
Phase Semantics of MSC Traces

Paul Bristow, Clive Jervis, Bill Mitchell, Robert Thomson,
b.mitchell@motorola.com
Motorola UK Research Lab

March 28, 2003

Abstract

Specifications for wireless telecommunications systems are often only par-
tially defined. It is also common for the specification to consist of a set of
normative scenarios together with scenarios for some of the more important ex-
ceptional behaviours. A major challenge is to find effective means of detecting
feature interaction conflicts contained in such specifications. Moreover the de-
tected conflicts should be of value in debugging the specifications and should not
be cluttered with inconsequential errors that are due to the incompleteness of
the specifications.

The paper describes a technique for constructing a phase automaton that can
be used to statically analyse the specification scenarios in order to detect certain
types of interactions between them, known as phase transition conflicts. There
is anecdotal evidence to suggest that these kinds of inconsistency can account
for a significant proportion of feature interactions.

The phase automaton is intended primarily for the purpose of detecting these
phase transition errors. This means the state space in the automaton only need
include that part of the feature behaviour that is significant for those conflicts.
This results in a small automaton that tends to make the conflict detection
problem tractable.

1 Introduction

The pressure to bring wireless telecommunication products to market rapidly results
in very lightweight requirements specifications, which are frequenctly imcomplete and
often consist mainly of a collection of ‘sunny day’ scenarios. For convenience we will
assume such scenarios are defined as MSCs [16], however the results apply to any nota-
tion that defines the externally observable concurrent traces of the system components.

These scenarios tend to concentrate on the behavior of individual features or com-
ponents, and do not consider how the various features will interact in any great detail.
This naturally leads to conflicts when the various features are allowed to act concur-
rently. It is also possible for scenarios for the same feature to contain inconsistencies
with respect to each other. The main problems addressed in this paper are how to
analyse partial specifications

• to give useful conflict reports for debugging the specification

• that avoids generating many inconsequential errors

• and applies to complex specifications

1

Bill Mitchell Phase Semantics of MSC Traces

Engineering groups will normally only focus on key issues during requirements spec-
ification. A secondary issue is to define a technique that users can easily apply to
their existing specifications and which requires no additional input from the users.
Hence some means must be found to reason about the requirements specifications in
the form that engineering group are comfortable with, and which reveal errors that are
significant for those groups.

Motorola UK Research Lab has been collaborating with testing, architecture and
design groups throughout Motorola to investigate this area over the last few years.
We have found that standard analysis techniques are inappropriate for scenario based
incomplete specifications. For example, an internal study of TETRA [18] MSC [16]

engineering scenarios used Spin and algorithms similar to those found in [1], [2] and
[12] to analyse the specifications in a standard manner. The final model suffered from
the usual state explosion problem and generated many error reports none of which were
genuine. Two other Motorola Research Labs used independent methods to construct
a complete model of a POTS system incorporating a switch, written in SDL [17],
which were analysed with technology built out of the FDR model checking system. It
also suffered state explosion problems, and was only able to find conflicts when the
exploration algorithm was directed towards the error states. Hence we have found it
necessary to develop novel approaches to the problem that are reported here.

The paper assumes that a protocol specifies message exchanges whose purpose is
to define the transitions between different phases of operation in the system. For ex-
ample in a system such as TETRA [18] there are phases such as call setup, call active,
call roaming, call queued, and ruthless resource pre-emption. The specifications for
a TETRA system define transitions such as from call setup to call active. Some of
these transitions may involve other phases. For example, the transition from call setup
to call active may include intermediate transitions to call queued or ruthless resource
pre-emption. By establishing how the phases of operation used in the specification
restrict potential system implementations it is possible to analyse some of the concur-
rent behaviour of the features. This is behaviour not explicitly defined by the original
specification, but is a consequence of the phase semantics of the combined features.
Within this set of concurrent behaviours it is possible to search for feature conflicts.

Given a scenario defining message exchanges that causes a phase transition, which
may include other intermediate phase transitions, we can study the event traces defined
by the scenario. Each event in a trace can be annotated by the phase that was active
when that event occurred. These define the phase traces of a scenario (see Section 2
for the formal definition for MSC phase traces).

