, vol. 3, (Brest, France), pp. 543–546, 2000.

[99] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permutation matrices,” IEEE Transactions

on Information Theory, vol. 50, pp. 1788–1793, Aug. 2004.

[100] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” in

Proceedings of the IEEE Global Telecommunications Conference, vol. 3, Nov. 28–Dec. 2, 2005.

[101] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,”

IEEE Transactions on Communications, vol. 53, pp. 71–81, Nov. 2005.

[102] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,”

IEEE Transactions on Communications, vol. 54, pp. 71–81, Jan. 2006.



37

[103] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on finite geometries: a rediscovery and

new results,” IEEE Transactions on Information Theory, vol. 47, pp. 2711–2736, Nov. 2001.

[104] J. W. Lee and R. E. Blahut, “A note on the analysis of finite length turbo decoding,” in Proceedings of the IEEE

International Symposium on Information Theory, (Lausanne, Switzerland), p. 83, June 30–July 5, 2002.

[105] J. W. Lee and R. E. Blahut, “Lower bound on BER of finite-length turbo codes based on EXIT characteristics,” IEEE

Communications Letters, vol. 8, pp. 238–240, Apr. 2004.

[106] J. W. Lee and R. E. Blahut, “Convergence Analysis and BER Performance of Finite-length Turbo Codes,” IEEE

Transactions on Communications, vol. 55, pp. 1033–1043, May 2007.
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Fig. 1. A simplified block diagram of a channel coded system using linear block codes such as LDPC codes.

TABLE I
THE CODEWORDS FOR THE CODE C(7, 4) AND ITS DUAL CODE C⊥(7, 3), GIVEN THE GENERATOR MATRIX AND

PARITY-CHECK MATRIX REPRESENTED IN (2) AND (3), RESPECTIVELY

z ∈ C z⊥ ∈ C⊥

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1 1 1 1 0 0 1
0 0 1 0 1 1 0 0 1 1 1 0 1 0
0 0 1 1 1 0 1 1 0 1 0 0 1 1
0 1 0 0 1 1 1 1 1 1 0 1 0 0
0 1 0 1 1 0 0 0 0 1 1 1 0 1
0 1 1 0 0 0 1 1 0 0 1 1 1 0
0 1 1 1 0 1 0 0 1 0 0 1 1 1
1 0 0 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 1 0
1 1 0 1 0 0 1
1 1 1 0 1 0 0
1 1 1 1 1 1 1
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so-called gap [82], which is a measure of the ‘distance’ [82] between the PCM and the lower triangular matrix.
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Fig. 5. The PCM of a quarter-rate LDPC code constituted from circulant matrices of size 5.
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Fig. 6. The LDPC decoder consisting of a serial concatenation of the variable node decoder (VND) and check node
decoder (CND) separated by an edge interleaver.



53

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A,VND

,I
E,CND

I E
,V

N
D

,I A
,C

N
D

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I
A,VND

,I
E,CND

I E
,V

N
D

,I A
,C

N
D

Outer
Decoder’s
EXIT Curve

Inner
Decoder’s
EXIT Curve
(top curve)

EXIT
Trajectory

Fig. 7. The EXIT chart for a half-rate regular LDPC code, associated with a PCM having a column weight of γ = 3 and a
row weight of ρ = 6. We also assume binary phase shift keying (BPSK) modulated transmission over the AWGN channel at
Eb/N0 = 2 dB.
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(a) Regular LDPC code
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(b) Irregular LDPC code

Fig. 8. The EXIT chart for (a) a half-rate regular LDPC code, associated with a PCM having a column weight of γ = 3
and a row weight of ρ = 6 at Eb/N0 = 1.3 dB and (b) a half-rate irregular LDPC code at Eb/N0 = 0.5 dB. The PCM for
this irregular code follows the design of [159] and possesses 51% of the columns have a column weight of γ = 2, 42% of
the columns have γ = 4 and 7% of the columns have γ = 2. All the rows of this irregular PCM have a row weight of ρ = 8.
We also assume binary phase shift keying (()BPSK) modulated transmission over the AWGN channel.
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Fig. 9. A Tanner graph based description of LT code showing the source symbols (variable nodes) and the LT-encoded
symbols (check nodes). The symbols are of an arbitrarily size.
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Fig. 10. Average throughput (bits/channel use) performance for transmission over the BIAWGN channel versus SNR (dB)
using the proposed reconfigurable rateless codes as well as for the Raptor code [254] and the incremental-redundancy-based
HARQ schemes employing punctured regular LDPC codes having R = 0.8 and 0.9 and an optimized punctured half-rate
irregular LDPC code. The Raptor code and the punctured LDPC benchmarker codes followed the design presented in [292],
[293]. The decoder employed the SPA and was limited to a maximum of 200 iterations. The number of information bits used
for all the simulated schemes was set to 9500 bits.


