Requirements-Based Test Generation: An
Industrial Perspective

Paul Baker?, Paul Bristow?, Clive Jervis?, David King?, Bill Mitchell!, Robert
Thomson?

! w.mitchell@surrey.ac.uk, Department of Computing, University of Surrey,
Guildford, GU2 7XH, UK
2 {paul .baker, paul.bristow, clive.jervis, David.King,
brt007 }@motorola.com
Motorola Labs, Jays Close, Basingstoke, RG22 4PD, UK

Abstract. This paper discusses our experience with the deployment of
requirements-based test generation within a large industrial setting. In
doing so, we present an overview of our technologies and changes to the
technical approach needed to aid deployment, specifically the introduc-
tion of requirements validation.

1 Introduction

Like many other large industrial organizations Motorola is looking to reduce the
cost and time required for the development of systems and software. In doing
S0, increased emphasis is being placed on reducing costs related to testing and
inspection activities, by introducing automation and reuse into the development
process. Automation is enabled by the development of abstract, yet rigorous
models, throughout the development process, and reuse generally through the use
of standards and common frameworks. In this paper, we present our experiences
in trying to deploy automation through model-based development technologies
that support standard notations, such as Message Sequence Charts (Message
Sequence Charts (MSCs) [8], UML 2.0 Sequence Diagrams [16], and TTCN-3
[5]. In particular, technologies that reduce the:

— time to develop conformance test plans and test suites, through the auto-
matic generation of tests from scenario-based requirement and architecture
specifications — automatic test generation.

— cost of appraising requirement specifications by introducing technologies that
automated the discovery of defects — requirements based validation.

1.1 Automatic test generation

Experience has shown that during the development of telecommunication soft-
ware as much as 40-75% of the resources are spent on testing [2/6]. The benefits of
automatic test generation can reduce the cost of producing and maintaining test



cases, as well as improving test coverage and test quality. Test generation tools
produce comprehensive sets of test scripts from a user-defined high-level repre-
sentation, or test model, of the system to be tested. There are several choices
for the language used for describing the test model, and there are different test
script generation tools for each language [7].

All test generation tools perform a comprehensive analysis of the supplied
test model in order to produce a set of tests. Typically, they attempt some kind
of exhaustive exploration of the test model. If the process is exhaustive, then the
set of tests produced is functionally complete relative to the test model. That is,
if the system under test passes all of the generated tests, then we can be certain
that it has the precise behaviour specified by the test model.

Even simple test models have the capability of generating very high num-
bers of tests, and are often potentially infinite. Therefore, test generation tools
generally employ some method of constraining the exploration of the test model
in order to produce a finite but reasonable set of generated tests. Thus, a user
generally has to supply a set of constraints along with the test model to the test
generation tool. Clearly, the definition, or selection, of constraints is critical to
the adequacy of the generated tests.

The key benefits of using automatic test generation are:

— Reduced time and effort needed for producing test suites;
— Greater test coverage;

— Improved test suite quality;

— Easier test maintenance;

— Reduced opportunity for introducing defects.

Generally, the cost of constructing a test model and any constraints is far
less than the cost of hand producing an equivalent test suite. Indeed, the number
of tests produced by an automatic test generation tool is far higher than that
normally produced by hand. This is because cost and time restrictions, and
possibly complexity issues, imposed upon hand produced tests usually lead to
‘representative’ tests being written only. Whereas, the exhaustive nature of auto-
testing tools mean that many, possibly all, variations of each basic test are
generated. This leads both to greater coverage of the system under test, and
greater quality of testing. The improvement in quality is both a subtle and an
important point to note.

Since test generation tools tend to blindly explore all possible scenarios de-
scribed by the test model (except any restricted by supplied constraints) they
can, and do, uncover unforeseen combinations of events that are not always con-
sidered by the human tester. By their nature, such cases are more likely to have
been incorrectly implemented in the system under test; thereby increasing the
value of the obscure tests produced by test generation tools, hence our claim of
improved quality.

This paper introduces techniques for automating the generation of confor-
mance test suites from requirements and architecture specifications based upon a
model-based development process. Where, specification models are typically de-
fined using graphical scenario-based languages, such as Message Sequence Charts



(MSCs) and UML 2.0 Sequence Diagrams. These have been implemented in the
ptk [4] tool. In the paper we describe some of our experiences with its deploy-
ment.