The paper defines an abstract implementation of the phase traces for each process in
the specification. This implementation is in the form of an automaton, called the phase
automaton. This describes the implicit phase traces defined by the specification. These
will often include phase traces describing implicit phase transitions of the specification.
Static analysis of this automaton can detect errors and ambiguities in the specification
with respect to the phase transitions. Two main types of such error are described here,
these are called phase transition errors. They are defined in Section 5.

An internal software tool, FATCAT, has been developed by Motorola UK Research
Labs that constructs phase automaton implementations of each instance in a set of
MSCs, analyses the automata for phase transition errors and then outputs MSC con-
flict scenarios. FATCAT is built on patented technology ([4], [5]) already developed
by Motorola UK Labs for the ptk software tool [3]. The ptk tool generates a set of
conformance tests from a collection of MSCs. ptk has been developed over a number

2

Bill Mitchell Phase Semantics of MSC Traces

of years and is now used by engineering groups throughout Motorola.
The problem of composing separate MSCs into a single implementation has been

studied for some time. The work reported in [1], [2] and [12] describes how to syn-
thesize automata from a set of MSCs and consider related decidability issues. That
work does not consider phase traces, which is the central focus here, instead they look
at the MSC event traces. The difficulties considered in [1], [2] and [12] arise since
race conditions may occur in the MSCs. Asynchronous wireless telecommunication
protocols are intended to be race free and when that is the case it is straightforward
to construct automata describing their event traces. Mauw ([13], [14]) considers a
form of interleaving to compose MSCs. This approach also works with event traces
rather than with phase traces. The idea of static analysis of specifications through
overlapping techniques has also been studied by Calder and Miller [6]. They success-
fully consider how to statically examine Promela encodings of state machines as one
technique for avoiding the state explosion problem.

2 Phase Traces and Phase Automaton

This section defines phase traces and phase automaton. Later sections will define a
semantics for a set of phase traces in terms of a phase automaton. This will allow us
to define a model of a set of MSC specifications in the form of a phase automaton.

Throughout this document we will adopt the following notation. Where a message
m occurs in an MSC, we use !m to denote the send event generated by m, and ?m to
denote the receive event generated by m in accordance with MSC semantics [16].

Let the set of events that can occur in the specifications be taken from the set of
symbols E, let P be the set of phases that can occur in the specifications. Let S be
a set of states, and let φ be a function φ : S −→ P . Define a set of deterministic
transitions to be a partial function ∂ : S × E −→ S. The tuple A = (S, E, ∂, φ)
is defined to be a phase automaton. Note there is no start state or accepting states
defined for A. These will not be required for the type of conflict analysis discussed in
the paper, which are defined in terms of phase transitions. It is also often the case in
practise that such states are only defined after the fact, so making assumptions about
them during requirements analysis is not appropriate.

A phase trace is a sequence of the form

S0, a0, S1, a1, . . . Sn, an, Sn+1

where each ai ∈ E and each Si ∈ P .
A phase trace is a specification phase trace if the sequence

a0, a1, . . . an

is a complete trace of events from one of the specification scenarios, and in that scenario
each event ai occurs during phase Si, and after the event the phase becomes Si+1.

A phase trace is an execution phase trace of phase automaton A if there are states
xi for 0 ≤ i ≤ n + 1 such that φ(xi) = Si and ∂(xi, ai) = xi+1. When a specification
phase trace t is also an execution phase trace, we say the phase automaton generates
t.

From now on we will refer to both specification phase traces and execution phase
traces as simply phase traces whenever it is clear from the context which prefix should
apply.

3

Bill Mitchell Phase Semantics of MSC Traces

Phases are defined in an MSC with conditions. For example consider the MSC
in figure 1, which has conditions S0 and S1. The phase traces for an instance in an
MSC are the specification phase traces that are defined for events that occur on that
instance.

BA

S1

S0

b

a

Figure 1: Partial Specification MSC

There is a single phase trace for instance A in Figure 1:

S0, ?a, S0, !b, S1

That is the current phase immediately before event ?a is S0, which is also the current
phase immediately after ?a and before !b. Once !b occurs the current phase becomes
S1. Hence !b causes a phase transition in instance A.

3 Phase semantics discussion

Adding phase information to scenarios provides extra information about the intended
structure of the state space of an implementation. For a phase automaton to implement
a set of phase traces it will not be enough for it to simply generate each phase trace in
the set. It will also be necessary for the phase automaton to combine phase transitions
contained in the phase traces in the correct way.

