
Bounded Approximate Decentralised Coordination
using the Max-Sum Algorithm

Alessandro Farinelli, Alex Rogers, and Nick R. Jennings

School of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, UK.

{af2,acr,nrj}@ecs.soton.ac.uk

Abstract. In this paper we propose a novel algorithm that provides bounded
approximate solutions for decentralised coordination problems. Our approach re-
moves cycles in any general constraint network by eliminating dependencies be-
tween functions and variables which have the least impact onthe solution qual-
ity. It uses the max-sum algorithm to optimally solve the resulting tree structured
constraint network, providing a bounded approximation specific to the particular
problem instance. We formally prove that our algorithm provides a bounded ap-
proximation of the original problem and we present an empirical evaluation in a
synthetic scenario. This shows that the approximate solutions that our algorithm
provides are typically within 95% of the optimum and the approximation ratio
that our algorithm provides is typically 1.23.

1 Introduction

The development of decentralised coordination techniquesis a key issue for many
widely studied practical problems, such as resource and task allocation, planning and
scheduling. Recently, significant research effort has sought to apply these techniques
to control physical devices which are able to acquire information from the environ-
ment. For example, agent-based techniques have been used tocontrol the orientation
of multiple fixed sensors deployed to localise and track a target [1] and to coordinate
sensing and communication in a sensor network deployed to collect environmental data
[2]. Decentralised coordination is particularly challenging in these domains because of
the constrained computational resources of the devices (due to the requirement of min-
imising power consumption) and because communication is limited to local neighbours
(due to the use of low power wireless communication).

The problem of decentralised coordination in these domainsis often cast as a multi-
agent Distributed Constraint Optimisation Problem (DCOP), thus allowing the use of a
wide range of solution techniques explicitly developed fordistributed agent-based sys-
tems. Such techniques can be broadly divided into complete algorithms that generate
optimal solutions such as ADOPT [3], OptAPO [4], and DPOP [5]; and approximate al-
gorithms such as the Distributed Stochastic Algorithm (DSA) [1] and Maximum Gain
Message [6]. Now, while complete algorithms guarantee thatthey will return the op-
timum solution, they also exhibit an exponentially increasing coordination overhead
(either in the size and/or number of messages exchanged, or in the computation re-
quired by each device) as the number of devices in the system increases. Thus, their

2 A. Farinelli, A. Rogers, N. R. Jennings

use in practical applications such as those mentioned aboveis severely limited. This
important issue is partially addressed by extensions of thementioned approaches. For
example, MB-DPOP provides a memory bounded algorithm that trades-off the linear
message number of DPOP with polynomial message size [7]. However, while this ap-
proach is an improvement, to guarantee optimality of the solution, the overall time and
message complexity is still exponential.

In contrast, approximate algorithms require very little local computation and com-
munication, and are, as such, well suited for large scale practical distributed applications
in which the optimality of the solution can be sacrificed in favour of computational and
communication efficiency. Furthermore, such approximate techniques have been shown
to provide solutions which are very close to optimality in several problem instances [1,
6]. However, such approaches fail to provide any guaranteeson the solution quality in
general settings, and this limits their applicability in many applications domains (par-
ticularly safety critical ones).

It is this shortcoming that we address in this paper. Specifically, we propose a novel
decentralised coordination algorithm that providesbounded approximate solutions. Our
point of departure is recent work demonstrating that the max-sum algorithm is a very
promising technique for decentralised coordination (and,more generally, constraint rea-
soning), providing solutions close to optimality while requiring very limited commu-
nication overhead and computation [8]. The max-sum algorithm belongs to the Gener-
alised Distributive Law (GDL) framework [9], a family of techniques frequently used
in information theory for decoding error correcting codes1 [10] and to solve graphi-
cal models (e.g., to find the maximum a posteriori assignmentin Markov random fields
[11]). When applied to constraint networks that are trees, the max-sum algorithm is able
to provide the optimal solution to the optimisation problem. However, when applied to
general constraint networks which typically contain loops, only limited theoretical re-
sults hold for the solution quality. While empirical evidence shows that the algorithm
is able to find solutions which are very close to the optimal ingeneral problems, there
is no guarantee that the algorithms will converge to a solution, and only very limited
guarantees on the quality of the solution to which it might converge.