1.2 Requirements-based validation

Recent studies indicate that 50 percent of test failures are caused by defects found
in the requirements [15], and these defects can cost, sometimes 100 times more
to fix in the development phase, than if they were fixed in the requirement or
design phase [3]. Therefore, great effort is expended conducting Formal Technical
Reviews (FTRs) [14], or appraisals, as a means for discovering such defects earlier
within the software lifecycle. To date, however, appraisals generally rely upon
manual analysis, with few (if any) tools for enabling the automated detection of
defects. As a consequence early defect discovery is becoming a key focal point
in reducing development costs.

This paper introduces techniques for automating the discovery of defects
found within requirements and architecture specifications, typically defined to-
day. Where, specifications are developed using Message Sequence Charts (MSCs)
and UML 2.0 Sequence Diagrams. We describe some typical properties that man-
ifest themselves as defects, discuss some of the issues relating to partial models,
and some preliminary results from automating their detection, using a new tool
called Mint. By using this tool we can start to consider moving testing earlier
within the development lifecycle.

2 Process Overview

System System/
; Integration
Requirements Testing

Component ‘ p | Unit/Box
Requirements Testing

- . Target
RN Implementation

Fig. 1. Process Overview

Figure [1] typifies a development process in which requirements are firstly
constructed using a combination of textual and graphical notations, sometimes



including scenario or use-case based models defined using MSCs or UML dia-
grams. After construction of the requirements appraisals are conducted to check
their validity and to identify possible defects in the specification. When com-
pleted, requirements are then handed off to different teams who then refine and
decompose requirements, pertinent to the component concerned, using a simi-
lar methodology to that used for the construction for the initial requirements.
After the definition of requirements, design models are developed that are not
only subject to appraisal, but are sometimes verified against the requirements
using simulation techniques. Code is then automatically generated from design
models, which is then executed on the target platform.

During or after this part of the process tests are manually derived from
the requirements for unit, integration, and system testing. It is this manual
process of generating tests that gave us our initial focus. By using the graphical
models developed during these requirements as a basis for test generation we
developed the ptk tool [4] to perform comprehensive, yet user-friendly, analysis
of behaviours thereby performing a range of analyses for test planning and test
suite generation. More recently, we have been evaluating the Mint tool as a
means for identifying defects during the appraisal of requirements.

3 MSC/UML Sequence Diagram Semantics

It is not within the scope of this paper to give a full description of all the current
constructs for MSC/UML sequence diagrams. In this section we will give an
informal description for the constructs found in the examples of the paper.

Within a UML 2.0 Sequence Diagram [16] process life-lines progress non-
linearly down the page. So that an event on one life-line that is visually later
than an event on another life-line is not necessarily temporally later. In UML 2.0
the visual ordering can be forced by adding the strict keyword to the diagram
header. In this paper, however, we do not consider strict diagrams.

In this paper we are concerned with technologies that are applicable to com-
munications protocols. We therefore give UML 2.0 Sequence Diagrams the ITU
MSC-2000 semantics [8]. Hence, messages are taken to be asynchronous, latency
is assumed to be arbitrary and there are no queuing semantics associated with
message channels. This means, for example, message overtaking is possible. A
message is regarded as a pair of events, a send event and a receive event. In
accordance with the ITU TTCN-2 standard [10] we define the send event for
message m as !m and the receive event as ?m.

A parallel construct, denoted by PAR, describes a set of concurrent threads
that occur in the sequence diagram. Figure 2 gives an example of a diagram con-
taining two parallel constructs. The first parallel construct contains messages a,
b and ¢, which can occur in any order since they are in separate threads. Con-
current threads in a parallel construct are delineated by dotted lines. An inline
reference, denoted by REF, is a place holder for another sequence diagram. The
reference can be replaced by the contents of the other sequence diagram if de-
sired. The reference is weakly composed with the referring diagram when inlined.



Figure 2 contains an inline reference spanning processes A through D. The al-
ternatives construct, denoted by ALT, denotes mutually exclusive alternatives,
which are delineated by dotted horizontal lines. Figure 13 shows an alternative
construct with two mutually exclusive choices. Figure 13| also shows an iterative
loop, denoted by loop, which continues indefinitely until the events within the
break construct occur. The iteration has weak compositionality semantics. This
can result in the processes within a loop becoming unsynchronized, and execut-
ing different iterations at a given moment unless there is sufficient coordination.