In an ideal world we could suppose that phases are nothing more than explicit
state names in the implementation. This is unworkable if the specifications do not
explicitly name each state change after every event that occurs on each instance of an
MSC. It is not the purpose of protocol specifications to provide this minute level of
implementation detail, and it is unlikely that any engineering group would accept such
an overhead.

Common practise treats MSC conditions as a convenient mechanism for incorporat-
ing important composite states into the scenario specifications. Effectively this makes
the phase traces the focus of the specification scenarios, rather than the event traces.

The problem now becomes one of how to combine a set of phase traces within a
single phase automaton. Consider the two MSCs contained in Figure 2.

4

Bill Mitchell Phase Semantics of MSC Traces

BA

S2

S1

S0

d

c

b

a

A B

S3

S1

S0

e

c

Figure 2: Two MSC scenarios for instances A and B

Instance A has a single phase trace in each MSC of Figure 2:

S0, ?a, S0, !b, S0, ?c, S1, !d, S2
S0, ?c, S1, !e, S3

How are these to be combined within a single phase automaton? If we have no further
information about how the different phase traces are related to each other, the only
way we could incorporate these phase traces within an implementation would be as
shown in Figure 3.

S0

S1 S2

?a

!b

?c

!d

uv

w

x y

w’

x’

?c

S3

z

!e

Figure 3: Phase automaton with disjoint states

Here we have depicted a phase as a box that surrounds those states that are part
of the phase according to the phase function φ. This automaton does not combine
the phase transitions it merely enumerates the phase traces as if they are completely
unconnected.

From a number of studies we have formalised phase automata as the way engineers
intuitively combine multiple MSC scenarios. That is:

A phase automaton is an implementation of a set of phase traces if during
any execution, if it has generated the first part of a specification phase

5

Bill Mitchell Phase Semantics of MSC Traces

trace, and it has reached a point where a phase transition is possible then
the implementation can always generate the rest of the phase trace from
that point.

For the phase traces of Figure 2 applying these informal semantics would lead to the
phase automaton implementation of Figure 4.

S0

S1 S2

?a

!b

?c

!d

uv

w

x y

S3

z

!e

Figure 4: Phase automaton without disjoint states

Consider the initial phase automaton of Figure 3. The transition w
?c−→ x generates

the first part of the phase trace S0, ?c, S1, !e, S3. Also event !e in this trace causes a
phase transition. Hence the informal semantics dictate it must be possible to generate
the rest of the phase trace from state x. Hence there must be a transition of the

form x
!e−→ z. Once this transition has been added the resulting phase automaton

satisfies the informal semantics for these phase traces. Finally we can discard states
w′ and x′ as they are now redundant. That is the phase automaton of Figure 4 is an
implementation of the phase traces for instance A in Figure 2.

Note, had we combined the phase traces in the opposite order we would not have
defined exactly the same automaton with exactly the same states as Figure 4. However
there is an equivalence between any phase automaton that is an implementation for a
set of phase traces, as described in section 4.2.

4 Formal semantics of phase automaton implementation

Suppose we are given a phase trace t of events for one instance A from an MSC which
partially specifies some system. Let the phases in t be Si, for 0 ≤ i ≤ m + 1. For
0 ≤ i ≤ m let the trace events of t in Si be ai

j, for 1 ≤ j ≤ ni. Hence t is of this form

S0, a0
0, S0, a0

1, S0, · · · , S0, a0
n0

, S1, a1
0, S1, · · · , Sm, am

nm
, Sm+1

That is a0
0 is the first event in t, which occurs in phase S0. For this to be true it must

be that the MSC has an initial condition S0 connected to instance A. After that all
the events a0

i , for 1 ≤ i ≤ n0, occur in phase S0. Event a1
0 is the first event to occur

in phase S1. This means that the next condition to be connected to instance A after
S0 is S1 which occurs between the a0

n0
event and the a1

0 event. The final event is am
nm

which occurs in phase Sm, after which the current phase becomes Sm+1.

6

Bill Mitchell Phase Semantics of MSC Traces

Let A = (S,E, ∂, φ) be a phase automaton. We say state s is in phase Si when
φ(s) = Si. Define a state s to be an exit state when there is a transition to a state s′

where φ(s′) 6= φ(s). The state s′ is known as an entry state. Phase automaton A is
defined to satisfy the phase semantics of t if the following conditions are true.

1. Given states s(i, j) in phase Si, for each 0 ≤ i ≤ m, and 0 ≤ j ≤ ni, and any
sequence of transitions in A of the form

s(0, 0)
a0
0−→ s(0, 1)

a0
1−→ · · · s(0, n0)

a0
n0−→ s(1, 0) · · · s(k, nk − 1)

ak
nk−1−→ s(k, nk)

where 0 ≤ k ≤ m and s(k, nk) is an exit state of Sk, then there is a transition
sequence of the form

s(k, nk)
ak

nk−→ s(k + 1, 0) · · · am
nm−→ s(m,nm + 1)

Note by definition s(i + 1, 0) is an entry state of phase Si+1

2. A generates t.

Without forcing there to be at least one sequence of transitions in A which generate t
it could be that the first condition is vacuously true.

Phase automatonA satisfies the phase semantics of a set of phase traces if it satisfies
the phase semantics of each of the traces as above.

Phase automaton A satisfies the phase semantics of an instance in a set of MSCs
if it satisfies the phase semantics of all the phase traces belonging to that instance
constructed from the MSCs. When A is a minimal1 such automaton it is defined to
implement the instance.

4.1 Combining phase traces

This section outlines how finite phase traces can be combined into a phase automaton
that satisfies the formal specification of section 8. The suggested technique is very
inefficient, it is intended for reference only. It is straightforward to define a phase
automaton that generates the phase traces for a single instance in a single MSC (when it
is race free or finite). The FATCAT tool uses an optimal patented algorithm (designed
by Robert Thomson) that directly combines these phase automata into the phase
automaton implementation.

For each phase trace τ proceed as follows. Suppose τ is of the form:

S0, a0, S1, a1, · · · , an, Sn+1

where each Si is not necessarily distinct from the other phases. Define new states xi in
phase Si and transitions xi

ai−→ xi+1. This ensures the phase automaton can generate
τ .

Define a phase precursor to be an initial section s of τ , where the following event
in τ after s causes a phase change. Let s′ be the tail of τ occurring after s. Enumerate
the phase precursors of τ .

For each precursor s and each state x, test if there is a state x′ such that there is
a path from x to x′ that generates s. If so add states and transitions (if necessary) to
ensure that s′ can be generated from x′.

1i.e there is no subautomaton that also satisfies these phase traces

7

Bill Mitchell Phase Semantics of MSC Traces

Next force the resultant automaton to be deterministic whilst preserving the phase
structure. Finally minimise the phase automaton with a standard state reduction
algorithm whilst again preserving the phase structure of the automaton. Continue the
above steps until there are no more phase traces to be considered.

4.2 Phase automaton implementation equivalence

We may regard any finite state automaton as a process that can be described by
a process algebra such as CCS [15]or CSP [11]. Recall the simulation relation @
between processes can be defined as:

P @ Q iff for each P ′ such that P
a−→ P ′ there is some Q′ such that Q

a−→ Q′ and
P ′ @ Q′

From a phase automaton A = (S,E, ∂, φ) we can define another automaton X(A)
where the states of X(A) are the same as A. A start state of X(A) is any state in
A from which it is possible to generate some semantic phase trace. (We should really
only have a single start state in an automaton. This can be achieved by introducing a
single new state, the start state, which has an ε transition to each of the former start
states as defined above.) All the states are accepting states in X(A). The events of
X(A) are P × E × P , and the transitions are

∂(xi, (Si, ai, Si+1)) = xi+1

where xi
ai−→ xi+1 is a transition in A, φ(xi) = Si, and φ(xi+1) = Si+1.

Given two phase automaton implementations A1 and A2 for the same set of phase
traces, they are simulation equivalent in the sense that:

X(A1) @ X(A2) and X(A2) @ X(A1)

The main motivation for considering phase automaton is to permit the detection of
feature interactions that can be found by static analysis of the phase automaton. The
types of error that are defined later are invariant with respect to simulation equivalence.

5 Phase transition errors

It is possible to statically analyse phase automaton to detect certain simple types of
conflict without user input. More sophisticated conflict analysis requires additional
properties of the specifications to be defined that describe the purpose of the features
in a form that can be verified against the automaton. A phase automaton can be
verified with standard model checking techniques against any modal property, which is
ongoing research. Care must be exercised since, for example, searching for unreachable
states is not appropriate for partial requirements.

We describe two types of errors that can be statically detected during the construc-
tion of the phase automaton. There is anecdotal evidence to suggest that these kinds
of inconsistency can account for a significant proportion of feature interactions.

8

Bill Mitchell Phase Semantics of MSC Traces

Phase inconsistencies

A significant static error that can occur is where two phase traces define the same
events initially, but disagree with the phase transition that later occurs. Here is an
example of two such phase traces.

S0, ?u, S0, !a, S1
S0, !a, S2

The phase semantics force there to be two distinct transitions labeled with !a leading to
different phases from the same state. In general this conflict leads to a nondeterministic
automaton where the next composite state is not uniquely defined. A detailed browser
example is given in Section 6.

Structural inconsistencies

The simplest form of static analysis is to detect certain kinds of nondeterministic
behaviour taken by the instance implemented by the automaton. For example, when
the instance has to make a choice between sending one of two messages. Consider a
state x and transitions

x
!a−→ x1

x
!b−→ x2

where a and b are distinct. A system component will not know whether it should send
a or send b.

9

Bill Mitchell Phase Semantics of MSC Traces

6 A realistic example for mobile handset browser require-
ments

Air_InterfacePhoneUser

browser_active

wait for timer to expire

wait for timer to expire

browser_download_dialogue

display_trans_notice

notification_dialogue

accept call

incall_B

disp_trans_notice

incomming_call

ack

key_press

(END)

incomming_call_notification

(B)

key_press

(right_soft_key)

PhoneUser

browser_active

incall_B

display_trans_notice

wait for timer to expire

key_press

(END)

Figure 5: Browser download suspend example, MSC M1 and MSC M2

The MSCs of Figure 5 describes two hypothetical MSC requirements for a browser
like feature for a mobile handset. Let these be MSC M1 and M2 as numbered from
left to right. M1 describes a high level scenario where the handset browser is active
downloading a file when a call is received from another device. The download is
suspended while the call is dealt with. After the call is terminated the handset presents
a dialogue box to enable the user to resume the file download if they wish.

M2 describes a different scenario relating to the general operation of the browser
like device. This scenario describes how the handset should behave when the browser
has been suspended during an active call, and then the END key is pressed. The
scenario states that the phone should always return to the browser active composite
state.

Notice that if both of these scenarios are applied to the browser feature then they
cause a conflict. When a file download is suspended in order to take a call, and then the

10

Bill Mitchell Phase Semantics of MSC Traces

END key is pressed, the handset is trapped between the browser download dialogue

and browser active composite states. That is the next composite state after the
timer expires is not uniquely defined, which is an error.

The phase automaton of Figure 6 is the FATCAT implementation for the phone
instances of M1 and M2. The states are labelled with integers from 0 to 10. The phases
are depicted by the grey boxes surrounding the states contained by the relevant phase.
Diamond shapes represent an exit state for a phase. Square states are entry states,
that is a state that can be reached by a transition from a different phase. States that
are a square superimposed over a diamond are both an entry and exit state.

browser_download_dialogue

notification_dialogue

disp_trans_notice

browser_active

incall_B

display_trans_notice

10

6

7

!ack

5

’accept call’

2

key_press(right_soft_key)

8

’wait for timer to expire’

41

?incomming_call_notification

9

?key_press(END)

0

3

?key_press(END)

’wait for timer to expire’’wait for timer to expire’ ’wait for timer to expire’

Figure 6: FATCAT phase automaton implementing phone instance

State 9 represents an error state, since from there the next state is not uniquely
defined after the timer expires. Note there is a trace from state 1 to state 9. This
illustrates how the error state can be reached assuming that state 1 can be reached
from some initial configuration. This seems reasonable since state 1 belongs to phase
browser active from Figure5, which is the initial phase for that scenario. Hence the
trace from state 1 to state 9 represents an example of how the conflict can occur in
practise and is the one chosen by FATCAT for output in MSC format.

11

Bill Mitchell Phase Semantics of MSC Traces

Phone Air_InterfaceUser

1

1

1alt

browser_active

browser_download_dialogue

wait for timer to expire

display_trans_notice

incall_B

wait for timer to expire

disp_trans_notice

accept call

notification_dialogue

browser_active incomming_call

key_press

(END)

ack

key_press

(right_soft_key)

incomming_call_notification

(B)

Figure 7: FATCAT example of conflict

This trace can be represented with an MSC as in Figure 7. The conflict in this MSC
is represented by the alternative construct at the end of the MSC. This illustrates that
after the timer expires the next composite state for the phone instance is not uniquely
defined. Recall an MSC alternative construct describes mutually exclusive possibilities.
The dashed line delineates these possibilities.

7 Three way interaction

This section gives an example of how three MSC scenarios may interact to cause a
conflict, and where no two of those scenario are in conflict when considered separately.

12

Bill Mitchell Phase Semantics of MSC Traces

C
Interface

B
Sys

A
Comp

C
Interface

C
Interface

B
Sys

A
Comp

B
Sys

A
Comp

S1

S0S0

S1

S0

S1

a

(x)

d

(z)

b

(y)

a

(x)

c

(z)

a

(x)
b

(y)
b

(y)

Figure 8: Three MSCs that conflict only when all three are included

The dashed line in the left most MSC of Figure 8 defines a co-region. Events
within such a co-region can occur in any order with respect to one another. The
FATCAT tool detects a conflict between the MSCs of Figure 8 and outputs the MSC
in Figure 10 to describe how it occurs. As before the error is captured in the form of
the alternative construct. Figure 9 describes the phase automaton implementation of
instance B output by FATCAT for the three MSC scenarios in Figure 8.

S1

S0

11

10

9 !d(z)

!c(z)

4 !b(y)

3

!a(x)2

!a(x)

!b(y)

Figure 9: Phase automaton implementation for instance B

13

Bill Mitchell Phase Semantics of MSC Traces

CBA

1

1alt

1

S1

S0

d

(z)

c

(z)

a

(x)

b

(y)

Figure 10: MSC conflict output from FATCAT

8 Process Algebra Products for Phase Automaton

This section defines the semantics of composing MSC scenarios in the form of a process
algebra. MSC scenarios can be mapped to terms in the process algebra. The delayed
product of the scenarios generates processes that are simulation equivalent to phase
automaton implementations. The discussion so far has been implicitly restricted to
finite phase traces, whereas the process algebra description here generalises the idea
to recursive process specifications.

The process algebra semantics is divided into two parts. The algebra composition
operators are defined as a set of axioms over an arbitrary set of process terms. Then
a particular set of atomic actions is chosen to represent the phase traces of a set of
MSCs. This allows us to hide some of the semantic complexity in the atomic actions
and represent the semantics of phase trace composition in a clean abstract setting.

Let E be a set of atomic actions. Let + be the usual choice operator over process
terms. For a set U define

∑
U to denote

∑
u∈U u. Also let · be the usual composition

operator of atomic actions and process terms. The set of terms defined by + and · over
E is the set of process terms. A process term is a representation of all the possible
traces of actions that the process can define. Each branch of the term represents one
of the traces. Let A be a binary reflexive relation over E and let η : E −→ B be a

14

Bill Mitchell Phase Semantics of MSC Traces

boolean valued function. Define composition of process terms with these axioms.

par P | Q = P ¢ Q + P ¤ Q
skew1 a · P ¢ b ·Q = a · P¢| b ·Q if a A b
skew2 a · P ¢ b ·Q = a · (P ¢ b ·Q) if a 6A b
skew3 P ¤ Q = Q ¢ P
zero1 0 ¢ Q = 0
left-synch1 a · P¢| b ·Q = a · (P¢| Q) if a A b and ¬η(a)
left-synch2 a · P¢| b ·Q = a · (P ‖ Q) if a A b and η(a)
branch1 a · P¢| b ·Q = a · P + b ·Q if a 6A b and η(a)
prune a · P¢| b ·Q = a · P if a 6A b and ¬η(a)
zero2 0¢| Q = 0
synch1 a · P ‖ b ·Q = a · (P ‖ Q) if a A b
synch2 P ‖ Q = Q ‖ P
zero3 0 ‖ Q = Q
branch2 a · P ‖ b ·Q = a · P + b ·Q if a 6A b and b 6A a

P | Q is defined to be the delayed composition of process algebra terms.
Define the stack automaton Sk(I) for I in M as follows. Let A be any phase

automaton that generates the phase traces of I in M . Note A is not a phase automaton
implementation of I, which has to correctly combine all the phase traces for I from
all the MSCs that define the specification. Constructing A is straightforward when
M does not contain any race conditions. It can be derived from any automaton that
generates the event traces of I by annotating the states with suitable phase information.
Note when M contains infinite traces and there are race events it is quite possible that
A does not exist.

A state in Sk(I) is a pair (s, Sk), where s is a state of X(A), and Sk is a stack
containing events from I (see section 4.2 for the definition of X(A)). A transition in
Sk(I) is defined as follows. Let ∂(s, (c, a, c′)) = s′ be a a transition in X(A). Let Sk′

be the result of pushing a onto Sk whenever c = c′, and set Sk′ = [] when c 6= c′.
Then

∂((s, Sk), (c, a, c′)) = (s′, Sk′)

is a transition in Sk(I). A start state of Sk(I) is a pair (s0, []), where s0 is a start state
of X(A).

The traces of Sk(I) are really the phase traces of I in M . The stacks simply record
what events have happened on the instance since the phase last changed. The stacks
record what has happened on an instance during the current phase.

For two stacks sk1 and sk2, we write sk1 ≤ sk2 if stack sk1 is the head of stack sk2.
In other words, if sk1 has n elements, and if we pop each stack n times, we get exactly
the same element from each stack each time. We will now define a process algebra
term with the set of atomic actions equal to P × E × P × SK, where SK is the set of
event stacks.

Define (c, a, c′, Sk) A (c1, a1, c
′
1, Sk′) when c = c1, a = a1, c = c′1 and Sk′ ≤ Sk.

Define η(c1, a1, c
′
1, Sk′) to be true exactly when c1 6= c′1. So that η records when an

event causes a phase transition. For a stack automaton Sk(I) define its process algebra
term inductively. Let P (s, Sk, Sk(I)) be

∑
{(c, a, c′, Sk) · P (s′, Sk′, Sk(I)) | (s, Sk)

(c,a,c′)−→ (s′, Sk′) ∈ Sk(I)}

15

Bill Mitchell Phase Semantics of MSC Traces

Then define P (I,M) to be the sum of terms P (s0, [], Sk(I)) where (s0, []) is a start
state for Sk(I). The stack component in the atomic actions of P (I, M) are used solely
as a mechanism for controlling the delayed composition of these terms. The stacks are
not relevant to the observed behaviour in the phase traces and once the composition
has been evaluated they are of no more use.

For an instance I that occurs in MSCs Mi, where 0 ≤ i ≤ n, let

P (I) = P (I, M0) | P (I,M1) · · · | P (I, Mn)

Let P ′(I) be the normalised form of the process algebra term P (I). This is the process
algebra term defined only using the operators +, · and recursion that is strong bisim-
ulation equivalent to P (I). Let P ∗(I) be the result of replacing every atomic action in
P ′(I) of the form (c, a, c′, Sk) with (c, a, c′), that is delete the stack component from
each atomic action. Then any phase automaton implementation A1 of instance I is
simulation equivalent to P ∗(I) in that

X(A1) @ P ∗(I) and P ∗(I) @ X(A1)

as defined in Section 4.2.

9 Conclusion

Where the purpose of a protocol specification is to define phase transitions it is possible
to construct a phase automaton implementation for each process in the specification.
These can then be statically analysed to detect phase transition errors. With the right
semantic interpretation of phase transitions the phase automaton can be constructed
efficiently, and is capable of detecting interesting interactions. Compared to automata
constructed using naive compositional semantics, our phase automata approach yields
highly compact representations enabling the tractable analysis techniques reported
here.

Unlike most work in the area of feature interaction (see [9], [10] or [7] for a compre-
hensive set of examples) the phase automaton technique is not intended to detect all
possible conflicts. Rather it detects phase transition interactions. This class of conflict
seems to be of practical significance and simple to detect. Further, specifications are
often deliberately of a highly partial nature. In such cases it is important to have some
means of detecting errors that are inherent in the specification as it is meant to be
implemented, and not highlight errors that are purely an artifact of the incomplete
nature of the specification. For this reason the techniques described here are designed
to detect persistent errors that will be present however the specifications are extended
into a more complete form.

References

[1] R. Alur and M. Yannakakis, Model checking of message sequence charts,
Proceedings of the Tenth International Conference on Concurrency Theory,
Springer Verlag, 1999
http://www.cis.upenn.edu/~alur/onlinepub.html

[2] R. Alur, K. Etessami, M. Yannakakis, Inference of Message Sequence Charts,
Proceedings 22nd International Conference on Software Engineering, pp 304-313,
2000.

16

http://www.cis.upenn.edu/~alur/onlinepub.html�

Bill Mitchell Phase Semantics of MSC Traces

[3] P. Baker, P. Bristow, C. Jervis, D. King, B. Mitchell, Automatic Generation of
Conformance Tests From Message Sequence Charts, Proceedings of 3rd SAM
(SDL And MSC) Workshop, Telecommunication and Beyond, Aberystwyth
24th-26th June 2002, to appear in LNCS 2003.

[4] P. Baker, C. Jervis, D. King, An optimised algorithm for test script generation,
patent GB18137.0, 2000.

[5] P. Baker, C. Jervis, B. Mitchell, Method of Generating Coordinating Messages
for Distributed Test Scripts, patent GB18138.8, 2000.

[6] M. Calder, A. Miller, Using Spin for Feature Interaction Analysis - a Case Study,
Proceedings of SPIN 2001, Lecture Notes in Computer Science, Volume 2057,
pp. 143–162, 2001.
http://www.dcs.gla.ac.uk/~muffy/papers.html

[7] M. Calder, E. Magil, Feature Interaction in Telecommunications and Software
Systems VI, IOS, 2000.

[8] R. Hall, Feature Combination and Interaction Detection via
Foreground/Background Models in [10] also found at
ftp://ftp.research.att.com/dist/hall/papers/isat/

feature-interactions-fiw98.ps

[9] N.Griffeth, R. Blumenthal, J-C, Gregorie, T. Ohta, A feature Interaction
Benchmark for the first feature interaction detection contest, in journal of
Computer Networks, Vol 32, No 4,April 2000

[10] K. Kimbler, L. G. Bouma, Feature Interaction in Telecommunications and
Software Systems V, IOS, 1998.

[11] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[12] P. Madhusudan, Reasoning about Sequential and Branching Behaviours of
Message Sequence Graphs, proceedings of 28th International Colloquium on
Automata, Languages and Programming, Crete, Greece 8-12 July 2001, LNCS
2076.

[13] S. Mauw, M. van Wijk, and T. Winter. A Formal Semantics of Synchronous
Interworkings. In O. Faergemand and A. Sarma, editors, SDL’93 Using Objects,
Proceedings of the Sixth SDL Forum, pages 167-178, Darmstadt, 1993. Elsevier
Science Publishers, Amsterdam. ISBN 0-444-81486-8.
http://citeseer.nj.nec.com/mauw93formal.html

[14] S. Mauw, M.A. Reniers, A process algebra for Interworkings,
http://citeseer.nj.nec.com/mauw00proces.html

[15] R. Milner, Communication and Concurrency, Prentice Hall 1989.

[16] Z.120 (11/99)ITU-T Recommendation - Message Sequence Chart (MSC)
http://www.itu.int/itudoc/itu-t/approved/z/index.html

17

http://www.dcs.gla.ac.uk/~muffy/papers.html�
ftp://ftp.research.att.com/dist/hall/papers/isat/feature-interactions-fiw98.ps�
ftp://ftp.research.att.com/dist/hall/papers/isat/feature-interactions-fiw98.ps�
http://citeseer.nj.nec.com/mauw93formal.html�
http://citeseer.nj.nec.com/mauw00proces.html�
http://www.itu.int/itudoc/itu-t/approved/z/index.html�

Bill Mitchell Phase Semantics of MSC Traces

[17] Z.100 (11/99) ITU-T Recommendation - Languages for telecommunications
applications - Specification and description language
http://www.itu.int/itudoc/itu-t/approved/z/index.html

[18] Annex C, Service Diagrams related to the model of Mobile user, Terrestrial
Trunked Radio (TETRA); Voice plus Data (V+D); Designers’ guide; Part 2:
Radio channels, network protocols and service performance, European
Telecommunications Standards Institute 1997.

18

http://www.itu.int/itudoc/itu-t/approved/z/index.html�

