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Abstract

The network of interacting regulatory signals within a cell comprises one of the most com-

plex and powerful computational systems in biology. Gene regulatory networks play a key role

in transforming the information encoded in a genome into morphological form. To achieve

this feat, gene regulatory networks must respond to and integrate environmental signals with

their internal dynamics in a robust and coordinated fashion. The highly dynamic nature of

this process lends itself to interpretation and analysis in the language of dynamical models.

Modelling provides a means of systematically untangling the complicated structure of gene

regulatory networks, a framework within which to simulate the behaviour of reconstructed

systems and, in some cases, suites of analytic tools for exploring that behaviour and its im-

plications. This review provides a general background to the idea of treating a regulatory

network as a dynamical system, and describes a variety of different approaches that have been

taken to the dynamical modelling of gene regulatory networks.

Introduction

Gene regulatory networks (GRNs) encode the patterns of interacting signals responsible for the

up and down regulation of genes. GRNs integrate internal and external signals to ensure that

a cell exhibits a response appropriate to its current environmental context. As such, GRNs

are an important locus of developmental control: while epigenetic and environmental factors

play an important role, GRNs act throughout development to ensure that the correct types of

cell are produced in the correct place and at the correct time (Davidson, 2001; Carroll et al.,

2001).

During development, the potential of each cell is progressively restricted toward some

terminally differentiated type. A cell’s fate is strongly correlated with the pattern of genes that

it expresses. A wide variety of signals, both from within a cell and from without, can influence

the activation of a gene. Many of these signals are proteins that are themselves the result of

gene transcription. The activation of each gene can be influenced by multiple signals, and each

signal can play multiple regulatory roles. The topology of the resulting regulatory system is

therefore not a simple, linear pathway, but a complex network of interacting genes and signals.

The conditions under which a gene becomes active are specified in the regulatory sequence

encoded in the genome. Understanding the relationship between GRNs and development is

necessary in order to address the question of how aspects of development are linked, via the

structure and dynamics of GRNs, back to the heritable information encoded in an individual’s

genome (Levine and Davidson, 2005).

The amount of data available for the study of GRNs is greater than ever before. However,

far from this being the end of the story, technologies such as genome sequencing have made us
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aware of the scale of the problem confronting us. Cataloguing the protein-coding regions in the

genome represents only the first step in understanding how complex interactions between genes

and biochemical molecules control the developmental process (Quackenbush, 2007). Under-

standing the structure and dynamics of the interaction networks in which these components are

embedded will be necessary before a comprehensive understanding of development is possible.

In this endeavour, modelling will be a crucial tool (Kitano, 2002).

An understanding of GRNs also offers the promise of insight into disease. Many diseases

are a result of changes (e.g., induced by environmental factors) to the function of GRNs,

particularly to those that operate during development (Chan and Bonini, 2000; Olson, 2006;

Edwards and Myers, 2007). One remarkable property of GRNs is their robustness to pertur-

bation. However, models have revealed that this stability is not be localised to any specific

component within the GRN, but is rather an emergent property of the complex dynamics

across the network (Kitano, 2004; Schadt and Lum, 2006). Understanding how developmental

GRNs work can help to explain the ways and circumstances in which they fail, as well as how

to target effective interventions.

This review aims to provide an overview of the wide variety of approaches to modelling the

dynamic behaviour of GRNs.

Modelling aims and approaches

Modelling aims

Models are simplified representations of real systems. In exchange for sacrificing some fidelity,

a model can provide new insight into the system, either by filtering out non-essential detail

such that structural and behavioural patterns can be discerned, or by allowing manipulation

and exploration of a kind not possible with the real system.

The complexity of biological systems means that a major challenge in modelling is deciding

on an appropriate level of detail to include. Too much detail may result in a complicated model

with reduced explanatory power, in which the essential nature of the process of interest is

obscured. On the other hand, too little detail risks omitting critical processes and mechanisms,

resulting in a model whose behaviour is not an accurate representation of the real system.

Deciding how much detail to include in a model will be determined by the resources available

(i.e., data, methodological tools) and by the question that motivates the model. We identify

four classes of motivation—integration of empirical data, identification and characterisation of

structural, dynamic or functional modules, development of theoretical insights and generation

of testable hypotheses—although clearly any given model may overlap across classes.

First, models allow researchers to integrate empirical data into a meaningful theoreti-
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cal framework. As gene expression data becomes ever-more readily available, information

management tools become correspondingly more important for analysis and communication.

Standardised protocols and platforms such as the systems biology markup language (Hucka

et al., 2003), Cytoscape (Shannon et al., 2003) and BioTapestry (Longabaugh et al., 2008)

enable data and models to be easily shared between researchers. For example, Swiers et al.