The traces of a sequence diagram are given by constructing all possible inter-
leavings of the events from the processes in the diagram (after inlining referenced
diagrams) that are consistent with the implied temporal ordering defined by the
diagram. For a precise definition see the ITU MSC-2000 standard [§].

A basic sequence diagram is a diagram whose trace semantics can be defined
solely in terms of a single partial order on the events in the diagram. This partial
order is known as the causal order. The traces of a basic diagram are precisely
the set of total orders on the events in the diagram that are an extension of the
causal order. Hence, for any trace T of sequence diagram S, an event e; can
occur earlier in the trace than another event es if and only if e; % €2, where <
is the causal order of S. Diagrams containing the alternative construct, for ex-
ample, are not basic diagrams since each alternative requires a separate partial
order to define its trace semantics. Similarly diagrams containing unbounded
iteration are not basic. Examples of diagrams that are basic are any that only
contain messages, internal actions, states, continuation symbols, process creation
and destruction and the parallel construct. Note this categorization is not com-
plete. For this paper we allow sequence diagrams to contain any basic diagram
construct, together with loops and alternatives.

When a sequence diagram is not iterative it contains only finitely many alter-
native branches. Replacing each alternative construct with one of its mutually
exclusive choices defines a basic sequence diagram representing one particular
combination of all the alternatives. The union of the traces from these basic
sequence diagrams is exactly the set of traces from the original diagram. There-
fore a general non-iterative sequence diagram can be identified with a finite set
of basic sequence diagrams, up to trace equivalence. In the case of unbounded
iterative diagrams we can replace the diagram by an infinite sequence of non-
iterative diagrams, where each finite diagram is given by unfolding each iteration
a finite number of times. Therefore we can regard any sequence diagram as a
(possibly infinite) set of basic sequence diagrams, up to trace equivalence. See
the ITU MSC-2000 standard [§] for further details.

A consequence of alternative and loop constructs in UML 2.0 Sequence Dia-
grams is that the general property checking problem is undecidable for arbitrary
sequence diagrams [1].

4 Related Work

Here we summarise some software tools related to Mint and ptk.



— MESA [I1] - was originally developed by Stefan Leue et al, at the University
of Waterloo, and is now maintained at the University of Freidburg. MESA
provides an MSC editor, and can detect non-local choice, timing consistency,
and can also generate Promela for Spin [5] process modeling. MESA is mainly
a research vehicle, and is currently only available for non-commercial use.

— UBET [12] - was developed in Bell Research Labs, and Lucent Technologies.
UBET provides an MSC editor, and can graphically highlight race condi-
tions and timing violations in an MSC. The user is able to select different
queuing semantics for these checks. UBET also can be used to generate test
scripts in MSC and process models in Promela, the language of the Spin
verification tool. UBET can also generate test cases in MSC, but ptk is more
advanced in supporting several test generation algorithms, and several test
script languages including TTCN-3.

— AutoLink [17] - is a test generation tool that must be used with Telelogic
Tau [18]. AutoLink generates one test case per trace in TTCN-2 from either
MSCs, SDL models, or both. AutoLink is a semi-automatic test generator,
and is typically harder to use than ptk. It is less sophisticated in the MSC
constructs that it can handle than ptk, and doesn’t support a variety of test
strategies.

5 Requirements

Automated test generation relies on the initial requirements sequence diagrams
being semantically consistent. This is equally important when requirements sce-
narios are used for developing architecture models. For these reasons Motorola
has developed a tool, Mint, to automatically detecting pathologies in MSC and
UML 2.0 Sequence Diagrams.

The current tool detects a variety of pathologies that make a sequence dia-
gram semantically inconsistent. In a distributed environment each time-line in
a sequence diagram should completely describe the expected behaviour for the
associated process. It is possible within a sequence diagram to specify global
behaviour that may not be a result of the concurrent local behaviour from each
process. Certain kinds of global behaviour may only be achieved through implicit
access to some global state that might not exist in a distributed environment.
Below we list a number of ways this can occur that are detected by the Mint
tool. The pathologies detected by the current Mint tool are:

— Blocking Conditions. These are a form of race condition. They describe a
discrepancy between the message ordering specified in the requirements sce-
nario and the order that events can occur in practice.

— Non-local Choice. These pathologies occur where independent processes must
take non-deterministic mutually exclusive actions without sufficient coordi-
nation to guarantee exclusivity.