Thus, against this background, in this paper, we build on theexisting max-sum al-
gorithm and propose a new algorithm that provides bounded approximate solutions on
general constraint networks. We do so by removing cycles in the original constraint net-
work by ignoring dependencies between functions and variables which have the least
impact on the solution quality. We then use max-sum to optimally solve the resulting
tree structured constraint network, whilst simultaneously computing the approximation
ratio for the original problem instance (i.e., the ratio between the unknown optimal
solution and the approximate solution provided by our algorithm [12]). Our approach
maintains the attractive properties of the max-sum techniques (i.e., low communica-
tion overhead and low computational requirement) while providing guarantees on the
solution quality provided. The use of tree structures to obtained an approximation of
the original problem shares similarities with previous work in information theory [13]
where a dependence tree is used to approximate a generic joint probability distribution

1 The turbo codes are probably the most important representative for which GDL techniques are
used.

Bounded Approximate Decentralised Coordination using theMax-Sum Algorithm 3

of random discrete variables. In particular, the authors show that a maximum weight de-
pendence tree provides the best tree approximation of the joint probability distribution.
With respect to that work our contribution addresses a decentralised decision prob-
lem as opposed to a centralised tree parametrisation of an unknown joint probability.
Consequentely, we provide the approximation ratio for our optimisation problem and
we consider genericn-ary relationships among variables as opposed to the binaryde-
pendence considered in [13]. Also, techniques based on tree-decomposition, have been
previously used in the area of constraint optimisation. In particular, in [14] the authors
focus on providing bounds on the best-cost extension of a setof variables (i.e., the best
value that the target function can achieve for all the possible joint values of the variable
set), given a tree-decomposition2. In contrast, here we focus on removing cycles from
the original problem instance to optimise the approximation ratio. Thus, in more detail,
this paper makes the following contributions:

1. We propose a novel weighting for each edge of the original loopy constraint graph.
This characterises the maximum effect that the removal of this edge can have on the
optimal value of the function to which it was connected. We formally prove that, if
we remove edges to create a tree structured constraint network, our algorithm can
then compute the approximation ratio for the original problem instance.

2. We present a fully decentralised algorithm (building on Gallageret al.’s algorithm
for finding minimum spanning trees [15]) that forms a tree structured constraint net-
work by removing those edges with the minimum total weighting (hence minimis-
ing the approximation ratio calculated above). The algorithm then initiates max-
sum on the resulting tree structured constraint network anddistributes the elements
required to compute the approximation ratio to all nodes.

3. We empirically evaluate our approach in a synthetic scenario analysing the solution
and approximation ratio obtained in various operative conditions. We show that the
approximate solutions that our algorithm provides are typically within 95% of the
optimum and the approximation ratio that our algorithm provides is typically 1.23.

The rest of this paper is structured as follows: Section 2 formally defines the problem
we address. Section 3 provides a brief description of the max-sum algorithm. Section
4 presents our approach and proves that it provides a boundedapproximate solution.
Section 5 empirically evaluates our approach and Section 6 concludes.

2 Problem Formulation

Following the standard DCOP formulation, our decentralised coordination problem is
defined by a set of discrete variablesx = {x1, . . . , xm}, which are controlled by a set
of agentsA = {A1, . . . ,Ak}, and a set of functionsF = {F1, . . . , Fn}. Each variable
xi can take values over a finite domaindi and each functionFi(xi) is dependent on a
subset of variablesxi ⊆ x defining the relationship among the variables inxi. Thus,

2 Notice that a tree-decomposition for a Constraint Optimisation Problem is not a spanning tree
of the original graph, but a tree that has clusters of variables as vertices, and that satisfies the
running intersection property. See [14] for further details.

4 A. Farinelli, A. Rogers, N. R. Jennings

A1

A2

A3

x1

x2

x3

F2

F1 F3

Fig. 1. Diagram showing cyclic factor graph.

functionFi(xi) denotes the value for each possible assignment of the variables inxi.
Note that this setting is not limited to pairwise (binary) constraints and the functions
may depend on any number of variables.

Within this setting, we wish to find the state of each variable, x∗, such that the sum
of all functions in the system is maximised:

x
∗ = arg max

x

n
∑

i=1

Fi(xi) (1)

Furthermore, in order to enforce a truly decentralised solution, we assume that each
agent can control only its local variable(s) and has knowledge of, and can directly com-
municate with, a few neighbouring agents. Two agents are neighbours if there is a rela-
tionship connecting variables that the agents control. In this way, the complexity of the
calculation that the agent performs depends only on the number of neighbours that it
has (and not the total size of the network), and thus, we can achieve solutions that scale
well.

3 Basics of the Max-Sum Algorithm

In order to apply max-sum to the optimisation problem described in Equation 1, we
represent it as a bipartite factor graph3. For example, Figure 1 shows three interact-
ing agents,A1, A2 andA3. Variables represent actions that agents can execute, while
functions assign utility values for all possible configurations of the variables they de-
pend on, thus describing agent interactions. In general, each agent can be responsible
for assigning values to a set of variables, and to perform computations associated to
a set of functions. In the Figure, for ease of presentation, we report a situation where
each agent is responsible to assign a single variable and to perform computation for a
single function. In the example we have thatx1 = {x1, x2}, x2 = {x1, x2, x3} and
x3 = {x2, x3}. Notice thatF2(x2) describes a not pairwise interaction. The max-sum
algorithm then operates directly on the factor graph representation described above,

3 From this point onwards, we shall use the terms ‘factor graph’ and ‘constraint network’ inter-
changeably, and note that, agents are responsible for computing and relaying messages of the
function and variable nodes that they control.

Bounded Approximate Decentralised Coordination using theMax-Sum Algorithm 5

and does so by specifying the messages that should be passed from variable to function
nodes, and from function nodes to variable nodes. These messages are defined as:

– From variable to function:

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi) (2)

whereMi is a vector of function indexes, indicating which function nodes are con-
nected to variable nodei, andαij is a normalising constant to prevent the messages
from increasing endlessly in cyclic graphs.

– From function to variable:

rj→i(xi) = max
xj\i



Fj(xj) +
∑

k∈Nj\i

qk→j(xk)



 (3)

whereNj is a vector of variable indexes, indicating which variable nodes are con-
nected to function nodej andxj\i ≡ {xk : k ∈ Nj \ i}.

When the factor graph is cycle free, the algorithm is guaranteed to converge to the global
optimal solution such that it finds the variable assignment that maximises the sum of
the functions. Thus, optimally solving the optimisation problem shown in equation 1.
Furthermore, this convergence can be achieved in time equalto twice the depth of the
tree by propagating messages from the leaf nodes of the tree to the root and back again.
This variable assignment is found by locally calculating the function,zi(xi), from the
messages flowing into each variable node:

zi(xi) =
∑

j∈Mi

rj→i(xi) (4)

and hence findingarg maxxi
zi(xi).

When applied to cyclic graphs, the messages within the graphmay converge af-
ter multiple iterations, but there is no guarantee of this. However, extensive empirical
evidence demonstrates that this family of algorithms does in fact generate good approx-
imate solutions when applied to cyclic graphs in this way [16]. When the algorithm
does converge, it does not converge to a simple local maximum, but rather, to a neigh-
bourhood maximum that is guaranteed to be greater than all other maxima within a
particular large region of the search space [11]. Characterising this region is an ongoing
area of research and to date has only considered small graphswith specific topologies
(e.g., several researchers have focused on the analysis of the algorithm’s convergence
in graphs containing just a single loop [11]).

The max-sum algorithm is extremely attractive for the decentralised coordination of
computationally and communication constrained devices since the messages are small
(they scale with the domain of the variables), the number of messages exchanged typi-
cally varies linearly with the number of agents within the system, and the computational
complexity of the algorithm scales exponential with just the number of variables on

6 A. Farinelli, A. Rogers, N. R. Jennings

which each function depends (and this is typically much lessthan the total number of
variables) [8]. However, as with the stochastic approachesmentioned earlier, the lack of
guaranteed convergence and guaranteed solution quality, limits the use of the standard
max-sum algorithm in many applications domains.

A possible solution to address this problem is to remove cycles from the constraint
graph by arranging it into tree-like structures such as junction trees [17] or pseudo-trees
[5]. However, such arrangements result in an exponential element in the computation
of the solution or in the communication overhead (e.g., in DPOP the message size is
exponential with respect to the width of the pseudotree). The exponential element is
unavoidable to guarantee optimality of the solution and is tied to the combinatorial
nature of the optimisation problem.

In the next section we present our alternative approach thatensures the convergence
of the algorithm to a bounded approximate solution.

4 The Bounded Max-Sum Algorithm

The basic idea of our approach is to remove cycles from the factor graph, by ignoring
some of the dependencies between functions and variables. Adependency directly cor-
responds to a link between a function node and a variable nodein the factor graph, and
by removing appropriate dependencies, we can operate max-sum on a cycle free factor
graph, hence guaranteeing that the algorithm will convergeto the optimal solution of
this new problem. Moreover, the size of each message exchanged during this phase will
be proportional only to the size of the domain of the variables involved, thus avoiding
the exponentially sized messages that are typical of complete algorithms (e.g., DPOP).

Since we ignore some of the dependencies in the factor graph,we cannot guarantee
that the solution we obtain in the cycle free factor graph is the optimal one to our original
problem. However, as we will show shortly, we can bound the distance of the solution
we find on the cycle free factor graph to the optimal solution on the original problem.
A key step in this approach is to choose which dependencies toignore by considering
the impact that each has on solution quality.

Specifically, consider a factor graphFG(x,F; E) whereE is the set of links con-
necting function and variable nodes. To provide an approximation algorithm, our goal
is to compute a variable assignmentx̃ over a spanning tree for the graphFG, such
that theV ∗ <= ρ(FG)Ṽ , where our approximate solutioñV =

∑

i Fi(x̃i) and the
optimal solutionV ∗ =

∑

i Fi(x
∗
i). Notice that in our approach the approximation ratio

is dependent on the particular instance of the problem. We indicate a dependency link
with eij ∈ E wherei is an index over functions andj is an index over variables. Figure
2 reports the factor graph shown in Figure 1 with the weights and a possible spanning
tree, solid lines represent links present in the spanning tree while dashed lines represent
links present in the original cyclic factor graph, but removed to form the spanning tree.
This Figure will be used as a running example to clarify the key steps of the approach.
Specifically, our approach proceeds as follows:

1. We define the weight of each dependency linkeij as:

wij = max
xi\j

[

max
xj

Fi(xi) − min
xj

Fi(xi)

]

(5)

Bounded Approximate Decentralised Coordination using theMax-Sum Algorithm 7

x1 x3

F3F1
x2

F2

w12 w32

w23w21

w22w11 w33

Fig. 2. Example of a factor graph containing cycles and a spanning tree for the factor graph.

For example,w23 reported in Figure 2 is computed as

w23 = max
x1,x2

[

max
x3

F2(x1, x2, x3) − min
x3

F2(x1, x2, x3)

]

Notice that the weightwij represents the maximum impact that variablexj can
have over the values of functionFi. In particular, if we ignore variablexj when
maximisingFi the distance between our solution and the optimal will be at most
wij . Thus, the smaller the weight the less important is the dependency in the opti-
misation process.

2. We remove dependency links from the original cyclic factor graph to form a tree
structured graph. For example, in Figure 2 dashed lines represent dependencies that
have been removed. For each function within the factor graph, we now havexi =
x

t
i ∪ x

c
i wherext

i represents the set of dependencies which have not been removed
andx

c
i represents those that have. For example, in Figure 2x

t
2

= {x1} andx
c
2

=
{x2, x3}. Notice thatxc

i might be empty because no dependency was removed
for function i, as it is the case in our running example forx

c
1

andx
c
3

because no
dependency was removed for functionsF1 andF3. However,xt

i will always contain
at least one element, this follows from the fact that we builda spanning tree of the
original factor graph and thus we do not disconnect any element. Consequently, we
have that∪ix

t
i = x. We define the sum of the weights of the removed links as:

W =
∑

eij∈C

wij (6)

whereC is the set of links removed from the factor graph.
3. We run the max-sum algorithm on the remaining tree structured factor graph. For

functions which have had dependency links removed, we evaluate them by min-
imising over all values ofxc

i , and thus, the max-sum algorithm optimally solves:

x̃ = argmax
x

∑

i

min
xc

i

Fi(xi) (7)

8 A. Farinelli, A. Rogers, N. R. Jennings

For example, in our case the assignment we obtain after running the max-sum on
the spanning tree maximises the functionF1(x1, x2)+F ′

2
(x1)+F3(x2, x3) where

F ′
2
(x1) = minx2,x3

F2(x1, x2, x3).
4. The resulting variable assignment,x̃, represents our approximate solution to the

original optimisation problem. As required:

V ∗ <= ρ(FG)Ṽ (8)

Where the approximation ratioρ(FG) = 1 + (Ṽ m + W − Ṽ)/Ṽ , and Ṽ m =
∑

i minxc
i
Fi(x̃i) represents the optimal solution to the tree structured constraint

network. Note that, by removing those dependencies that minimise W , we min-
imise the approximation ratio4.

In the next section we formally prove that given the way we compute the weights on
the factor graph, equation 8 holds.

4.1 Proof of Bounded Approximation

Sinceρ(FG)Ṽ =
∑

i minxc
i
Fi(x̃i) + W , to show that equation 8 holds it is sufficient

to prove the following theorem:

Theorem 1. Bounded Approximation
∑

i

min
xc

i

Fi(x̃i) + W >=
∑

i

Fi(x
∗
i) (9)

To prove this theorem we consider the following property:

Property 1.

∀i,x min
xc

i

Fi(x
t
i;x

c
i) +

∑

j

wi,j >= max
xc

i

Fi(x
t
i;x

c
i) (10)

Proof (Proof of property 1). To show that property 1 holds let us first consider the case
wherexc

i = {xj}. In this case we have

min
xj

Fi(x
t
i; xj) + max

xt
i

[max
xj

Fi(x
t
i; xj) − min

xj

Fi(x
t
i; xj)] ≥ max

xj

Fi(x
t
i; xj)

By contradiction, let us consider an assignmentx
′′t

i such that

min
xj

Fi(x
′′t

i; xj) + max
xt

i

[max
xj

Fi(x
t
i; xj) − min

xj

Fi(x
t
i; xj)] < max

xj

Fi(x
′′t

i; xj)

We can rewrite the previous expression as

max
xj

Fi(x
′t
i; xj) − min

xj

Fi(x
′t
i; xj) < max

xj

Fi(x
′′t

i; xj) − min
xj

Fi(x
′′t

i; xj)

4 In section 4.2 we describe how we use a decentralised maximumspanning tree algorithm to
do so.

Bounded Approximate Decentralised Coordination using theMax-Sum Algorithm 9

where
x
′t
i = argmax

xt
i

[max
xj

Fi(x
t
i; xj) − min

xj

Fi(x
t
i; xj)]

However, this is a contradiction with respect to the definition ofx′t
i. Therefore property

1 must hold whenxc
i = {xj}.

To prove that property 1 holds also when|xc
i | > 1 it is sufficient to show that

max
xt

i

[max
xc

i

Fi(x
t
i;x

c
i) − min

xc
i

Fi(x
t
i;x

c
i)] ≤

∑

j

max
xi\j

[max
xj

Fi(xi) − min
xj

Fi(xi)]

Notice that we can substitute the left term of this expression with

max
xt

i

[max
j

{max
xc

i
\j

[max
xj

Fi(xi) − min
xj

Fi(xi)]}]

However, this term is less than or equal to

max
xt

i

[
∑

j

max
xc

i
\j

[max
xj

Fi(xi) − min
xj

Fi(xi)]]

Which, in turn, is less than or equal to the righthand side of our original expression.
Hence property 1 holds for any vector of variablesx

c
i .

Proof (Proof of Theorem 1). We can write
∑

i

min
xc

i

Fi(x̃i) + W >=
∑

i

min
xc

i

Fi(x
∗
i) + W

This equation holds because we know that
∑

i

min
xc

i

Fi(x̃i) >=
∑

i

min
xc

i

Fi(x
∗
i)

holds from the definition of̃x and we add the same quantityW to both terms of the
equation. Then using property 1 we know that

∑

i

min
xc

i

Fi(x
∗
i) + W >=

∑

i

max
xc

i

Fi(x
∗
i)

Now, since
∑

i

max
xc

i

Fi(x
∗
i) >=

∑

i

Fi(x
∗
i)

equation 9 holds.

Note that when the interactions are pairwise and thus at mostone dependency is
removed from each function node, then, by minimising the sumof the weights, we min-
imise the impact that this removal has. In general, when multiple dependencies may be
removed from any function node, this is no longer the case. For example, consider Fig-
ure 2, and suppose the spanning tree is a maximum spanning tree. This implies thatw23

10 A. Farinelli, A. Rogers, N. R. Jennings

andw22 are the dependencies, with the minimum total weights, that need to be removed
in order to form a spanning tree. However, in this case the possible impact of the re-
moved dependencies on the solution quality will bemaxx1

[maxx2,x3
F2(x1, x2, x3) −

minx2,x3
F2(x1, x2, x3)] which in general is different fromW = w22 + w23. There-

fore, when interactions are not pairwise, there might be a combination of dependencies
to remove, that has a smaller impact than theW we compute. While it is possible to
calculate the impact that removing multiple dependencies has, finding the set that must
be removed in order to minimise this impact is a combinatorial problem. Nonetheless,
our approach of summing the individual weights overestimates this impact, and thus,
our bounded approximate solution is still valid in these cases.

4.2 Decentralised Bounded Max-Sum

Having described our approach, and proved that, given a problem instance, we can
provide a bounded approximated solution, we now describe a decentralised implemen-
tation of our bounded max-sum algorithm. This implementation has two key steps: (i)
forming the spanning tree factor graph which minimises the sum of the weights of the
removed edges (hence minimisingW), and (ii) initiating the max-sum algorithm and
propagating the information required to compute the approximation ration to the agents.

Spanning Tree Formation In order to remove cycles from the given factor graph,FG,
we must find a spanning tree that minimises the sum of the weights of the removed
edges. To do this, we use the weights of each edge to compute a maximum spanning
tree,T . The computation of the maximum spanning tree can be done in adistributed
fashion using various message passing algorithms. In particular, here we use the mini-
mum spanning tree algorithm by Gallager, Humblet and Spira (GHS), modified to find
the maximum spanning tree [15]. This is a distributed, asynchronous algorithm, for gen-
eral, undirected graphs5. GHS is optimal in terms of communication costO(nlogn+E)
and has a running time ofO(nlogn), wheren is the number of nodes in the factor graph.

We briefly describe the GHS algorithm here and refer to [15] for a more complete
description. Initially, each node (which may be either a variable or a function node) is a
fragment with levelL = 0, then each node chooses its maximum weight outgoing edge
and attempts to join with the node at the other end. This formsa fragment of levelL = 1.
Nodes in fragments whereL > 0 co-operate to determine the fragment’s maximum
weight outgoing edge that will not form a cycle and attempt tojoin with the fragment
on the other end. This occurs by each node finding its maximum weight outgoing edge,
and passing this information to a core node, which can then determine the best edge for
the whole fragment. Fragments continue to join together in this manner. The twocore
nodes (those at either end of the edge on which the final joining of fragments occurs)
are aware when the algorithm terminates, as they will receive reports from each node
that they cannot locate any further outgoing edges that willnot lead to a cycle.

5 Notice that our approach is completely generic with respectto the algorithm used to compute
the maximum spanning tree. Here the choice of the GHS algorithm is dictated by the low
communication overhead and by the ease of implementation.

Bounded Approximate Decentralised Coordination using theMax-Sum Algorithm 11

Max-Sum Initiation & Information Propagation On termination of the GHS al-
gorithm described above, only the two core nodes are aware that the algorithm has
completed. Therefore we add a message-passing phase to propagate this information
throughout the tree. This procedure also establishes a parent-child hierarchy in the tree,
and serves to initiate the max-sum algorithm and information propagation stages. This
message-passing phase is initiated by the root node; a role adopted by whichever of the
two core nodes is a function node6. This root node sends out aCOMPLETE message to
each of its children. When a node receives aCOMPLETE message, it marks the sender
as its parent, and then propagates it down the tree.

When a leaf node receives theCOMPLETEmessage the max-sum phase starts. Each
node propagatesMAXSUM messages up the tree, waiting for messages from each child
node before sending an updated message to the parent node. The content of the mes-
sages are calculated as described in equations 2 and 3, and convergence of the messages
to the optimum is guaranteed when the messages have propagated to the root node, and
back to the leaf nodes7. At this stage, each variable node is aware of both the variable
assignment,̃xi, that represents the approximate solution to the original optimisation
problem, and the value of̃V m =

∑

i minxc
i
Fi(x̃i); this is provided directly from the

max-sum algorithm and used to calculateρ(FG).
When the leaf nodes receive this finalMAXSUM message the weight and solution

propagation phase starts. During this phase, nodes propagate tuples composed ofWSUM
(which will accumulate the value ofW specified in equation 6) andSOLUTION mes-
sages8. If the leaf is a variable node it creates an emptyWSUM and an emptySOLUTION
message. If it is a function node, it creates aWSUM message of value equal to the sum
of the weights of local deleted edges, and aSOLUTION message equal toFi(x̃i). Both
messages are then propagated up the tree, with each internalnode waiting to receive
messages from all its children before propagating a single newWSUM andSOLUTION
message to its parent. If the internal node is a variable node, then these new messages
are simply the sum of the messages from its children. If it is afunction node, then they
are given by the sum of the messages from its children plus thesum of the weights of
its own locally deleted edges, and the value ofFi(x̃i), respectively. When the root has
received all theWSUM andSOLUTION messages, both are propagated back down the
tree, informing each node of the totalW , and the final solution,̃V =

∑

i Fi(x̃i).
At this final stage, each agent knows the assignment of the variables that it controls,

it knows that this assignment leads to a total solution quality of Ṽ , and that this solution
has an approximation ratioρ(FG) = 1+(Ṽ m +W − Ṽ)/Ṽ . The number of messages,
for each information propagation phase, equals the number of edges in the spanning
tree (i.e.,|F| + |x| − 1). Thus, the size of each message depends on the message type,
but this is always constant with respect to the number of nodes in the factor graph

6 Notice that, in our case, one of the two core nodes will alwaysbe a function node because the
factor graph is a bipartite graph.

7 In settings where the choice of variable assignment may not be unique (most commonly, when
the functions return integer values) an addition value propagation phase may be used at this
point. See [18] for details.

8 Note that these could be propagated in two separate phases, but here we combine them together
for efficiency.

12 A. Farinelli, A. Rogers, N. R. Jennings

(a)

0 10 20 30 40 50
0

200

400

600

800

Value (link density 2)

Agent number

V
∗

Ṽ

Ṽ
m

Ṽ
m

+ W

(b)

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Value (link density 3)

Agent number

V
∗

Ṽ

Ṽ
m

Ṽ
m

+ W

Fig. 3.Graphs showing the utility when varying the number of agentsand the link density.

(e.g., aMAXSUM message involving variablexi contains|di| values whileWSUM and
SOLUTION messages contain one value each).

5 Empirical Evaluation

We now present an empirical evaluation of our bounded approximate algorithm. This
is required because our approximation ratio depends on the specific problem instance.
Specifically, we evaluated our approach in a decentralised coordination problem where
a set of agents is arranged in a random graph. Each agent controls one variable, with
domain|di| = 3, and each edge of the graph represents a pairwise constraintbetween
two agents (and thus ourW is minimum in this case). A random payoff matrix is as-
sociated with each edge, specifying the payoff that both agents will obtain for every
possible combination of their variables’ assignments. Each entry of the payoff matrix is
a real number sampled from a gamma distribution (withα = 9 andβ = 2).

This setting generalises the distributed graph colouring problem, which is a canon-
ical problem frequently used to evaluate DCOP techniques (e.g., [3] and [4]). In the
graph colouring domain theW our approach provides would simply be the number of
edges removed to remove cycles from the graph. The random payoff matrix that we
use here enriches the domain making the evaluation analysismore significant, and the
gamma distribution, introduces significant variance such that some dependencies have
a higher impact than others.

Bounded Approximate Decentralised Coordination using theMax-Sum Algorithm 13

We performed our experiments by generating random graphs with different link
density (i.e., average connection per agents) and various number of agents. For each
configuration, we extract several performance metrics:

– Ṽ m: The solution obtained by the max-sum algorithm on the tree structured con-
straint network.

– Ṽ : Our bounded approximate solution, obtained by evaluatingthe assignment com-
puted by max-sum on the spanning tree, on the original loopy constraint network.

– Ṽ m+W : The upper bound on the value of the unknown optimal solutioncomputed
by our approach.

– V ∗: The optimal solution.

Figures 3(a) and 3(b) show the results obtained for different values of the link density
(specifically, 2 and 3)9 while varying the number of agents. For each configuration, we
report the average value and the standard error in the mean over twenty repetitions.
Since the optimal utility is computed by complete enumeration of all the possible con-
figurations, we were able to compute this metric only for smaller numbers of agents
(e.g., up to 15).

Results show that the actual utility we compute is extremelyclose to the optimal
solution (in the experiments the minimum ratio was 95%). Thus showing that, from
an empirical point of view, the solutions we can achieve using this approach provide
very good approximations. More importantly the approximation ratio we guarantee is
significant. In the experimentsρ(FG) was never above 1.27, and was typically 1.23.
Finally, our approach scales very well with the number of agents, having a running time
of approximately 800 milliseconds on the most complex problem instance in our data
set (i.e., 50 agents and link density 3)10.

6 Conclusions and Future Work

We developed a novel algorithm for decentralised coordination, which is able to guar-
antee bounded approximate solutions given particular instances of general constraint
networks. Our main future direction is to investigate techniques to further reduce the
approximation ratio. A promising direction is to iteratively apply our algorithm while
clustering variable and function nodes (as proposed in [17]) to remove cycles without
removing dependencies. In this way, we can iteratively decrease the approximation ratio
(by removing less dependencies) while paying an increase incommunication and com-
putation (due to clustering of nodes), thus allowing a flexible trade-off between solution
quality and communication and computation overhead.

9 These values are in the range often used for benchmarking DCOP techniques on random graph
colouring instances [3].

10 Consider that, on a 3-color random graph problem with link density 2 and 18 agents, ADOPT
requires a running time of 200 seconds while our approach requires approximately 100 mil-
liseconds [19].

14 A. Farinelli, A. Rogers, N. R. Jennings

References

1. Fitzpatrick, S., Meetrens, L.: Distributed Coordination through Anarchic Optimization. In:
Distributed Sensor Networks A multiagent perspective. Kluwer Academic (2003) 257–293

2. Padhy, P., Dash, R.K., Martinez, K., Jennings, N.R.: A utility-based sensing and communi-
cation model for a glacial sensor network. In: Proceeding of5th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS’06). (2006) 1353–1360

3. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelligence Journal (161) (2005) 149–180

4. Mailler, R., Lesser, V.: Solving distributed constraintoptimization problems using cooper-
ative mediation. In: Proceedings of Third International Joint Conference on Autonomous
Agents and MultiAgent Systems (AAMAS 2004). (2004) 438–445

5. Petcu, A., Faltings, B.: DPOP: A scalable method for multiagent constraint optimization.
In: Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence,
(IJCAI 2005). (2005) 266–271

6. Maheswaran, R.J., Pearce, J., Tambe, M.: A family of graphical-game-based algorithms for
distributed constraint optimization problems. In: Coordination of Large-Scale Multiagent
Systems. Springer-Verlag, Heidelberg Germany (2005) 127–146

7. Petcu, A., Faltings, B.: Mb-dpop: A new memory-bounded algorithm for distributed op-
timization. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI). (2007)
1452–1457

8. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In: Proc. of the 7th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS). (2008) 639–646

9. Aji, S., McEliece, R.: The generalized distributive law.Information Theory, IEEE Transac-
tions on46(2) (2000) 325–343

10. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge Uni-
versity Press (2003)

11. Weiss, Y., Freeman, W.T.: On the optimality of solutionsof the max-product belief propaga-
tion algorithm in arbitrary graphs. IEEE Transactions on Information Theory47(2) (2001)
723–735

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.:Introduction to algorithms, second
edition. The MIT press (2001)

13. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theoryit-14(3) (May 1968) 462–467

14. Dechter, R., Kask, K., Larrosa, J.: A general scheme for multiple lower bound computation
in constraint optimization. In: Constraint Programming. (2001) 346–360

15. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight
spanning trees. ACM Trans. Program. Lang. Syst.5(1) (1983) 66–77

16. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science
315(5814) (February 2007) 972–976

17. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory42(2) (2001) 498–519

18. Wainwright, M., Jaakkola, T., Willsky, A.: Tree consistency and bounds on the performance
of the max-product algorithm and its generalizations. Statistics and Computing14(2) (2004)
143–166

19. Modi, P.J.: Distributed Constraint Optimization for Multiagent Systems. PhD thesis, Dpt. of
Computer Science, Univ. of Southern California (2003)

