Public Dissemination

.@= MOTOROLA LABS

Eul-ropean Intellectual Property Operations

PATENT: GB2397905
DATE PUBLISHED: 2004-08-04
Bill Mitchell, Paul Baker, Dave King

PART I - TECHNICAL INFORMATION

1. Title of the Invention: Method for Categorising Test Scripts from Weights Derived from a Partial Order

Add Useful Key Words:
Test Scripts, Message Sequence Charts, Automatic Testing, Test Categorisation
2. What was the problem(s) to be solved by the invention or what was the need(s) for the invention:

Requirements for systems involving communi cating processes (e.g. communication systems) are often described with the aid of
graphical notations, such as: Unified Modelling Language (UML), Message Sequence Charts (MSC) or Specification and
Description Language (SDL). In using these notations to define requirements engineers tend to think of the most obvious
behaviours of the system first (e.g. common system scenarios). However, depending upon the semantics of the graphical notation,
specifications may also include non-obvious behaviours that at first glance are not apparent to the engineer when developing the
specification.

During system development, software tools are frequently used to automatically generate test scripts from these specifications.
These tools are capabl e of exploring all possible behaviours of the system, thereby producing potentially large numbers of tests;
including both obvious and non-obvious scenarios. This can lead to the following problems:

1. Too many tests are generated. In this case there are physically too many tests to execute within the available time.
2. Some of the generated tests may be potentially redundant in the scope of black box testing, even though they represent valid
behaviours of the system.

The invention described herein addresses these problems by:

1. Categorising tests that are automatically generated from a specification according to some suitable numerical weight. The idea
isto define aweighting scheme that differentiates the most obvious behaviours from the non-obvious behaviours. In doing so,
the user can quickly assess which test scripts represent the obvious behaviours, and consequently can concentrate on making
sure that the most obvious behaviours are covered first.

2. Removing those tests that are not applicable in the scope of black box testing. For example, atest script that only contains
events that are sent to the system under test is generally useless for black box testing.

Such techniques are a so applicable during the:

e Determination of system scenarios for feature interaction studies — Feature interaction is a new area of study within the
Motorola UK Research Lab.

» Debugging of system requirements

References
[1] Paul Baker, “Generating Concurrent Test Scripts from Message Sequence Charts’, European Research Laboratory

[2] Bill Mitchell, “ Method for Generating Coordinating Messages for Distributed Test Scripts”, Motorola UK Research
Lab technical report.

[3] Paul Baker, Paul Bristow, Clive Jervis, David King, Bill Mitchell, Chris Waters, “The Design and Implementation
of a Test Script Generator: ptk”, International Conference on Functional Programming.

[4] Gerard]J. Holzmann, Doron A. Peled, and Margaret H. Redberg, “Design Tools for Requirements Engineering”,
Bell Labs Technical Journal, Winter 1997.

3. What are the closest known technologies? Why don’t they resolve the problem(s) or fulfil the need(s):

Public Dissemination

There are no really comparable technologies. Lucent have atool (see[4]), which allows the user to analyse the requirements
for racing conditions, but they do not provide any significant analysis beyond that.

4. How does this invention resolve the problem(s) or fulfil the need(s) in a new way? Include labelled
drawings, flow charts or block diagrams to help explain the invention:

Notes: In general, the various graphical notations that are used for describing requirements can all be represented in terms of
partial orders. We use the notation (a<b), to denote that a must happen before event b. As such a set of partial orders represents
all the possible ways in which the eventsin a requirements specification can occur.

The invention is based upon the idea of using a set of partial orders to assign weightsto a resulting set of tests scripts. Test scripts
are then used to check that a system implementation conforms to its corresponding specification.

Firstly, we describe how to assign weights based on any arbitrary partia order, and then we explain how this technique can be
applied to a particular partial order representing a requirements specification.

General Weightsfrom Partial Orders

A relation < between pairs of elements of X is called a partial order when the following holds:
1. If x<yand y<zthen x<z

2. Itisnot the case that x<x for any xin X.

Suppose we have a set of events E and for each event e we are given a partial order <(e) of E. We will use these partial orders to
define aweight for any sequence of events. Thiswill generalise to test scripts since they can be described as sequences of events of
the system.

First, we define a function distance(m,a), which takes an event a and number m as input and returns, as output, the set of events b
for which there exists distinct events a i, for i ranging from 1 to m, such that:

a=al(@al<@..<@am=>b

Next we define a function d(a,b), which given events a and b occurring in a sequence s, defines the number of eventsto the right of
athat are before b. If b does not occur to the right of a in sthen this number is undefined.

Further, we define n(s, a, m) to be the maximum value for d(a, b) when b/7distance(m,a). Notice that there may not be any such b,
so this number is not always defined.

Finally, we define n(s, a) to be the value n(s,a,m), where mis the first number for which n(s,a,m) is defined. If there is no value of
mwhere n(s, a, m) is defined, then n(s, a) is defined to be infinite.

The weight w(s) of a sequence sis defined as the sum of the square of the values n(s, a) where a ranges over the send eventsin s.
Notice that this definition depends on the partial orders <(a) defined for each event a.

This completes the first part of the method that has been presented as a general method of defining a weight for a sequence of
events based on a set of partial orders. The next part of the method defines partial orders based on the visua lay out given by a
system requirement, the resulting weights can be used to categorise the test scripts for debugging purposes or test selection.

The Visual Weight
A requirements specification (e.g. Message Sequence Chart) states in what order events can occur with respect to one another.
Hence, we can say that the requirements define a partial order < of the events contained within the system.

Firstly, we define an initial event to be any event x, where there is no event y where y<x. Aninitial event can be regarded as one of
the first events that can happen according to the requirements specification.

Next we define the time step for an event x within the requirements as the maximum number of events which lie between it and any
initial event. That is the time step of x is one less than the length of the longest sequencea 1< a 2< ... <an=xwheeal
can be any initial event. Intuitively the time step of x represents the first clock tick when x can occur, if we assume events are
synchronised by some global clock, and all events fire at the first instance they can. We will say that two events are partners if
they have the same time step (intuitively they can occur simultaneously under with the above clock scenario).

Finaly, we define the partial orders <(a) for each event a, which are then used to define the weights w(s) as above for any test

Public Dissemination

scripts, where <(a) is defined as follows:

When the set of partnersfor a is not empty define <(a) by:
1. a<(a)p, for any partner p of a,
2. p<(a)a for any event, wherea<a’ and p is a partner of a,
3. x<(a)y whenever x is not a and there is a sequence of inequalities:
x<al<a?2<..<ak<y
Such that no two consecutive events are both send or receive events (They must switch from send to receive or vice versa).

When the set of partnersfor a is empty, define <(a) by:
4. x<(a)y whenever thereisasegquence of inegualities x<a 1<a 2<..<a k<y
Such that no two consecutive events are both send or receive events.

Example 1
Let us consider the directed graph illustrated in figure 1.

a
o

Figure 1

We can easily see from this graph that theinitial event set is {a,c}, and the time steps for each event are calculated as (a,0), (b,1),
(d,2), and (c,0). From this information we can determine that only events a and ¢ have the same time step, hence are partners.

Given the partner information we can now define the partial orders for each event in the graph, using the rules 1-4 above:
<(a) = (a<c), (c>h), (c<d)

<(b) = (c<d), (a<b)

<(0) = (c<a), (a<d), (a<b)

<(d) = (a<b), (c<d)

Finaly, we define the weight for a sequence s (which containsthe letters a, b, ¢ and d, in some order) as, w(s)=n(s,a)? + n(s,c)2
For example, if we consider the sequence <a,b,c,d> it would result in aweighting of 4.

Example 2
Lets consider the Message Sequence Chart (MSC) illustrated in figure 2.

~ = ga =< W

A

5 =

Figure 2
The dotted arrow represents a message which we will add shortly, but which we do not consider initially. A possible test behaviour
represented by this example could be:
<a! dy e! bl C! fy h! g: i!jy |! k>

Public Dissemination

This sequence follows the visual order of events. Working out the weight for this sequence of events yields the value 36. However,
if we introduce the dotted arrow into the requirements then we can have the sequence:

<a d,eb,cfxyhagijl k>
This sequence has the weight 0. The reason the weight wasiinitially so high is that a and h were partners because they both had
time step 0. Whereas, in the second trace h is no longer a partner of a, it now hastime step 8, and a has time step 0. What this
exampleillustrates is that even though a specification appears to be fairly obvious, that by using weights we can provide the user
with information that can be used during the validation of system requirements.

Example 3

Lets consider the case where we want to test the implementation of the system — called the System Under Test (SUT). In such
cases, test scripts can only verify the observable events - those events that can be physically monitored by the test system. In order
to monitor such events a test script will generally send some event e that acts astrigger for the SUT to respond with an appropriate
message. Generally, it does not make sense to have test scripts that send messages to the SUT, for which no subsequent response is
received. For such tests sequences this method would yield an infinite weighting because there would be no event b further down
the trace such that e<(e) b. Thisis a very clear signa that the test may be wrong. The test script contains a message for which it
will not be able to verify the response of the SUT.

Benefits/l mpact

It is commonly understood that testing can consume 50% of the overall development time of a new system. Using this method we
can provide engineers with information that is useful for validating system requirements, as well as selecting the most obvious
tracesfirst.

Public Dissemination

END

	PART I - TECHNICAL INFORMATION
	References