— False-underspecification. These occur where the local order for a process is
weaker than the implied global order for the whole scenario. Therefore the



behaviour for an individual process can not be inferred from the specification
of the process alone.

— Non-local Ordering. These occur when events on separate lifelines are ordered
with constructs that can not force the ordering to occur in practice. For
example, if a general-ordering arrow is used between events on separate
lifelines.

The first two pathologies are the most serious and will be considered in more
detail in the next sections. The last two are more minor and were not detected
during the case study discussed in section 5.3, We will therefore not discuss these
further here.

5.1 Blocking Conditions

Blocking conditions are a form of race condition. We prefer the term blocking
condition because this is closer to the process behaviour when such pathological
MSC specifications are implemented.

Definition 1. Let S be a basic MSC/UML sequence diagram with causal order-
ing <, as defined by ITU MSC semantics. We define S to be block free when for
every event x in S and every message n where x #!n, if © <?n then x <!n.

Figure 2, which is anonymized from an example in a Motorola case study,
gives an example of a blocked sequence diagram. The original diagram describes
traffic channel allocation and activation between various processes. Process A
has delegated the task of determining what resource to allocate to process B.
This example contains multiple blocking conditions.

Notice that event 7al is blocked by event !b, for example. This is a block-
ing condition since !b <7al, but it is not true that b <!al. We can see that in
practice there can be no guarantee that the specified behaviour will occur. With-
out additional messages to coordinate their actions processes B and C' have no
mechanism to force !b to occur before ?al. Without knowledge of B’s behaviour,
process C' is effectively blocked from proceeding, hence our choice of name for
the pathology.

In total we have the following blocking conditions. Event ?al is blocked by !b
and by !c. Event ?¢2 is blocked by !a and !b. Also event 752 is blocked by !a and
lc. In total there are six blocking conditions in this diagram. Note one simple
way to remove these blocks would be to regroup the messages within a single
parallel construct. Messages a and al could presumably be grouped within the
same thread of a parallel construct. Similarly b, b1, b2 and the inline reference
could be grouped in a second thread. Finally ¢, c¢1 and ¢2 could be grouped in
the third thread.

Definition 2. Let S be a basic sequence diagram with causal order < containing
a blocked event. That is there is an event x and message n where x <?n but
x £In. If there is some event y such that y < x and either y <!n, or y lies on
the same instance as 'n then we say the block is resolvable.



PAR ]

ref
another_sequence_diagram

b2()

dQ

Fig. 2. Case study example with multiple resolvable blocking conditions.

The motivation for this definition is that often message latency is known
at a given point in a protocol. If there is a chain of messages from a common
source leading to the processes involved in a block, then this latency information
could in principle be encoded in the message parameters. In which case it is now
possible for the processes to coordinate their messages. In figure[2/all the blocking
conditions are resolvable since !a0 is a common ancestor to all the other events.
Given that this situation often arises in the communications domain, the Mint
tool distinguishes between resolvable and irresolvable blocking conditions.

In general MSC/UML sequence diagrams do not have a simple semantics as
a single partial order.

Definition 3. Let S be a general sequence diagram. Let S be represented by the
set of basic sequence diagrams BS. That is the set of traces for S is the union of
the traces of the basic sequence diagrams in BS. Then S is block free if and only
if every basic diagram in BS is block free.

Definitions 2/ and 3| are equivalent when S is a basic sequence diagram charac-
terized by a causal order.

Unlike general property checking problems, checking for blocking conditions
is decidable for arbitrary iterative sequence diagrams due to the following theo-
rem. For a sequence diagram S, let S(2) be a sequence diagram that describes
the behaviour of S restricted so that each unbounded loop is only permitted to
iterate at most twice. It is possible to construct S(2) algorithmically. Although
S(2) only contains initial behaviour from S it contains exactly enough behaviour
to preserve any blocking conditions that were in S. Note S(2) is finite.



Theorem 1. Let S be a general sequence diagram that may contain loop con-

structs. Then S is block free if and only if S(2) is block free.

We do not have space to include the proof of theorem [1/ here, but it follows from
results in [1] and observing a certain link between their bounding conditions and
the definitions for blocking above.

loop

a()

b()

break |/

dQ

e()

fQ

ALT

Fig. 3. Case study non-local choice example contained in loop

Hence by theorem (1, for the purposes of detecting blocking conditions, we
may assume a sequence diagram does not contain any infinite traces. A finite
sequence diagram .S can be represented by a finite set of basic sequence diagrams
S; for 1 < ¢ < n, as outlined in section 3. Diagram S is block free if and only
if each of the S; are block free. Hence we may apply definition 1] to the causal
order for each .S; in turn to decide if S is block free.

