
Finite State Automata for Topological Sorting

Bill Mitchell

May 28, 2009

1 Introduction

A specification of concurrent communicating processes represents a causal relationship
of the events contained in the specification. It is very simple to model this as a finite
partial order over the set of events when the specification contains no iteration (e.g. for
an MSC with no loop constructs). When there is iteration it is far more complex to
express the causal relationships between the events within a mathematical setting.

This paper first explores, in section 2, how to describe all total extensions of a partial
order as a finite state automaton (FSA). These total extensions represent the test scripts
for a specification when there is no iteration. Then, in section 3 we extend these ideas
to specifications which contain complex iterations. For MSC this means the inline loop
construct. Section 3.2 describes the algorithm for characterising an iterative specification
as a FSA.

1.1 Motivating Examples

For a particular partial order how many ways are there to extend it to a total order.
Within ptk we use the phrase topological sort to denote a total extension of a partial
order. What is the most compact form we can represent the set of topological sorts of
a partial order.

As an example consider the set {a, b, c} which has empty partial order (i.e. completely
unordered). Any total order of this set extends the empty partial order. The finite state
automaton pictured below represents these total orders. The state {a, b, c} is the start
state, { } is the accepting state. A total order on {a, b, c} is given by exactly those words
which are accepted by the automaton.

{a,b,c}

{a,b}{a,c}{b,c}

{b} {a}{c}

{}

a

a

a

a

b

b b

b

c

c

c

c

This automaton of course accepts any permutation of the letters a, b and c. The au-
tomaton is best visualised as a cube in three dimensional space. This automaton has the

1



Finite State Automata for Topological Sorting

smallest number of states which will generate the topological sorts of the empty ordering
on {a, b, c}.

As a second example consider the partial order on the set {a, b, c, d, e, f} given by
a < b < c and d < e < f . The topological sorts of this partial order is represented by
the following finite state automaton. In this example the start state is {a, d} and the
accepting state is { }. This is the smallest FSA which accepts this language.

{a,d}

{b,d}
{a,e}

{c,d}
{b,e}

{a,f}

{d}
{c,e}

{b,f}

{e}
{c,f}

{b}

{c}
{f}

{a}

{}

a

a

a

b

b

b

b

c

c

c

c

e

e

e

e

d

d

d

d

f

f

f

a

f

From this automaton we can easily calculate how many topological sorts there are. Label
the start state with value 1, for any state v label it with the sum of the values of its parent
states. The label of the accepting state is the number of possible total extensions. Also
the sum of the values of all the states is the number of nodes which would be required
to express the total extensions in the form of a tree as is done in ptk. For this example
we get a picture like this:

1

1
1

1
2

1

1
3

3

4
6

4

10
10

1

20

Notice that this picture is a fragment of Pascals triangle. It is precisely the fragment
required to calculate the binomial coefficient C6

3 = 20. The number of total extensions
for this case is 20 which is the label of the accepting state, and the number of nodes

2



Finite State Automata for Topological Sorting

which the tree representation would have is

1 + (1 + 1) + (1 + 2 + 1) + (1 + 3 + 3 + 1) + (4 + 6 + 4) + (10 + 10) + 20 = 69

2 The FSA algorithm for non iterating specifications

The algorithm is very simple to describe and is clearly closely related to the algorithm
in ptk for generating the tree representation of the topological sorts. However this is not
the case when an MSC contains the loop construct.

Let < be a partial order on a set of events S. For convenience we think of < as
represented in graphical form. For an event a let n(a) be the child events of a in the
graphical representation of S. That is n(a) is the set of events b where a < b and there
is no c ∈ S such that a < c < b, so n(a) is the set of events which are next after a
according to <. For a set X ⊆ S let

mX = {x ∈ X |6 ∃y ∈ X : y < x}

This is the set of minimal events in X.
For a given X ⊆ S we can define a FSA A(X) as follows. The initial state is mX.

The states in the automaton are certain subsets of S (which we will define in a moment).
Define a transition U

a−→ V whenever a ∈ U and

V = m((U − {a}) ∪ n(a))

The set of states SX and transitions TX for A(X) are defined recursively as follows:

val SX = {mX}
val TX = {}
val nextStates = SX
val nextTrans = {}
fun trns U = { U u−→ m((U − {u}) ∪ n(u)) | u ∈ U}
fun nx (U a−→ V ) = V
fun concat SetOfSets = foldl ∪ { } SetOfSets
val (SX , TX) =

while (not (nextStates = { }))
{ let

val nextTrans = concat (map trns nextStates)
val nextStates = map nx nextTrans
val SX = SX∪ nextStates
val TX = TX∪ nextTrans

in
(SX , TX)

end
}

Recall that for a function f : A −→ B, if X is a set of elements of A, then map f X =
{f(x) | x ∈ A}. Note that { } ∈ SX after the while loop terminates. The start state of
A(X) is mX, the final accepting state is { }. Define A = A(S), this is the FSA which
characterises the topological sorts of <.