(2006) used published data to create a model of the GRN underlying the specification of the

hematopoietic stem cell that has enabled new insights into the effects of perturbation, as well

as acting as a focal point for the organisation and integration of future data.

Models also enable the identification of repeated patterns or modules in a system. These

patterns, which may occur in the structure or dynamics of a system, can be thought of as funda-

mental building blocks that are assembled in various ways to produce more complex structures

and behaviours (Savageau, 2001; Alon, 2007; Davidson and Levine, 2008). Approaching GRNs

in terms of the meso-level components from which they are constructed provides a means

of dealing with their otherwise intractable complexity. Examples of modules with important

dynamic consequences include positive feedback circuits, which enable a transient signal to

induce a stable cellular response (Xiong and Ferrell, 2003), and double-negative feedback cir-

cuits, which play a role in the selection and stabilisation of terminal cell fates (Johnston et al.,

2005).

The use of mathematical and computational formalisms to construct GRN models has

enabled researchers to relate biological systems to general dynamical theory. In so doing, a

range of powerful theoretical and analytical tools become available to investigate the behaviour

of these systems (Thomas, 1998; Tyson et al., 2001). An outcome of this approach is that

the key components, interactions and variables that determine a system’s behaviour can be

identified, offering insight into possible targets for intervention (Schadt and Lum, 2006).

Finally, model building also plays a valuable role in the experimental cycle, as an aid

to hypothesis formation and the interpretation of empirical data (Kitano, 2001). The com-

plex and nonlinear structure of biological systems, combined with the varying timescales on

which different biological processes act, makes it particularly difficult to develop intuitions

about how regulatory systems operate. Building a formal model of such a system requires all

assumptions about the timing and connectivity of regulatory elements to be made explicit.

Modelling can therefore provide a valuable check on intuitions during the development of

hypotheses (McAdams and Shapiro, 1995).

Modelling approaches

Along with the many different motivations for modelling, there are a wide variety of approaches.

Any GRN model can be broken into several components: a useful distinction is between parts
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lists, topology, control logic and dynamics (Schlitt and Brazma, 2007). Any given model may

focus on one or more of these components while de-emphasising the others; however, in the

construction of dynamical models—the focus of this review—at least some consideration must

be given to the constituent elements of a GRN and how they interact.

Parts lists: A parts list is a collection and description of the constituent elements that make

up a GRN, such as genes and their products, the regulatory sequences to which regulatory

factors bind, and other species that play a role in regulation. The parts list by itself can

provide a perspective for comparing species, but is more commonly the starting point for

the development of a more informative model. The arrival of high-throughput experimental

techniques has resulted in a surge of data for the development of this type of model; for

example, putative binding sites can be identified via sequence analysis (Osada et al., 2004).

Topology: Topological models describe how the parts of a system interact, often viewed

as a network in which nodes represent parts and edges represent interactions between those

parts. Both nodes and edges may have different meanings depending on context: for example,

in a GRN a (directed) edge between two genes A and B may indicate that the product of

gene A binds to the regulatory region of gene B, causing it to be up or down regulated (see

Figure 1). In a protein-protein interaction network, an (undirected) edge between A and B

typically indicates that the two proteins are capable of binding together. These networks can

themselves be the subject of analysis (e.g., using statistical or graph theoretic approaches such

as in Albert, 2005) or they can form the basis for dynamic models.

Control logic: The next stage, beyond identifying the existence of an interaction between

two system components, involves discovering what rules govern that interaction. Many genetic

interactions can be approximated by a logical function, the simplest example being that gene B

is expressed only in the presence of product A′. Alternatively, gene B may be expressed in the

presence of product A′, but only if product C ′ is not present. In other cases, interactions are

more complex and quantitative accounts of protein concentrations and activation thresholds

are necessary.

Dynamics: Once all components of a system and their interactions have been identified,

numerical or computational simulation can be applied to explore how the system behaves

over time. There is a wide variety of approaches to modelling system dynamics. While some

smaller models are tractable to formal analytic techniques, even systems with a modest number

of non-linear interactions between their elements can defy analytic approaches. As complexity

is a defining feature of many dynamic GRN models, numerical or computational simulation is
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required in many cases.

We further distinguish three complementary approaches to the design of a dynamical model:

‘reverse engineering’, phenomenological approaches and statistical ensembles.

The reverse engineering of existing biological systems seeks to better understand their

dynamics and function via the development of high fidelity models of (typically) small systems

from available empirical knowledge. Each component in these models frequently corresponds

to a particular element of the biological system under investigation. Numerical and computer

simulations can then be used to make predictions about systems that are too complex to allow

for analytical treatment (Hasty et al., 2001).

The phenomenological approach uses generalised models to reproduce observed biological

behaviours, such as hysteresis or pattern formation. In these models, there may no longer be

a direct mapping between components in the model and components in the biological system,

however the high level behaviour of the system is preserved. Such models can be used to gain

insight into, for example, the level of regulatory complexity required to produce a particular

class of dynamic behaviour (Salazar-Ciudad et al., 2000).

A final approach comprises models that investigate the general principles of dynamical

systems. Rather than seeking to understand individual systems, this approach seeks to char-

acterise the behaviour of classes of GRNs with particular structural and dynamic properties.

These approaches frequently use simplified descriptions of gene activation that allow much

larger and more complex networks to be simulated than would otherwise be possible. A com-

mon technique is to generate a large number of random networks (an ensemble) governed by a

specified set of local rules and observe the statistical properties of their global behaviour (Kauff-

man, 2004a,b).

Each of these approaches are necessary and complementary: local models of specific systems

can be used to generate hypotheses that are directly testable by real experiments, as well as

providing the impetus for developing more general theories; conversely, the study of general

principles provides tools for the analysis of reverse-engineered systems; and abstract models

can act as informed null hypotheses for real systems, providing a context within which to

understand each system’s unique characteristics.

Gene networks as dynamical systems

While different approaches to modelling GRNs focus on different levels of description—giving

primacy to components or topology, for instance—regulatory networks are fundamentally dy-

namic entities, their functionality exposed through changing patterns of gene expression. As

such, regulatory networks may be modelled within the framework of dynamical systems the-
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ory. Modelling a regulatory network as a dynamical system can provide insights into the link

between structural and functional views of a system.

A variety of different dynamical systems modelling approaches have been used to simulate

the behaviour of GRNs, and all of these models share some similarities in their approach and

some common abstractions. All dynamical systems models focus on describing and simulating:

(a) the state of the system, and (b) changes to the system state. In the context of a GRN,

system state may represent the concentration levels of known regulatory factors, in which case

changes to the state would represent concentration changes due to transcription, translation

or decay events. While a system’s state can be represented in many different ways, the ability

to comprehensively describe a system’s state at a given point in time, and to describe how

successive temporal states are linked, are both key aspects of a dynamical systems formalism.

In the general parlance of dynamical systems theory, these elements give us states, tran-

sitions—changes from one state to another—and state spaces. A system’s state space can be

thought of as the collection of all of the possible states of the system, along with all possible

transitions between states. While state spaces are an abstract construct, they provide a frame-

work for thinking about the dynamics of a system. The most notable features of a state space

are attractors and basins of attraction. An attractor of a system is a state (or set of states)

towards which the system tends over time, whereas a basin of attraction is the set of states that

tend towards a particular attractor; each attractor has an associated basin of attraction, and

most systems of interest will have multiple attractors. In a real GRN, an attractor corresponds

to the steady states (or stable oscillations) of a system, while basins of attraction correspond

to the set of initial system states that will converge to a particular steady state.

Steady states of a regulatory system are interesting both because they are more easily ex-

perimentally observable, and because of the functional interpretations assigned to them. One

early interpretation of steady states in a GRN model was that these states correspond to cell

types (Kauffman, 1969). An updated interpretation is that steady states correspond more

generally with alternate cell fates (Huang, 2004), in which different ‘fates’ may correspond

to different functional regimes between which a cell can switch as required by environmen-

tal conditions. In support of this interpretation, recent work has uncovered the existence

of attractor-like behaviour in cell dynamics, as recovered from gene expression time series

data (Huang et al., 2005, 2007). The analogy between attractors and cell fates also provides a

framework for drawing correspondences between the dynamics of a system and its function.

If attractors represent cell fates, then basins of attraction represent the initial condition

leading to different cell fates. While some perturbations may move a system to another state in

the same basin of attraction, others will push the system into a different basin, potentially one

with a very different long term behaviour. Thus abnormal developmental trajectories, such as

known mutations or defects, may be interpreted as perturbations to a wild-type initial state
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that result in initial conditions in a different basin of attraction. Dynamical systems models,

and in particular simplified models such as Boolean networks, lend themselves to systematic

exploration of the space of possible initial conditions of a system. If a model can accurately

reproduce a system’s behaviour, then it is in principle simple to test any initial condition or

perturbation. In this way, it is possible to simulate different initial conditions, perturbations,

or response to stimuli; for well-understood biological systems with known abnormal behaviour

patterns, these cases may be used to assess potential predictive power of a dynamic model. An

example of such a system is the Drosophila melanogaster segment polarity network, which is a

well-characterised system that has been the subject of several modelling studies (von Dassow

et al., 2000; Albert and Othmer, 2003; Chaves et al., 2005). For this system, not only was

the wild-type behaviour of the network reproduced, but several known mutant conditions were

also replicated and the existence of further difficult-to-observe steady states was hypothesised

(Albert and Othmer, 2003).

Models of gene regulatory networks

The design and construction of a GRN model involves a variety of decisions: system states and

variables can be logical or continuous; state transitions can be deterministic or stochastic; sys-

tem elements can be updated all at once (synchronously) or independently (asynchronously);

and spatial structure can be incorporated or excluded. This section reviews a range of different

modelling approaches.

Boolean networks and logical models

Modelling regulatory networks as a set of logical elements has a long history. Perhaps the most

well-known model, the Random Boolean Network (RBN) model, was originally designed as a

highly abstract model of gene regulation to investigate whether certain observed characteris-

tics of genetic systems (e.g., developmental robustness) could be explained by network-level

structures with highly idealised dynamics (Kauffman, 1969, 1993). The combination of sim-

plicity, analytic tractability and generality of the model gave it broad appeal, and resulted in

much theoretical work (e.g., Derrida and Pomeau, 1986; Luque and Solé, 2000; Socolar and

Kauffman, 2003; Samuelsson and Troein, 2003) and several biologically-motivated extensions

(e.g., Aldana, 2003; Harris et al., 2002).

In the RBN model, node (gene) activation is assumed to be Boolean—a node is always

simply active or inactive, with no intermediate states—and regulation is a logical function

of current node activities. Each node is influenced by some subset of the other nodes in the

network, and these influences take the form of a logical function that determines what the
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next state of the node will be, given the current state of its influencing nodes (see Figure 2).

In the most general formulation, the network structure in RBNs is randomly generated,

and the logical functions of nodes in the network are randomly selected. This purely random

nature is what makes the RBN model a good basis for comparison with more biologically

plausible networks: in order to understand what behaviours of a specific network are unusual,

a set of baseline behaviours and properties are required to make a comparison. A significant

contribution of the RBN model was the realisation that ordered behaviour could be obtained

‘for free’; that is, without being specifically engineered into a system (Kauffman, 1993).

RBNs have several interesting properties, and make some broad general predictions about

behaviour in regulatory systems. The model demonstrates three distinct behavioural regimes:

stable (or ordered), critical and chaotic (or disordered), where the ‘critical’ regime is best

described as the phase transition point between the stable and chaotic regimes. These regimes

denote several related characteristics, including the robustness of attractors (Kauffman, 1993;

Aldana, 2003), the fragmentation of state space (Willadsen et al., 2008), and the scaling of

number of attractors (Socolar and Kauffman, 2003; Samuelsson and Troein, 2003). It has been

proposed that regulatory systems operate within (or near) the critical regime—sometimes

referred to as the ‘edge of chaos’—as this regime is considered to be flexible without being

uncontrollable or unstable (Kauffman, 1993, 2004b). Central to the importance of the critical

regime is the existence of attractors that are highly robust both to initial conditions and to

perturbation; results from the RBN model originally inspired the attractors-cell type analogy

discussed above (Kauffman, 1969). In this context, the properties of the critical regime can be

interpreted to provide baseline expectations about robustness, scaling of number of cell-fates

with network size, and other system characteristics (Kauffman, 1993).

Studies of dynamic regimes have used the network structure of real regulatory systems, as

reconstructed from experimental evidence, to create simplified RBN-based models of the large-

scale behaviour of these systems. The observed dynamics are consistent with the hypothesis

that these systems operate near the critical regime (Balleza et al., 2008), and are unlikely

to operate in the chaotic regime (Shmulevich et al., 2005). It is worth noting that while

early studies of RBNs made much of the existence of the stable periodic attractor behaviour

that is characteristic of the critical regime, the majority of published models of regulatory

systems show dynamics involving only steady state attractors (Albert and Othmer, 2003; Li

et al., 2004; Mendoza and Alvarez-Buylla, 1998); more plausibly, it is features such as the

capacity for multistationarity (Kim et al., 2008) that make the critical regime significant.

The robustness demonstrated by Boolean models of real regulatory systems (e.g., Albert and

Othmer, 2003; Li et al., 2004) also supports the idea that regulatory systems are most likely

to exist in a stable or critical regime.

Recent studies building on the theoretical background provided by RBNs include models of
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the cell-cycle networks in yeasts Saccharomyces cerevisiae (Li et al., 2004) and Schizosaccha-

romyces pombe (Davidich and Bornholdt, 2008a), the segment polarity network in Drosophila

melanogaster (Albert and Othmer, 2003), and floral organ cell-type specification in Arabidopsis

thaliana (Mendoza and Alvarez-Buylla, 1998; Chaos et al., 2006), as well as several theoretical

analyses of these models (e.g., Chaves et al., 2006; Braunewell and Bornholdt, 2007; Irons

and Monk, 2007; Willadsen and Wiles, 2007). The success of these studies provides some

validation for the initially highly-abstract approach taken by the RBN model. In particular,

modelling using a Boolean network approach indicates that important network dynamics may

be reproduced with only network structure and simple regulatory information (Albert and

Othmer, 2003); for at least some biological systems fine-tuning of kinetic parameters appears

to be unnecessary.

Scale-free and canalised Boolean networks

The RBN model provides one possible baseline for comparison with real genetic regulatory

systems. It also provides a theoretical framework in which different null hypotheses can be

formulated. Two notable modifications to the RBN that provide alternative null hypotheses for

regulatory network behaviour are scale-free Boolean networks and canalised Boolean networks.

Scale-free network models (and closely-related small-world networks) were proposed as

better models for the structure of natural networks (Watts and Strogatz, 1998; Barabási and

Albert, 1999). Scale-free network structures are prevalent in cellular systems, where they

exhibit several important properties: short path length, which enables rapid communication

between disparate parts of the network; and robustness to network perturbations (Albert and

Barabási, 2002; Albert, 2005).

Studies of RBNs with a scale-free structure have found that the modified systems produce

highly robust network behaviour that retains the interesting characteristics of the standard

RBN model, while using a more biologically plausible network structure (Aldana, 2003). Sta-

ble and critical regime behaviours occurred for a wider range of network parametrisations; in

other words, network behaviour was less sensitive to structural parameters like the connec-

tivity of individual nodes (Aldana, 2003). The system also showed robustness characteristics

typical of scale-free networks, such as exceptionally high robustness to random perturbation

along with vulnerability to targeted attack (Albert et al., 2000). Finally, scale-free network

structures appear to demonstrate better trade-offs between robustness and evolvability of the

network (Aldana et al., 2007).

In contrast to scale-free variants, which alter only network structure, canalising Boolean

network models alter the selection of Boolean functions that determine a system’s dynamic

behaviour (Kauffman, 1971; Harris et al., 2002). A canalising Boolean function is one in which
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one of the inputs to a node has the ability to override all other inputs for at least one value.

For example, if gene B, when active, forces gene A to be inactivated irrespective of the state

of gene A’s other inputs, then gene A is said to be canalised by gene B.

Canalising functions are noteworthy for two reasons: they are more representative of the

logical functions implemented by real regulatory networks (Harris et al., 2002); and they

improve the robustness of network behaviour, again increasing the parameter range over which

non-chaotic behaviour is observed (Kauffman et al., 2004). Specifically, it has been suggested

that for Boolean network models of observed gene regulatory systems, using canalising Boolean

functions produces behaviour that is stable while remaining close to criticality (Kauffman et al.,

2003; Balleza et al., 2008); in contrast, a purely random selection of functions in otherwise

similar networks is more likely to result in instability.

Logic networks

Generalised logical network models are a more descriptive relative of RBNs that aim to provide

a standard method for describing regulatory interactions (Thomas, 1973) using either Boolean

or multi-valued logic (Thomas and Kaufman, 1995). These networks are distinguished from

simpler Boolean network models primarily by multi-value logic, asynchronous continuous-time

dynamics and time-delay effects. Generalised logic networks provide a framework for modelling

systems with multiple threshold-dependent effects (rather than the single threshold afforded

by Boolean models) or for which timing effects are important.

Generalised logical networks have been used to study regulatory system behaviour in ab-

stract terms (e.g., Mestl et al., 1995; Edwards and Glass, 2000), and also to model specific sys-

tems. Examples of biological systems models constructed using this paradigm include phage-

λ (Thieffry and Thomas, 1995) and flower morphogenesis in Arabidopsis thaliana (Espinosa-

Soto et al., 2004).

Differential equation models

The Boolean approximation makes the assumption all genes are saturated either ‘on’ or ‘off’.

However, gene expression levels and product concentrations are continuous, rather than binary

and genes may have different regulatory effects at different levels of expression. An alternative

approach to modelling GRNs in situations where more precise concentration levels may be

important is to use differential equations (DEs).

In a DE model, a system’s state is described by a list of continuous variables representing

gene expression levels. The transitions between states are defined in terms of update functions

describing how gene expression levels change over time (see Figure 3). These functions can

describe linear control, where the expression of a gene at time t + δt depends linearly on a
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weighted sum of expression levels at time t (Chen et al., 1999; D’haeseleer et al., 1999). More

plausibly however, the interactions between components in real systems are nonlinear. In a

nonlinear DE model, the weighted sum is modified by some transfer function, often sigmoidal in

shape (Weaver et al., 1999). The resulting models can bear many similarities to connectionist

models of neural systems (Hertz et al., 1991; Mjolsness et al., 1991; Wahde and Hertz, 2001;

Vohradský, 2001).

DE models have several advantages over logical models. In principle, their more detailed

representation of regulatory interactions provides a more accurate representation of the physi-

cal system under investigation. Additionally, there is a large body of dynamical systems theory

that can be used to analyse such models (Strogatz, 1994). For example, bifurcation analysis

provides tools for determining the critical values of parameters at which the behaviour of a

system undergoes a qualitative change (see Figure 3 (b)). As with logical models, analysing

DE models in terms of their dynamical properties can reveal how switches, oscillators and more

complex behaviours are produced from network-level features such as interacting positive and

negative feedback loops (Tyson et al., 2001, 2003; Angeli et al., 2004).

Compared to logical approaches, a disadvantage of DE models is that they contain a large

number of kinetic parameters, while the number of systems for which detailed parameter

values are known is very small, mostly restricted to very simple organisms such as phage-

λ (Shea and Ackers, 1985). One approach to dealing with unknown parameter values is to use

numerical analysis or computational learning techniques to fit the models. This approach has

been successfully adopted in models of cell cycle control in Xenopus (Novak and Tyson, 1993)

and the segment polarity network in Drosophila (von Dassow et al., 2000). In both cases,

the models resulted in the formation of hypotheses about kinetic parameters or interactions

that were later experimentally verified (von Dassow and Odell, 2002; Tyson et al., 2002).

A further discovery resulting from this approach was that the dynamical behaviour of the

segment polarity network was remarkably robust to variations in the parameter values (von

Dassow et al., 2000). Similarly robust behaviour was observed for the signalling network

containing the Notch-Delta pathway involved in Drosophila neurogenesis (Meir et al., 2002).

Despite being more detailed than logical models, DE models also make certain idealised

assumptions about the systems they are studying. One simplifying assumption made by many

DE models is that the relationship between rates of gene transcription and concentrations

of active gene products is a linear one. However, the gene expression process is known to

be highly complex, and regulation may exist at many stages of the expression process, in-

cluding chemical and structural modification of DNA, gene transcription, post-transcriptional

modification, transport and degradation of mRNA, translation and post-translational modi-

fication (Orphanides and Reinberg, 2002). Not only may each of these stages be regulated

independently, but the time delays inherent in these processes may have significant effects on
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system dynamics, such as transforming steady states into oscillations (Mahaffy and Pao, 1984;

Mahaffy, 1988; Smolen et al., 1999; Monk, 2003). One approach to relaxing this assumption

is to explicitly incorporate such mechanisms in a model, for example, by including additional

terms corresponding to protein degradation, or by modelling transcription and translation as

discrete processes in which the production of messenger RNA depends upon the concentrations

of protein transcription factors and the production of proteins depends on the concentrations

of messenger RNAs (Vohradský, 2001; Goutsias and Kim, 2004). An alternative approach is

to disregard the precise details of these intermediate processes but to introduce time delays

accounting for the time they require (Zhu et al., 2007).

A second assumption of many DE models is that genes are expressed and proteins pro-

duced at a continuous rate. Again, this assumption does not always hold: in systems where

the number of molecules involved is very small, the production and movement of individual

molecules may be important. One possibility for modelling such systems is to use stochastic

approaches.

Stochasticity

An implicit assumption made by many modelling approaches is that variation in product

concentrations is smooth and control decisions are deterministic. In reality, the biochemical

reactions in a GRN are subject to noise from both intrinsic and extrinsic sources. Low concen-

trations of regulatory molecules in a cell can cause reaction rates to fluctuate, and the products

of gene transcription appear not continuously but in probabilistic bursts, leading to intrinsic

noise (McAdams and Arkin, 1997; Thattai and van Oudenaarden, 2001). Extrinsic noise arises

from the stochastic behaviour of other molecular species in a GRN’s cellular context (Swain

et al., 2002). In general, genes are activated when the concentration of signal molecules crosses

a threshold. If the time taken for a concentration to reach its critical threshold varies, indi-

vidual cells in a population may take different branches of a regulatory pathway and exhibit

different behaviours. In some instances GRNs are buffered against this variation, and are ca-

pable of translating noisy inputs into ordered output (von Dassow et al., 2000). In other cases,

this variation seems to be exploited by an organism to, for example, maintain an adaptive

immune response, or ensure an appropriately diverse complement of sensory receptors (Rao

et al., 2002; Losick and Desplan, 2008).

Several different stochastic modelling approaches have been proposed using both logical and

DE formalisms. In the domain of logical models, one criticism of the standard RBN model is

based on its use of deterministic synchronous updating (i.e., all nodes are always updated at

each time step) which can be considered unrealistic. Relaxing this assumption introduces a

level of indeterminism that, without other modifications, prevents the appearance of oscillating
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attractors (Klemm and Bornholdt, 2005). However, asynchronous variants of the RBN model

have since been introduced (Di Paolo, 2001; Rohlfshagen and Di Paolo, 2004; Klemm and

Bornholdt, 2005), and used to model the yeast cell cycle (Braunewell and Bornholdt, 2007;

Davidich and Bornholdt, 2008b).

In the domain of DE models, one approach is to use stochastic differential equations, which

extend the standard differential equation description of reaction dynamics to include a noise

term (Rao et al., 2002). This equation can then be reformulated into a version describing

the time evolution of a system in terms of a probability density function, or it can be sim-

ulated numerically using Monte Carlo methods. A characteristic of this approach is that

concentrations are treated as continuous variables, which may not be appropriate if the num-

ber of signal molecules is very small (Rao et al., 2002). The stochastic simulation algorithm

addresses this concern. Rather than considering rates of reaction, it focuses on individual reac-

tion events, assigning each event a probability of occurring in a particular time slice (Gillespie,

1977, 2001). While mathematically simple, the resulting equations are typically too large to

be feasible solved, therefore numerical simulations are repeated many times in order to esti-

mate the probable behaviour of the system. This formulation has been applied to modelling

transcription in yeast (Blake et al., 2003; Raser and O’Shea, 2004), the mammalian circadian

clock (Forger and Peskin, 2005) and the dynamics of differentiation to competence in Bacillus

subtilis (Süel et al., 2007).

Both stochastic differential equations and the stochastic simulation algorithm are very com-

putationally intensive, due to the requirement for multiple runs in order to estimate aggregate

behaviour. One suggested method for increasing efficiency is to replace complex multi-step

processes with time delays (Zhu et al., 2007). Another recently proposed technique to circum-

vent the multiple-run requirement uses pairwise comparisons to estimate covariance between

the stochastic fluxes affecting reactants, resulting in equations solvable by standard numerical

techniques (Goutsias, 2007).

Hybrid models

The hybrid approach to modelling recognises that real networks are characterised by a mixture

of both discrete and continuous elements; for example, whereas a transition in cell behaviour,

such as the onset of mitosis, is largely discrete, the concentration of a gene product may vary

in a continuous fashion. In hybrid models, such dichotomies are addressed by incorporating

elements of both the logical and continuous approaches to modelling. Again, the choice of which

elements to implement as discrete versus continuous will be influenced by the target question

and available data. However, the introduction of discrete values can simplify the control logic

of a model, and potentially also reduce computational cost. The phage-λ model of McAdams
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and Shapiro (1995) and single sea urchin gene model of Yuh et al. (1998) are examples of early

models incorporating both discrete and continuous elements that were inspired by the control

logic of electrical circuits. The latter model has since been extended to encompass the network

of over forty genes involved in endomesoderm specification in the sea urchin embryo, making

it one of the most completely characterised GRNs to date (Davidson et al., 2002; Ben-Tabou

de-Leon and Davidson, 2007; Oliveri et al., 2008).

Several general frameworks for hybrid modelling of GRNs have also been proposed. Such

approaches typically retain a continuous representation of time and product concentration,

while expressing control logic in a discrete fashion. General hybrid modelling formalisms

include the finite state linear model (Brazma and Schlitt, 2003), piecewise deterministic Markov

processes (Kouretas et al., 2006), and piecewise-linear models (de Jong et al., 2004b), which

have been applied to modelling the initiation of sporulation in Bacillus subtilis (de Jong et al.,

2004a).

Multicellularity and space

A special consideration for models of developmental systems is the requirement for a multi-

cellular perspective (Bolouri and Davidson, 2002). Although each individual cell contains the

same genome—and hence the same gene network—the state of gene activation may vary be-

tween cells as localised signals cause diverging dynamic trajectories. Also, while many signals

will operate intracellularly (i.e., upon other parts of the gene network in the same cell in which

they are created), others may operate intercellularly (i.e., on parts of the gene network in sur-

rounding cells). Thus, not only must the dynamical behaviour of any given cell be regulated,

but it must also be coordinated with the behaviour of its neighbours.

One issue that must be addressed in multicellular models is the manner in which GRNs

in neighbouring cells influence one another. One set of mechanisms requires physical contact

between cells, with signals mediated by molecules bound to the cell membrane, or coupling

via gap junctions. In GRN terms this can be represented by cross-regulatory interactions, in

which the products produced in one cell are defined to influence receptors in neighbouring

cells (e.g., von Dassow et al., 2000; Smith et al., 2007; Bolouri, 2008) (see Figure 4). An

alternative signalling mechanism is via morphogens—a class of signalling molecule capable of

providing cells with positional information. Emitted by a source, morphogens are diffusible

molecules that set up a gradient to which cells then exhibit a concentration-dependent re-

sponse (Wolpert, 1969; Mjolsness et al., 1991; Meinhardt and Gierer, 2000).

Theoretical studies using ensembles have compared the types of patterns exhibited by GRNs

where interactions between cells occurred via either hierarchical or reciprocal fashion (Salazar-

Ciudad et al., 2000). A key finding of this research was that, in the same way that ordered
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behaviours such as attractors can be robustly obtained from arbitrary networks satisfying

certain topological constraints, so too can ordered spatial patterns. Furthermore, complex

spatial patterns could be reduced to a combination of simpler modules, suggesting that, like

control motifs in networks, evolution has assembled complex phenotypes from simpler building

blocks.

During development, cells not only change their internal state and interact chemically, they

also change their physical form and interact in a mechanical fashion. These morphogenetic

mechanisms include differential growth rates across a cellular field, cell migration, apoptosis

and differential cell adhesion (Salazar-Ciudad et al., 2003). These physical changes to the

conformation of cells can influence a GRN’s dynamics by changing its environment, and the

external signals it receives, over the course of development. An accurate depiction of morpho-

genesis can demand more complex models in which a GRN is supplemented by a morphogenetic

model. The construction of simulation environments that reflect the complexity of develop-

ment whilst remaining computationally tractable is an area of ongoing research (Cickovski

et al., 2005; Merks et al., 2006).

Conclusion

Understanding the dynamic behaviour of GRNs is central to our understanding of development

and of developmental diseases. Dynamical systems models are important tools for this task,

driving both the discovery of new theoretical insights and the integration of new sources

of empirical data. Models of GRNs assist us both to understand the intricate patterns of

interaction within a regulatory system, and to investigate the system’s response to internal

and external perturbations. The robustness of this response informs us about the tolerances

that a system has evolved, and the failure of this robustness can be viewed as a precursor

to systemic diseases such as cancer (Kitano, 2003, 2004), as well as abnormal developmental

pathways (Albert and Othmer, 2003).

Current challenges in dynamical models arise from a number of sources. New modelling

methodologies are needed to facilitate the construction of more computationally efficient mod-

els that are able to cope with the realities of stochasticity and morphological complexity on a

larger and more detailed scale. Many questions still remain about the trade-offs between relia-

bility and efficiency inherent in robust systems. Similarly, elucidating the role that modularity

plays in the organisation of GRNs remains an open question. Perhaps the most challenging

avenue, and one offering some of the most promising developments, is the further integration

of theoretical models with real systems. The arrival of new types of experimental data and the

discovery of new regulatory mechanisms poses a challenge for theoreticians to integrate this
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knowledge into their models. In exchange, the development of more sophisticated techniques

for the analysis of network dynamics will provide empiricists with better tools for interpreting

the behaviour of the systems they study.
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Figure 1: A typical figurative representation of a gene interaction—gene A produces product A′,

which exerts a regulatory influence on gene B (top left), its network-based analogue (bottom left)

and a whole regulatory network (right).
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Figure 2: A three-node RBN with the logical updating functions of its nodes (left) and the corre-

sponding state space (right). Nodes in the state space with self-loops are the network’s attractors;

connected sets of nodes are basins of attraction.
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Figure 3: A DE model of a simple three-node network. (a) The network wiring diagram and

update functions. Black/red arrows indicate activatory/inhibitory regulation. The update equation

describes how xi, the expression level of gene i, changes over time, where: wij represents the level of

influence that gene j has on gene i; θi represents the basal level of expression of gene i, and k1i and

k2i are constants representing, respectively, the maximum expression level and degradation rate of

gene i. σ is the logistic sigmoid transfer function. (b) A bifurcation diagram showing the ranges of

θ for which the network exhibits fixed point and periodic behaviour; The minimum and maximum

values of xB for each value of θ are plotted on the vertical axis. The two red bars indicate the

time courses shown in plots c and d. (c) θ = 1.8: After a transient period, the network settles to a

stable fixed point. (d) θ = −0.8: After a transient period, the network settles to a stable periodic

oscillation. Parameter values for all simulations: wAC = −10.0;wAB = wBA = wCB = 10.0;wCA =

wCB = wAA = wBB = wCC = 0.0; k1 = k2 = 1.0 for all i.
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Figure 4: A GRN embedded in one-dimensional cellular space. This wiring diagram illustrates

cellular communication taking place by way of inductive signals between neighbouring cells.
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