Figure 3| contains multiple examples of blocking conditions caused by a loop.
As mentioned in section 3, processes in loops are not forced to synchronize at
the end of each iteration. For example, in this case the diagram does not impose
any synchronization between A and B. The diagram specifies that A must wait
to send each a event until B has sent the b message from the previous iteration.
However, there is no coordination mechanism given in the diagram to force this
to occur, which is the cause of one of the blocking conditions. Similarly there
are blocking conditions between B and C, and C' and D.

The Mint tool constructs the causal orders for the set of basic sequence dia-
grams that represent a general diagram. Each of these is analyzed for blocking



conditions and suitable reports are then generated. The Mint tool reports re-
solvable blocking conditions as a warning, but irresolvable conditions as errors.

5.2 Non-local Choice

AT J
a()
b()
cQ
dQ
e
fQ
90
R e S N e
) i)
i0
N e T N N N
10
m()
ref another_sequence_diagram
\ \
AL ! !
) More Behavi our N
Even More Behavi our N

Fig. 4. Case study example with multiple non-local choice

An event is active if the process that the event belongs to can choose when
that event occurs. A non-local choice occurs in a sequence diagram when there
is a non-deterministic choice of mutually exclusive active events that belong to
separate processes. This implies there is some global mechanism for ensuring only
one of the processes can execute. Figure3/is an anonymized version of a diagram
from an internal case study within Motorola. In figure [3/ there is a simple non-
local choice between event !g and !h. However there is a more subtle non-local
choice between !a and !d. The !d event should terminate the loop, but there is



nothing to stop A repeatedly sending event a until f is received. Therefore, due
to latency, !a may occur multiple times before ?f occurs, leading to potential
deadlock.

The original diagram defined how process A can buffer excess data with
process D when A’s own buffer is full. The loop breaks when D’s buffer also
reaches capacity. At some later stage D again has spare capacity in it’s buffer
and signals A that this is the case.

Definition 4. Active events x and y cause a non-local choice if there is a trace
prefix t such that:

1. x and y lie on distinct instances;
2. tx and ty are both valid trace prefixes;
3. txy is NOT a valid trace prefix.

Note according to this definition even with guards placed at the appropriate
places in figure 3/ non-local choice conditions would still arise. This time however
the non-local choices would be between the guard conditions. In practice it is
not generally possible to know whether such guards can be guaranteed to be
mutually exclusive since the conditions are essentially arbitrary. The current
Mint tool reports non-local choice conditions as errors, except when they occur
between guards. In that case they are reported as warnings.

Figure 14/ is another example showing multiple non-local choice conditions.
The original diagram described various cases of exceptional behaviour and how
the system should fail gracefully in these cases. In the original diagram A is
attempting to initialize various other processes, which may fail. The original di-
agram described how these failures can occur and how to mitigate them. Which
alternative is chosen in practice is determined by global meta-conditions con-
cerning the configuration of the whole system. In figure 4/ there are non-local
choices between process A and process B. A initiates the first two alternative,
whereas in all the others process B initiates the alternatives.

5.3 Mint Evaluation

The Mint tool is new and still undergoing evaluation with a number of Motorola
engineering groups. Recently it has been applied in a case study of UML 2.0
sequence diagram specifications for part of a communications protocol stack.
Mint was applied to approximately a hundred and fifty sequence diagrams and
detected numerous pathologies. After filtering trivial pathologies those remaining
fell into the following categories:

— 6 diagrams containing multiple non-local choice conditions

— 2 diagrams containing multiple non-local choice conditions between break
and loop constructs

— 5 diagrams containing multiple resolvable blocking conditions caused by loop
constructs

— 1 diagram containing an irresolvable blocking condition



— 1 diagram containing multiple resolvable blocking conditions between differ-
ent parallel constructs

Figures 2, [3 and 4/ are anonymized versions of examples taken from those listed
above. Other groups currently using Mint on protocol stack design have reported
similar findings, and subsequently modified their specifications to remove the
defects. In summary Mint appears to be successful at detecting semantic incon-
sistencies in industrial size case studies, and has been found valuable by groups
who have used it.

6 Test Generation

In this Section we give a brief overview, and some experiences of test generation
in Motorola, with the ptk tool. More details on ptk are available from [4].

Over the last seven years, since circa 1997, our group has developed, ptk,
which derives conformance test suites from MSC specifications. This has proved
to be a popular tool, used by several groups within Motorola for functional
testing parts of standard telecom protocols such as TETRA, GSM, and CDMA.
On average, ptk user’s have reported a 33 percent reduction in effort compared
to writing tests manually, and they also report a greater quality of tests. These
figures account for ptk’s popularity with an increased emphasis on reducing the
costs and improving quality.

ptk takes as input a collection of MSC specifications along with data spec-
ifications called Protocol Data Units (PDUs), and information specific to test
generation such as what part of the MSC represents the Implementation Under
Test (IUT). There is support for almost all of the MSC-2000 language, as well
as support for several data languages. Originally, ptk generated test suites in
SDL [9] for TETRA. Since then, ptk has been enhanced to generate test suites
for some Motorola proprietary languages, and also standard test languages such
as TTCN-2 [10], and now TTCN-3 [5]. In addition to generating test scripts in
these languages, there is also support for analysing the MSC and test seman-
tics, and static checks on the data. Data may be placed on the MSC in message
parameters, etc, and in separate PDU files. Data languages supported include
TTCN-2, TTCN-3, and some proprietary languages. Syntax checking and con-
sistency checks, such as checking if declarations are given is performed on the
data.

6.1 Black box testing

ptk derives black-box tests, where some MSC instances are labelled as the black-
box or Implementation Under Test (IUT), and the remaining instances are con-
sidered as the test system. This is illustrated in Figure 5 where the IUT is given
as instance B. Information such as the IUT and other information relevant to
test generation may be placed inside a textbox as in Figure |5, or in a separate
file. The test or tests that are derived will contain all message events that inter-
act with the IUT (such as receive = and y, but not events on the IUT (such as



send x and y), or events that don’t interact at all with the IUT (such as message

A B ‘ C ‘

/*<
1UT B
>* [

x0

y0 L

20

Fig. 5. Test generation example.

6.2 Local vs. Remote testing

There is a choice in black-box testing between generating tests from the perspec-
tive of the IUT (called local testing), and from the perspective of the test system
(called remote testing). With remote testing the order of events is consistent
with that of the MSC semantics for the whole MSC. The local testing approach
is to consider the order of events inside the IUT itself, and derive tests based
on this order. Local testing can generate the same tests, or fewer, or more tests
depending upon the example. With local testing it is possible to generate an
order of events that is not consistent with that in the MSC semantics, it is as if
the test system is representing the possible message latencies. See [4], for more
details about local and remote testing.

6.3 Test strategies

Three test strategies are possible with ptk, as well as generating tests for a single
processor, or for parallel architectures. The three strategies are:

— Trace testing — where each single trace though the MSC is placed in a
separate test. This is the simplest strategy and typically generates the most
test scripts. One advantage of this strategy is that we can enforce full trace
coverage, by repeated running each test until they pass. Valid behaviour
that isn’t represented in a test is given an inconclusive verdict with this test
strategy.

— Branch testing — where choices between receive events are placed in a sin-
gle test script. This typically produces fewer tests than trace testing, since
multiple traces can be contained in one test script.



— Completion testing — similar to branch testing, but in addition choices from
alternatives are also placed into a single test where possible. This can again
produce fewer tests than branch testing.

In addition to the test strategies various optimisations are done on the test
scripts, where common parts are factored out, reducing the size of tests consid-
erably.

6.4 User experience

ptk has evolved over several year, based mainly on user’s requirements. At any
one time there are perhaps five test teams using ptk. The number of MSCs
processed by each team is in the thousands, with hundreds of generated tests.
As stated before, the average reduction in effort is 33 percent compared to the
manual approach.

One of the reasons for ptk’s popularity stems from groups liking to use graph-
ical notations for developing tests, rather than notations like TTCN-2 which can
be tedious to write by hand. Typically MSC and ptk is used as a graphical test
scripting language, rather than as a requirement specification language, which
was our original intention. Many of the enhancements have been requested due
to its use for test scripting, some of which have extending the MSC language.
For example, atomic references which are MSC references, without any inter-
leaving of events inside the reference with events outside the reference. Atomic
references translate to procedure calls in test languages. Other extensions have
included atomic loops, and special primitives for time constraints.

7 Conclusion

During deployment of requirements-based test generation technology we found
that requirement and architecture teams were reluctant to take on board tech-
nology that would not directly benefit them in constructing requirements. Hence,
ptk was deployed within testing teams who would work the requirements into a
more rigorous form so they could be used for test generation, with good results.
However, we found in some cases that ptk was used as a graphical scripting tool,
meaning that the full potential of this technology was not being realised from
the perspective of the overall process. So, we altered our strategy to provide
technologies, such as requirements validation and the detection of feature inter-
actions [13], which would give requirement and architecture team’s incentives for
constructing more rigorous models, through reduce appraisal costs, which would
then enable test generation. Pursuing this approach we found that requirements
are often incomplete, or partial, meaning that only a subset of all possible re-
quired system behaviours is specified. This partiality has implications on the
type of analysis that can be conducted on requirements - see section [5. Hence,
we developed Mint as a tool for automating discovering pathologies, or potential
defects, during appraisals. We are now evaluating Mint and looking to expand
this capability.



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Alur and M. Yannakakis, Model checking of Message Sequence Charts,
Proceedings of the Tenth International Conference on Concurrency Theory,
Springer Verlag, 1999

. Beizer, B., Software Testing Techniques, New York, New York: Van Nostrand

Reinhold, 1983.

. Boehm, B., Basili, V.R., Software Defect Reduction Top 10 List, IEEE Computer,

Vol. 34, No. 1, 2001.

. P. Baker, P. Bristow, C. Jervis, D. King, B. Mitchell, Automatic Generation of

Conformance Tests From Message Sequence Charts, Telecommunications and
Beyond: The Broader Applicability of MSC and SDL, pp 170-198, LNCS 2599.

. ETSI ES 201 873-1, Methods for Testing and Specification; The Testing and

Control Notation version 8 (TTCN-8); Part 1: TTCN-8 Core Language,
European Telecommunications Standards Institute (ETSI), 2001.

. Ghiassi, M., K.I.S. Woldman, Dual Programming Approach to Software Testing,

Software Quality Journal, 3:45-58, 1994.

. Hartman, Alan, AGEDIS Model-Based Test Generation Tool,

http://www.agedis.de!

. International Telecommunications Union: ITU-T Recommendation Z.120,

Message Sequence Chart (MSC), 2000. Available from http://www.itu.int.

. International Telecommunications Union: ITU-T Recommendation Z.100,

Specifications and Description Language (SDL), 2000. Available from
http://www.itu.int.

International Telecommunications Union: ITU-T Recommendation Z.100 X.292,
TTCN-2 standard, Conformance Testing Methodology and Framework - Part 3:
The Tree and Tabular Combined Notation (TTCN), 1997.

Leue, Stefan, MESA: MSC Editor Simulator Analyzer. Available from:
http://tele.informatik.uni-freiburg.de/Mesa/Mesa_doc/index.html.
Lucent Technologies. UBET documentation. Information is available from
http://cm.bell-labs.com/cm/cs/what/ubet/index!

Bill Mitchell, Robert Thomson, Clive Jervis, Phase Automaton for Requirements
Scenarios, Feature Interactions in Telecommunications and Software Systems
VII, 77-84, 2003, IOS Press.

NASA, Formal inspection standard - NASA-STD-2202-93,
http://satc.gsfc.nasa.gov/fi/std/fistdtxt.txt,

Nelson, Clark, and Spurlock. Curing the Software Requirements And Cost
Estimating Blues, PM: Nov-Dec, 1999.

Object Management Group (OMG), Unified Modeling Language (UML):
Superstructure, Version 2.0, 2003. Available from http://www.omg.org.
Telelogic, AutoLink documentation, Telelogic Web Site:
http://www.telelogic.com.

Telelogic, Tau documentation, Telelogic Web Site: http://www.telelogic.com.

MOTOROLA and the Stylized M Logo are registered in the US Patent &

Trademark Office. All other product or service names are the property of their
respective owners.


http://www.agedis.de�
http://www.itu.int�
http://www.itu.int�
http://tele.informatik.uni-freiburg.de/Mesa/Mesa_doc/index.html�
http://cm.bell-labs.com/cm/cs/what/ubet/index�
http://satc.gsfc.nasa.gov/fi/std/fistdtxt.txt�
http://www.omg.org�
http://www.telelogic.com�
http://www.telelogic.com�

