Bounded Approximate Decentralised Coordination
using the Max-Sum Algorithm

Alessandro Farinelli, Alex Rogers, and Nick R. Jennings

School of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, UK.
{af2,acr,nr}@ecs.soton.ac.uk

Abstract. In this paper we propose a novel algorithm that provides tdedn
approximate solutions for decentralised coordinatiomlams. Our approach re-
moves cycles in any general constraint network by elimigatiependencies be-
tween functions and variables which have the least impa¢hersolution qual-
ity. It uses the max-sum algorithm to optimally solve theutsg tree structured
constraint network, providing a bounded approximatiorcgjeto the particular
problem instance. We formally prove that our algorithm juieg a bounded ap-
proximation of the original problem and we present an erogirgvaluation in a
synthetic scenario. This shows that the approximate swisitihat our algorithm
provides are typically within 95% of the optimum and the apgmation ratio
that our algorithm provides is typically 1.23.

1 Introduction

The development of decentralised coordination technigsies key issue for many
widely studied practical problems, such as resource andafézcation, planning and
scheduling. Recently, significant research effort has Bbtayapply these techniques
to control physical devices which are able to acquire infation from the environ-
ment. For example, agent-based techniques have been usedttol the orientation
of multiple fixed sensors deployed to localise and track getigjl] and to coordinate
sensing and communication in a sensor network deployedlectenvironmental data
[2]. Decentralised coordination is particularly challemgin these domains because of
the constrained computational resources of the devicest(dihe requirement of min-
imising power consumption) and because communicatiomigdd to local neighbours
(due to the use of low power wireless communication).

The problem of decentralised coordination in these domiaiofien cast as a multi-
agent Distributed Constraint Optimisation Problem (DCQR)s allowing the use of a
wide range of solution techniques explicitly developeddistributed agent-based sys-
tems. Such techniques can be broadly divided into complgteitnms that generate
optimal solutions such as ADOPT [3], OptAPO [4], and DPOP #id approximate al-
gorithms such as the Distributed Stochastic Algorithm (D84 and Maximum Gain
Message [6]. Now, while complete algorithms guarantee tthey will return the op-
timum solution, they also exhibit an exponentially inciiegscoordination overhead
(either in the size and/or number of messages exchanged, theicomputation re-
quired by each device) as the number of devices in the systeradses. Thus, their

2 A. Farinelli, A. Rogers, N. R. Jennings

use in practical applications such as those mentioned alss@verely limited. This
important issue is partially addressed by extensions ofrteetioned approaches. For
example, MB-DPOP provides a memory bounded algorithm tiaales-off the linear
message number of DPOP with polynomial message size [7]eMervwhile this ap-
proach is an improvement, to guarantee optimality of thatgwi, the overall time and
message complexity is still exponential.

In contrast, approximate algorithms require very littledbcomputation and com-
munication, and are, as such, well suited for large scaldiped distributed applications
in which the optimality of the solution can be sacrificed imdiar of computational and
communication efficiency. Furthermore, such approximethniques have been shown
to provide solutions which are very close to optimality ines@l problem instances [1,
6]. However, such approaches fail to provide any guarardaéke solution quality in
general settings, and this limits their applicability inmgaapplications domains (par-
ticularly safety critical ones).

Itis this shortcoming that we address in this paper. Spatiifiove propose a novel
decentralised coordination algorithm that providesnded approximate solutions. Our
point of departure is recent work demonstrating that the-maxr algorithm is a very
promising technique for decentralised coordination (amate generally, constraint rea-
soning), providing solutions close to optimality while v#dng very limited commu-
nication overhead and computation [8]. The max-sum allgaribelongs to the Gener-
alised Distributive Law (GDL) framework [9], a family of thoiques frequently used
in information theory for decoding error correcting cotlfk0] and to solve graphi-
cal models (e.g., to find the maximum a posteriori assignimeviarkov random fields
[11]). When applied to constraint networks that are treesptax-sum algorithm is able
to provide the optimal solution to the optimisation probldfowever, when applied to
general constraint networks which typically contain loomsly limited theoretical re-
sults hold for the solution quality. While empirical evidenshows that the algorithm
is able to find solutions which are very close to the optimajémeral problems, there
is no guarantee that the algorithms will converge to a smhytand only very limited
guarantees on the quality of the solution to which it mightvarge.

Thus, against this background, in this paper, we build ore#tigting max-sum al-
gorithm and propose a new algorithm that provides boundptbapmate solutions on
general constraint networks. We do so by removing cycldsdrotiginal constraint net-
work by ignoring dependencies between functions and viesalvhich have the least
impact on the solution quality. We then use max-sum to ogljnsalve the resulting
tree structured constraint network, whilst simultanepasimputing the approximation
ratio for the original problem instance (i.e., the ratiovbetn the unknown optimal
solution and the approximate solution provided by our atgor [12]). Our approach
maintains the attractive properties of the max-sum teckesdi.e., low communica-
tion overhead and low computational requirement) whilevigiog guarantees on the
solution quality provided. The use of tree structures tawietd an approximation of
the original problem shares similarities with previous kvisr information theory [13]
where a dependence tree is used to approximate a genetipijobability distribution

! The turbo codes are probably the most important represenfat which GDL techniques are
used.

Bounded Approximate Decentralised Coordination usinga®-Sum Algorithm 3

of random discrete variables. In particular, the authooswghat a maximum weight de-
pendence tree provides the best tree approximation of ihiegmbability distribution.
With respect to that work our contribution addresses a desiésed decision prob-
lem as opposed to a centralised tree parametrisation of lamowm joint probability.
Consequentely, we provide the approximation ratio for qutinsisation problem and
we consider generig-ary relationships among variables as opposed to the bitery
pendence considered in [13]. Also, techniques based ord&geemposition, have been
previously used in the area of constraint optimisation.drtipular, in [14] the authors
focus on providing bounds on the best-cost extension of afsetriables (i.e., the best
value that the target function can achieve for all the pass$dint values of the variable
set), given a tree-decompositforin contrast, here we focus on removing cycles from
the original problem instance to optimise the approxinratatio. Thus, in more detail,
this paper makes the following contributions:

1. We propose a novel weighting for each edge of the origo@dy constraint graph.
This characterises the maximum effect that the removalis&ttige can have on the
optimal value of the function to which it was connected. Wenfally prove that, if
we remove edges to create a tree structured constraint fetewr algorithm can
then compute the approximation ratio for the original pesbinstance.

2. We present a fully decentralised algorithm (building call&jeret al.’s algorithm
for finding minimum spanning trees [15]) that forms a treaatured constraint net-
work by removing those edges with the minimum total weigi{inence minimis-
ing the approximation ratio calculated above). The alparmithen initiates max-
sum on the resulting tree structured constraint networkdéstdbutes the elements
required to compute the approximation ratio to all nodes.

3. We empirically evaluate our approach in a synthetic séemaaalysing the solution
and approximation ratio obtained in various operative dms. We show that the
approximate solutions that our algorithm provides aredgity within 95% of the
optimum and the approximation ratio that our algorithm fdes is typically 1.23.

The rest of this paper is structured as follows: Section thédly defines the problem
we address. Section 3 provides a brief description of the-suax algorithm. Section
4 presents our approach and proves that it provides a bolagi@dximate solution.
Section 5 empirically evaluates our approach and Sectian6lades.

2 Problem Formulation

Following the standard DCOP formulation, our decentradliseordination problem is
defined by a set of discrete variables= {1, ..., 2.}, which are controlled by a set
of agentsA = {A;, ..., Ax}, and a set of functionk = {F1,..., F,,}. Each variable
x; can take values over a finite domalpand each functioi’; (x;) is dependent on a
subset of variableg; C x defining the relationship among the variablexjn Thus,

2 Notice that a tree-decomposition for a Constraint OptitisseProblem is not a spanning tree
of the original graph, but a tree that has clusters of vaembls vertices, and that satisfies the
running intersection property. See [14] for further details.

4 A. Farinelli, A. Rogers, N. R. Jennings

Fig. 1. Diagram showing cyclic factor graph.

function F;(x;) denotes the value for each possible assignment of the lesiabx;.
Note that this setting is not limited to pairwise (binarynestraints and the functions
may depend on any number of variables.

Within this setting, we wish to find the state of each variakle such that the sum
of all functions in the system is maximised:

x* = arg max Z Fi(x;) Q)

i=1

Furthermore, in order to enforce a truly decentralisedtsmiywe assume that each
agent can control only its local variable(s) and has knogéeaf, and can directly com-

municate with, a few neighbouring agents. Two agents aghbeiurs if there is a rela-

tionship connecting variables that the agents controhikway, the complexity of the

calculation that the agent performs depends only on the ruwibneighbours that it

has (and not the total size of the network), and thus, we daieee solutions that scale
well.

3 Basics of the Max-Sum Algorithm

In order to apply max-sum to the optimisation problem désziin Equation 1, we
represent it as a bipartite factor gr@pFor example, Figure 1 shows three interact-
ing agents,4;, A, and.As. Variables represent actions that agents can executes whil
functions assign utility values for all possible configimas of the variables they de-
pend on, thus describing agent interactions. In genereh agent can be responsible
for assigning values to a set of variables, and to performpedations associated to
a set of functions. In the Figure, for ease of presentatienreport a situation where
each agent is responsible to assign a single variable anertorpn computation for a
single function. In the example we have that = {1, 22}, x2 = {x1, 22,23} and

x3 = {x2,z3}. Notice thatF,(x2) describes a not pairwise interaction. The max-sum
algorithm then operates directly on the factor graph repriedion described above,

% From this point onwards, we shall use the terms ‘factor grapH ‘constraint network’ inter-
changeably, and note that, agents are responsible for comg@and relaying messages of the
function and variable nodes that they control.

Bounded Approximate Decentralised Coordination usinga®-Sum Algorithm 5

and does so by specifying the messages that should be passeddfiable to function
nodes, and from function nodes to variable nodes. Theseagessire defined as:

— From variable to function:

Gimj(mi) =g+ Y rreil@) (2)
ke Mi\j
whereM; is a vector of function indexes, indicating which functicodes are con-
nected to variable nodeandc;; is a normalising constant to prevent the messages
from increasing endlessly in cyclic graphs.
— From function to variable:

Tj—»i(ffi)zm_a\x Fj(x)+ Y ae—j(a) ®3)
x;\i KENG\i

whereN; is a vector of variable indexes, indicating which variabteles are con-
nected to function nodgandx;\i = {zx : k € Nj \ i}.

When the factor graphis cycle free, the algorithm is gua@ato converge to the global
optimal solution such that it finds the variable assignmbat maximises the sum of
the functions. Thus, optimally solving the optimisatiomiplem shown in equation 1.
Furthermore, this convergence can be achieved in time eguaice the depth of the
tree by propagating messages from the leaf nodes of theottbe toot and back again.
This variable assignment is found by locally calculating thnction,z;(z;), from the
messages flowing into each variable node:

zilw) = Y rjmile) (4)

JEM,;

and hence findingrg max,, z;(z;).

When applied to cyclic graphs, the messages within the gnagj converge af-
ter multiple iterations, but there is no guarantee of thiswiever, extensive empirical
evidence demonstrates that this family of algorithms doéadt generate good approx-
imate solutions when applied to cyclic graphs in this way][M8hen the algorithm
does converge, it does not converge to a simple local maxirbutrather, to a neigh-
bourhood maximum that is guaranteed to be greater than sk ehaxima within a
particular large region of the search space [11]. Charaatgrthis region is an ongoing
area of research and to date has only considered small gnagbhspecific topologies
(e.g., several researchers have focused on the analysie afgorithm’s convergence
in graphs containing just a single loop [11]).

The max-sum algorithm is extremely attractive for the déredised coordination of
computationally and communication constrained devicesesthe messages are small
(they scale with the domain of the variables), the numberegsages exchanged typi-
cally varies linearly with the number of agents within thetgyn, and the computational
complexity of the algorithm scales exponential with just thumber of variables on

6 A. Farinelli, A. Rogers, N. R. Jennings

which each function depends (and this is typically much thas the total number of
variables) [8]. However, as with the stochastic approaoie®ioned earlier, the lack of
guaranteed convergence and guaranteed solution quialitig the use of the standard
max-sum algorithm in many applications domains.

A possible solution to address this problem is to removeasyfriom the constraint
graph by arranging it into tree-like structures such astjondrees [17] or pseudo-trees
[5]. However, such arrangements result in an exponentgaheht in the computation
of the solution or in the communication overhead (e.g., irOPRhe message size is
exponential with respect to the width of the pseudotreeg &kponential element is
unavoidable to guarantee optimality of the solution anded to the combinatorial
nature of the optimisation problem.

In the next section we present our alternative approacletimtres the convergence
of the algorithm to a bounded approximate solution.

4 The Bounded Max-Sum Algorithm

The basic idea of our approach is to remove cycles from therfacaph, by ignoring
some of the dependencies between functions and variablspéndency directly cor-
responds to a link between a function node and a variable inatie factor graph, and
by removing appropriate dependencies, we can operate uraxes a cycle free factor
graph, hence guaranteeing that the algorithm will convewgbe optimal solution of
this new problem. Moreover, the size of each message exeldahging this phase will
be proportional only to the size of the domain of the varialfwolved, thus avoiding
the exponentially sized messages that are typical of camplgorithms (e.g., DPOP).

Since we ignore some of the dependencies in the factor grapbannot guarantee
that the solution we obtain in the cycle free factor graphésdptimal one to our original
problem. However, as we will show shortly, we can bound tistadice of the solution
we find on the cycle free factor graph to the optimal solutiartlee original problem.
A key step in this approach is to choose which dependencigmtme by considering
the impact that each has on solution quality.

Specifically, consider a factor graghG(x, F; E') whereE is the set of links con-
necting function and variable nodes. To provide an appration algorithm, our goal
is to compute a variable assignmenbver a spanning tree for the graghG, such
that theV* <= p(FG)V, where our approximate solutidin = >, F;(%;) and the
optimal solutionV* = 3. F;(x;). Notice that in our approach the approximation ratio
is dependent on the particular instance of the problem. \dkedte a dependency link
with e;; € E wherei is an index over functions ands an index over variables. Figure
2 reports the factor graph shown in Figure 1 with the weights & possible spanning
tree, solid lines represent links present in the spanneewihile dashed lines represent
links present in the original cyclic factor graph, but rerado form the spanning tree.
This Figure will be used as a running example to clarify the $teps of the approach.
Specifically, our approach proceeds as follows:

1. We define the weight of each dependency lipkas:

Wi = m%)_(max F;(x;) — min F;(x;) (5)
x\j | T

Bounded Approximate Decentralised Coordination usinga®-Sum Algorithm 7

W21

Wa2 W33

Fl @ F3

Fig. 2. Example of a factor graph containing cycles and a spannagftr the factor graph.

For examplewss reported in Figure 2 is computed as

wa3 = max |max Fy(x1, x2,23) — min Fa (21, 22, x3)
T1,T2 T3 xrs3
Notice that the weightv;; represents the maximum impact that variabjecan
have over the values of functiali. In particular, if we ignore variable; when
maximising F; the distance between our solution and the optimal will be astm
wy;. Thus, the smaller the weight the less important is the dégpecy in the opti-
misation process.

2. We remove dependency links from the original cyclic fagaph to form a tree
structured graph. For example, in Figure 2 dashed linegsept dependencies that
have been removed. For each function within the factor gragmow havex; =
x! U x¢ wherex! represents the set of dependencies which have not beenedmov
andx¢ represents those that have. For example, in Figute 2 {z;} andx§ =
{z2,2z3}. Notice thatx§{ might be empty because no dependency was removed
for functioni, as it is the case in our running example #grandx§ because no
dependency was removed for functidnsandF;. Howeverx! will always contain
at least one element, this follows from the fact that we baikpanning tree of the
original factor graph and thus we do not disconnect any etén@onsequently, we
have thaty;x! = x. We define the sum of the weights of the removed links as:

W = Z Wi (6)
ei; €C

whereC' is the set of links removed from the factor graph.

3. We run the max-sum algorithm on the remaining tree stradtéactor graph. For
functions which have had dependency links removed, we atalihem by min-
imising over all values ok$, and thus, the max-sum algorithm optimally solves:

X = arg max Z II)l(lCn Fi(xi) @)

8 A. Farinelli, A. Rogers, N. R. Jennings

For example, in our case the assignment we obtain aftermgrthe max-sum on
the spanning tree maximises the funct®riz:, z2) + F4(z1) + F5(z2, z3) where
Fi(z1) = ming, 4, Fo(z1, 22, 23).

4. The resulting variable assignmegt, represents our approximate solution to the
original optimisation problem. As required:

V* <= p(FG)V (8)

Where the approximation ratio(FG) = 1 + (V™ + W — V)/V, andV™ =
Do minye F; (x;) represents the optimal solution to the tree structuredtcaing
network. Note that, by removing those dependencies thaimiga W/, we min-
imise the approximation ratto

In the next section we formally prove that given the way we pata the weights on
the factor graph, equation 8 holds.

4.1 Proof of Bounded Approximation

Sincep(FG)V =Y, minye F;(X;) + W, to show that equation 8 holds it is sufficient
to prove the following theorem:

Theorem 1. Bounded Approximation
> min Fi(%:) + W >=Y_ Fi(x}) (9)

To prove this theorem we consider the following property:

Property 1.

Vi, x min F;(x};x5) + Z w; ; >= max F;(x!; x§) (10)
x5 - ’ x5
j

Proof (Proof of property 1). To show that property 1 holds let us first consider the case
wherex{ = {z;}. In this case we have
min F;(x};25) + m%x[maxFi(xf-; z;) — min F;(x}; ;)] > maXFi(Xi;xj)

z; Loy z;

By contradiction, let us consider an assignmefitsuch that

min F,(x""; ;) + max[max F;(x}; z;) — min F}(x}; z;)] < max Fy(x""; xj)
zj x:;' zj zj T

We can rewrite the previous expression as

z;) — min F;(x"}; 2;)
J

maxFi(x/E; x;) — min Fi(xlf; zj) < maxFi(x”E;
Zj ZTj Zj

4 In section 4.2 we describe how we use a decentralised maxispamning tree algorithm to
do so.

Bounded Approximate Decentralised Coordination usinga®-Sum Algorithm 9

where
x'f = arg max[max F}(x; x;) — min F;(x}; 2;)]
xf T T
However, this is a contradiction with respect to the defumiti)fx’f. Therefore property
1 must hold whex{ = {z,}.
To prove that property 1 holds also wheg§| > 1 it is sufficient to show that

m%X[m%XFi(xf;xf) — miani(xf;xf)] < Zmax[maxFi(xi) — min Fj(x;)]
' j

X x; i xi\j i T

Notice that we can substitute the left term of this expressiith

ma}x[max{max[max F;(x;) — min F;(x;)]}]

c\ s . T
x; J Xi\] J J

However, this term is less than or equal to

max|» max[max F;(x;) — min Fj(x;)]]

e\ s .
x; j Xi\J J J

Which, in turn, is less than or equal to the righthand sidewfariginal expression.
Hence property 1 holds for any vector of variabgs

Proof (Proof of Theorem 1). We can write
Zmlanz(iZ) +W>= Zmlanz(Xf) +W

This equation holds because we know that
Y minF(%) >= Y min Fi(x})

holds from the definition ok and we add the same quantity to both terms of the
equation. Then using property 1 we know that

Zr?(lanl(xf) + W >= ZH}(E}XE(Xr)

Now, since

Y max Fi(x}) >= Y Fi(a})
equation 9 holds.

Note that when the interactions are pairwise and thus at orestdependency is
removed from each function node, then, by minimising the sfithe weights, we min-
imise the impact that this removal has. In general, whenipielttependencies may be
removed from any function node, this is no longer the caseekample, consider Fig-
ure 2, and suppose the spanning tree is a maximum spannéng tvis implies thatvas

10 A. Farinelli, A. Rogers, N. R. Jennings

andws are the dependencies, with the minimum total weights, teatito be removed
in order to form a spanning tree. However, in this case thsiplesimpact of the re-
moved dependencies on the solution quality willhex,;, [max,, 4, F2(z1, 22, x3) —
ming, ., F>(z1, 2, x3)] which in general is different fromil’ = w2 + wa3. There-
fore, when interactions are not pairwise, there might bematination of dependencies
to remove, that has a smaller impact than tiiewe compute. While it is possible to
calculate the impact that removing multiple dependendiss finding the set that must
be removed in order to minimise this impact is a combinatg@rablem. Nonetheless,
our approach of summing the individual weights overestigsahis impact, and thus,
our bounded approximate solution is still valid in theseesas

4.2 Decentralised Bounded Max-Sum

Having described our approach, and proved that, given algmoinstance, we can
provide a bounded approximated solution, we now descritecantralised implemen-
tation of our bounded max-sum algorithm. This implementatias two key steps: (i)
forming the spanning tree factor graph which minimises tira sf the weights of the
removed edges (hence minimisifig), and (ii) initiating the max-sum algorithm and
propagating the information required to compute the appration ration to the agents.

Spanning Tree Formation In order to remove cycles from the given factor grapl,
we must find a spanning tree that minimises the sum of the wseighthe removed
edges. To do this, we use the weights of each edge to compuéxianom spanning
tree,T. The computation of the maximum spanning tree can be donaistdbuted
fashion using various message passing algorithms. Incpéatj here we use the mini-
mum spanning tree algorithm by Gallager, Humblet and S@tdg), modified to find
the maximum spanning tree [15]. This is a distributed, abymreous algorithm, for gen-
eral, undirected graphsGHS is optimal in terms of communication cé¥tnlogn+ E)
and has a running time 6¥(nlogn), wheren is the number of nodes in the factor graph.
We briefly describe the GHS algorithm here and refer to [15pfonore complete
description. Initially, each node (which may be either datale or a function node) is a
fragment with level L = 0, then each node chooses its maximum weight outgoing edge
and attempts to join with the node at the other end. This farfregment of level. = 1.
Nodes in fragments where > 0 co-operate to determine the fragment's maximum
weight outgoing edge that will not form a cycle and attempgbin with the fragment
on the other end. This occurs by each node finding its maximaighwoutgoing edge,
and passing this information to a core node, which can theeriakne the best edge for
the whole fragment. Fragments continue to join togethehig manner. The twoore
nodes (those at either end of the edge on which the final joining affnents occurs)
are aware when the algorithm terminates, as they will recedports from each node
that they cannot locate any further outgoing edges thatnwillead to a cycle.

5 Notice that our approach is completely generic with respethe algorithm used to compute
the maximum spanning tree. Here the choice of the GHS algoris dictated by the low
communication overhead and by the ease of implementation.

Bounded Approximate Decentralised Coordination usinga®-Sum Algorithm 11

Max-Sum Initiation & Information Propagation On termination of the GHS al-
gorithm described above, only the two core nodes are awatethle algorithm has
completed. Therefore we add a message-passing phase tagptephis information
throughout the tree. This procedure also establishes atpelndd hierarchy in the tree,
and serves to initiate the max-sum algorithm and infornmgpi@pagation stages. This
message-passing phase is initiated by the root node; adofged by whichever of the
two core nodes is a function nddd his root node sends outCOMPLETE message to
each of its children. When a node receivd8@/PLETE message, it marks the sender
as its parent, and then propagates it down the tree.

When a leaf node receives tBOMPLETE message the max-sum phase starts. Each
node propagatddAXSUMmessages up the tree, waiting for messages from each child
node before sending an updated message to the parent nadeoiitent of the mes-
sages are calculated as described in equations 2 and 3, arefgence of the messages
to the optimum is guaranteed when the messages have pregagde root node, and
back to the leaf nodésAt this stage, each variable node is aware of both the ariab
assignmentyg;, that represents the approximate solution to the origipdhusation
problem, and the value 6f"™ = 3~ minye F;(X;); this is provided directly from the
max-sum algorithm and used to calcula{é’G).

When the leaf nodes receive this fifddAXSUM message the weight and solution
propagation phase starts. During this phase, nodes pripagées composed &BEUM
(which will accumulate the value d# specified in equation 6) ar®OLUTI ON mes-
saged. Ifthe leaf is a variable node it creates an emBjMand an emptOLUTI ON
message. If it is a function node, it createdBUMmessage of value equal to the sum
of the weights of local deleted edges, an8@ UTI ON message equal t6;(%;). Both
messages are then propagated up the tree, with each inter@lwaiting to receive
messages from all its children before propagating a singleWsUMandSOLUTI ON
message to its parent. If the internal node is a variable fibda these new messages
are simply the sum of the messages from its children. If itfisnetion node, then they
are given by the sum of the messages from its children plusuheof the weights of
its own locally deleted edges, and the valugpfk;), respectively. When the root has
received all theABUMand SOLUTI ON messages, both are propagated back down the
tree, informing each node of the totdl, and the final solutionly = 3, F;(%;).

At this final stage, each agent knows the assignment of thablas that it controls,
it knows that this assignment leads to a total solution qafiV’, and that this solution
has an approximation ratjgd FG) = 1+ (V™ +W —V)/V. The number of messages,
for each information propagation phase, equals the numbedges in the spanning
tree (i.e.|F| + |x| — 1). Thus, the size of each message depends on the message type,
but this is always constant with respect to the number of sadehe factor graph

5 Notice that, in our case, one of the two core nodes will alw@s/s function node because the
factor graph is a bipartite graph.

7 In settings where the choice of variable assignment mayaanigue (most commonly, when
the functions return integer values) an addition value agagpion phase may be used at this
point. See [18] for detalils.

8 Note that these could be propagated in two separate phaségrb we combine them together
for efficiency.

12 A. Farinelli, A. Rogers, N. R. Jennings

Value (link density 2)

— A
800 _-__-__-Vm z,_-—f'
; o A
e VLW - -
z PEME
600 Pt
z r 3
@ .l
400t et
S
K5
200t At
o ‘ ‘ ‘
0 10 40 50

20 30
Agent number
Value (link density 3)

1200

1000

800
(b) oot
400~

200

0 10 20 30 40 50
Agent number

Fig. 3. Graphs showing the utility when varying the number of agant$the link density.

(e.g., aMAXSUMmessage involving variable; contains|d;| values whileWwsUMand
SOLUTI ONmessages contain one value each).

5 Empirical Evaluation

We now present an empirical evaluation of our bounded apmrabe algorithm. This
is required because our approximation ratio depends orpéhefi problem instance.
Specifically, we evaluated our approach in a decentraliseddination problem where
a set of agents is arranged in a random graph. Each agenblsonmtre variable, with
domain|d;| = 3, and each edge of the graph represents a pairwise consteamten
two agents (and thus ol is minimum in this case). A random payoff matrix is as-
sociated with each edge, specifying the payoff that botmesgeill obtain for every
possible combination of their variables’ assignmentshigatry of the payoff matrix is
a real number sampled from a gamma distribution (with 9 ands = 2).

This setting generalises the distributed graph colouriodplem, which is a canon-
ical problem frequently used to evaluate DCOP techniques, (B8] and [4]). In the
graph colouring domain thB” our approach provides would simply be the number of
edges removed to remove cycles from the graph. The randooffpagtrix that we
use here enriches the domain making the evaluation anahgsis significant, and the
gamma distribution, introduces significant variance sttt some dependencies have
a higher impact than others.

Bounded Approximate Decentralised Coordination usinga®-Sum Algorithm 13

We performed our experiments by generating random graptis different link
density (i.e., average connection per agents) and varioogar of agents. For each
configuration, we extract several performance metrics:

— V™: The solution obtained by the max-sum algorithm on the tteecsired con-
straint network.

— V: Our bounded approximate solution, obtained by evaluakiagssignment com-
puted by max-sum on the spanning tree, on the original loopgttaint network.

— V™4 W: The upper bound on the value of the unknown optimal solut@mputed
by our approach.

— V*: The optimal solution.

Figures 3(a) and 3(b) show the results obtained for diffievalues of the link density
(specifically, 2 and 3)while varying the number of agents. For each configuratian, w
report the average value and the standard error in the meamtwenty repetitions.
Since the optimal utility is computed by complete enumeratf all the possible con-
figurations, we were able to compute this metric only for $emalumbers of agents
(e.g., upto 15).

Results show that the actual utility we compute is extrencdge to the optimal
solution (in the experiments the minimum ratio was 95%). §'kbowing that, from
an empirical point of view, the solutions we can achieve gishis approach provide
very good approximations. More importantly the approxioratatio we guarantee is
significant. In the experimenig F'G) was never above 1.27, and was typically 1.23.
Finally, our approach scales very well with the number ofragiehaving a running time
of approximately 800 milliseconds on the most complex pgobinstance in our data
set (i.e., 50 agents and link density%)

6 Conclusions and Future Work

We developed a novel algorithm for decentralised coor@inatvhich is able to guar-
antee bounded approximate solutions given particulaamtss of general constraint
networks. Our main future direction is to investigate teéghes to further reduce the
approximation ratio. A promising direction is to iterafiy@pply our algorithm while
clustering variable and function nodes (as proposed in) tb7jemove cycles without
removing dependencies. In this way, we can iterativelyekese the approximation ratio
(by removing less dependencies) while paying an increasermmunication and com-
putation (due to clustering of nodes), thus allowing a flexitade-off between solution
quality and communication and computation overhead.

% These values are in the range often used for benchmarkingfx€niques on random graph
colouring instances [3].

10 Consider that, on a 3-color random graph problem with linksity 2 and 18 agents, ADOPT
requires a running time of 200 seconds while our approachiregjapproximately 100 mil-
liseconds [19].

14

A. Farinelli, A. Rogers, N. R. Jennings

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Fitzpatrick, S., Meetrens, L.: Distributed Coordinatibrough Anarchic Optimization. In:

Distributed Sensor Networks A multiagent perspective wéuAcademic (2003) 257—293

. Padhy, P., Dash, R.K., Martinez, K., Jennings, N.R.: Atytbased sensing and communi-

cation model for a glacial sensor network. In: Proceedingtbfinternational Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS’06). (B) 1353—-1360

. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asyraious distributed constraint

optimization with quality guarantees. Artificial Intelégce Journal (161) (2005) 149-180

. Mailler, R., Lesser, V.: Solving distributed constrapptimization problems using cooper-

ative mediation. In: Proceedings of Third Internationahi@€onference on Autonomous
Agents and MultiAgent Systems (AAMAS 2004). (2004) 438-445

. Petcu, A., Faltings, B.: DPOP: A scalable method for ragkint constraint optimization.

In: Proceedings of the Nineteenth International Joint €merice on Atrtificial Intelligence,
(IJCAI 2005). (2005) 266—271

. Maheswaran, R.J., Pearce, J., Tambe, M.: A family of dcaplyame-based algorithms for

distributed constraint optimization problems. In: Cooation of Large-Scale Multiagent
Systems. Springer-Verlag, Heidelberg Germany (2005) 126—

. Petcu, A., Faltings, B.: Mb-dpop: A new memory-boundegbathm for distributed op-

timization. In: Proc. of the 20th Int. Joint Conf. on Artifidilntelligence (IJCAI). (2007)
1452-1457

. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Deralised coordination of low-power

embedded devices using the max-sum algorithm. In: Proheo¥th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAZ)08) 639-646

. Aji, S., McEliece, R.: The generalized distributive lalmformation Theory, IEEE Transac-

tions on46(2) (2000) 325-343

MacKay, D.J.C.: Information Theory, Inference, andrn@zgy Algorithms. Cambridge Uni-
versity Press (2003)

Weiss, Y., Freeman, W.T.: On the optimality of solutiohthe max-product belief propaga-
tion algorithm in arbitrary graphs. IEEE Transactions ofoimation Theoryd7(2) (2001)
723-735

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, Btroduction to algorithms, second
edition. The MIT press (2001)

Chow, C.K., Liu, C.N.: Approximating discrete probdtlildistributions with dependence
trees. IEEE Transactions on Information Theit+¥4(3) (May 1968) 462—-467

Dechter, R., Kask, K., Larrosa, J.: A general scheme fdtiphe lower bound computation
in constraint optimization. In: Constraint Programmir20@1) 346—-360

Gallager, R.G., Humblet, P.A., Spira, P.M.: A distréitalgorithm for minimum-weight
spanning trees. ACM Trans. Program. Lang. Sy&t) (1983) 66—77

Frey, B.J., Dueck, D.: Clustering by passing messagesebe data points. Science
3155814) (February 2007) 972-976

Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factapis and the sum-product algorithm.
IEEE Transactions on Information Theotf(2) (2001) 498-519

Wainwright, M., Jaakkola, T., Willsky, A.: Tree congisty and bounds on the performance
of the max-product algorithm and its generalizations. iSias and Computind4(2) (2004)
143-166

Modi, P.J.: Distributed Constraint Optimization for Magent Systems. PhD thesis, Dpt. of
Computer Science, Univ. of Southern California (2003)