For a string α = a0 · · · an of events from S define the ordering <α by a <α b if and
only if for some i and j, i < j and a = ai and b = bj . We call α a topological sort of S
if the order <α is a total extension of the partial order <.

3



Finite State Automata for Topological Sorting

Proposition 2.1
The FSA A accepts exactly the set of topological sorts of S with respect to <. Also A is
the smallest FSA which accepts this language.

The number of states in A is always smaller than the number of nodes required by the
tree representation of the topological sorts which is used in ptk. The only exception is
when the partial order < is total, then the automaton has the same number of states
as the tree. Each of the two FSA in the above examples is the automaton A for the
particular partial order of the example.

As explained in the second example above we can calculate how many total orders
there are directly from A. Label the start state with value 1, for any state v label it
with the sum of the values of its parent states. The label of the accepting state is the
number of possible total extensions. Also the sum of the values of all the states is the
number of nodes which would be required to express the total extensions in the form of
a tree as is done on ptk.

Consider the extreme case where the partial order is empty and S has n elements.
The topological sort tree for this case will have t(n) nodes where t is defined by

t(n) = 1 + nt(n− 1)
t(1) = 1

The FSAA will have 2n states. For example in the case n = 12 we have t(n) = 823059745
nodes and A has 4096 states. In this case the possible number of interleavings is 12! =
479001600.

2.1 Another Example

Consider the partial order a < c, b < c, b < d. In this case A is this:

{a,b}

{b}
{a,d}

{c,d}
{a}

{d}

{}

{c}

a b

b a

a

d

d

d

c

c

This is a more subtle example than the first two since the graph of the partial order is
connected, whereas the first two can be thought of as the disjoint union of a number of
total orders.

The initial events in this partial order are a and b which is why the start state is
{a, b}. As an example of how this is generated look at the two states which follow on
from the initial state. From the definition of trns we get

trns{a, b} = { {a, b} a−→ {b}, {a, b} b−→ {a, d} }

4



Finite State Automata for Topological Sorting

which comes from

m(({a, b} − {a}) ∪ n(a)) = m{c, b} = {b} and
m(({a, b} − {b}) ∪ n(b)) = m{a, c, d} = {a, d}

3 Loops

MSC can have inline expressions which represent loops. The current algorithm can not
handle this case. Consider this example of an extremely simple loop:

!a ?a !b ?b

loop <0,infty>

By extending the FSA algorithm to work over a set of relations in stead of a single
partial order we can extend the algorithm to work for loop MSC. In this case we would
get this FSA:

{!a,!b}

{?a,!b}

!a

{!a,?b}

!b

{!b}

?a

{?a,?b}

!b

?b

!a

{!a}

?b

{?b}

!b

?b

?a

{?a}

?b !a?b

{ }

?b ?a

As before the start state is {!a, !b} and the accepting state is { }.

3.1 Graph Representation of MSC with Loops

To generate the FSA we need first to represent the MSC as a combination of binary
relations. One of these is the partial order which represents the causal relationships
between the events in the MSC with the loop inline expressions removed. The other is
a binary relation which represents the loop structure.

!a

?a

!b

?b

5



Finite State Automata for Topological Sorting

The black arrows in this graph represent the causal relationship in the underlying basic
MSC (with loop removed) of the previous example. The red arrow represents the binary
relation given by the loop. In general if an MSC contains n loops their are n loop relation
Li, defined by xLiy whenever y is any event which is minimal with respect to < within
the region bounded by the loop, y < x, and x is maximal with respect to < within the
region bounded by the loop.

Next extend the definitions of functions for basic MSC to the loop case. For a binary
relation R on events define

• For an event a the next events according to R is the set
n(R)(a) = {b | aRb and there is no c where aRc and cRb}

• For a set of events X the set of minimal events according to R is the set
m(R)(X) = {a ∈ X |6 ∃b ∈ X such that bRa}

• For a set of events U
trns(R)(U) = { U u−→ m(R)((U − {u}) ∪ n(R)(u)) | u ∈ U}
and for a set R of binary relations the complete set of transitions is

trns(R)(U) =
⋃
R∈R

trns(R)(U)

3.2 The FSA algorithm

The algorithm for generating the FSA for an MSC with loops is a straightforward ex-
tension of the earlier algorithm. For an MSC M , let R(M) = {<} ∪ {Li | 1 ≤ i ≤ n}
where < is the partial order representing the causal relationship of the underlying basic
MSC (where the loop constructs are removed, but the underlying events in side the loop
are kept), and Li are the loop binary relations defined above.

fun A (X) =
let

val SX = {m(<)(X)}
val TX = {}
val nextStates = SX
val nextTrans = {}
fun nx (U a−→ V ) = V
fun concat SetOfSets = foldl ∪ { } SetOfSets
val (SX , TX) =

while (not (nextStates = { }))
{ let

val nextTrans = concat (map (trns R(M)) nextStates)
val nextStates = map nx nextTrans
val SX = SX∪ nextStates
val TX = TX∪ nextTrans

in
(SX , TX)

end
}

in
(SX , TX)

end

6



Finite State Automata for Topological Sorting

Let A be the automaton A(S) where S is all the events in M , where the set m(<)(S)
is the start state, and { } is the only accepting state. It is no longer the case that A
accepts exactly the total extensions of <, because of the loops. It does accept all the
possible interleavings of the events in M , and when the names are all distinct it is still
the smallest automaton to do so.

Proposition 3.1
Let R = {<} ∪ {Li | 1 ≤ i ≤ n} be a set of binary relations on S where < is a partial order
on S. Write (u sib v) to denote that there is some w such that w < u and w < v, that is u
and v are siblings.

Suppose each Li has the property

∀a : (uLi a)⇒ ∀v : (v sibu)⇒ (v Li a)

Then the algorithm to construct A will always terminate, and the language accepted by A
is the set of interleavings generated by the graph (which are formally defined in the next
section).

The loop graph generated by any MSC always satisfies the properties of this proposition,
so A is always finite. The exception being when there are gates present within a loop
construct. In this case there are examples of MSC where the interleavings can not be
described by a finite state automaton, but must be described by a context free grammar.

3.3 Interleavings of a looped Graph

In this section we define formally what an interleaving is for a graph which contains
loops. This definition directly relates an interleaving to the structure of the graph
without having to refer to unwinding the graph, or reference to moving in and out of
loops. Underlying the definition is the idea of viewing the looped graph as a set of
production rules in a grammar.

A graph with loops G is a set R of binary relations over a set of event nodes S. For
a relation R over S define

• out(R)(a) = {b | aRb}m where { }m denotes a multi-set.

• in(R)(a) = {b | bRa}m

For a mutli-set X let map denote the obvious mapping function, so that map f X =
{f(x) | x ∈ X}m.

Let α = a0 · · · ak be a string over S. Let Nk = {i | 0 ≤ i ≤ k}, note we can think of
α as a map α : Nk −→ S. Define a relation W on Nk by

iWj = (ai(
⋃
R∈R

R)aj) ∧ (i ≤ j)

Define α to be an interleaving of G if there is some relation W ′ ⊆W such that

∀i ∈ Nk ∃ U , V ∈ R :

map α out(W ′)(i) = out(U)(ai) when i < k
map α in(W ′)(i) = in(V )(ai) when i > 0

7



Finite State Automata for Topological Sorting

4 Conclusion

In the non-iterating case proposition 2.1 states that A is the smallest automaton which
generates the total extensions of <. In ptk we start with a partial order of distinct
events, but these events may not have distinct string labels. In this case we dont just
want to generate all total extensions of the partial order on the events. We only want to
get the total orders which give different interleavings of the labels. In this case it may
be possible to construct a FSA automaton which is smaller than A which only generates
the different interleavings of the string labels.

Suppose in the previous example we give each event the string label msg. Then there
is only one interleaving, namely

msg msg msg msg

Clearly this can be generated by a FSA with five states, not the eight states of A.
The algorithm for A generates the states and transitions on the fly so that only the

necessary states and transitions are generated. Thus the complexity of the algorithm
is linear in the number of states of A. Thinking of the automaton as a compression of
the topological sort tree we gain by going from a representation which is almost doubly
exponential in the worst case to one which is singly exponential in the worst case. It
might also be the case that we can perform useful analysis of the automaton with respect
to feature interaction.

Proposition 3.1 states that the extended algorithm always terminates on loop graphs
which are generated by MSC provided the loops do not contain gates (a construction
which allows arbitrary message passing between parts of an MSC). In such cases there is
no FSA which can describe the interleavings of the MSC. Thus the algorithm works for
those cases when a FSA exists. Moreover it is again the minimal such automata when
the events have distinct names.

8


	Introduction
	Motivating Examples

	The FSA algorithm for non iterating specifications
	Another Example

	Loops
	Graph Representation of MSC with Loops
	The FSA algorithm
	Interleavings of a looped Graph

	Conclusion

