
Cutting and Pasting with Requirements

Specifications Scenarios

Bill Mitchell a, Robert Thomson b, Clive Jervis b, Paul Bristow b,

aDepartment of Computing, University of Surrey Guilford, Surrey GU2 7XH, UK
bMotorola UK Research Lab, RG22 4PD, UK

Abstract

Wireless Telecommunications requirements specifications tend to be defined as
sets of normative scenarios. These frequently only provide partial coverage of the
scenarios that are necessary to give a comprehensive specification. Standard model
checking techniques have not been successful in analysing such protocol specifica-
tions, first because of the high degree of concurrency that is inherent in such systems,
and secondly because the very partial nature of the specifications tends to cause
many inconsequential defects to be reported that frustrate the process of identifying
key issues that have to be addressed immediately. Typically the inconsequential de-
fects are addressed by adding new scenarios to the requirements, whereas significant
defects require structural changes to the design itself and are not solved by adding
new scenarios.

This paper describes a technique for synthesising tractable phase automata from
Message Sequence Chart scenarios that describe major phase transitions in the spec-
ifications. These can be automatically analysed to detect certain types of significant
interactions between the scenarios that will be invariant under the addition of new
scenarios to the requirements specifications.

Key words: Requirements Scenarios, Tractable Model Synthesis, Feature
Interaction, Message Sequence Charts

Email addresses: w.mitchell@surrey.ac.uk (Bill Mitchell),
brt007@motorola.com (Robert Thomson), clive.jervis@motorola.com (Clive
Jervis), paul.bristow@motorola.com (Paul Bristow).

Preprint submitted to Elsevier Science 6 August 2003



1 Introduction

The International Telecommunications Union (ITU) is a specialised agency
of the United Nations. It is responsible for coordinating global telecom net-
works and services for private companies and government bodies. The Eu-
ropean Telecommunications Standards Institute (ETSI) defines the protocol
standards for fifty six countries within the EU and beyond. Together ETSI
and the ITU also define the standards for languages and notations that are
used for requirements and architecture specifications in the telecommunica-
tions industry throughout the world.

Message Sequence Charts (MSC) [17] are an international standard defined by
the ITU for capturing requirements specification scenarios. ETSI recommend
their use in defining requirements specification scenarios for their standards
documents. Due to the extreme pressure to rapidly prototype designs, and
bring them to market, it is often the case that MSC scenarios make up virtually
the whole of the requirements specifications from which architecture designs
are derived and code developed. Often the MSC scenarios only partially cover
all the possible scenarios that are needed for a comprehensive description of
the particular protocol. Often they only cover ‘sunny day’ scenarios for each
individual feature. This can lead to architecture designs and final products
that contain many defects. This makes it imperative to have a mechanism for
analysing what interactions there are between the different MSC requirements,
which frequently describe the behaviours of features in isolation without taking
into account other features that may be concurrent with them.

Much work has been done on synthesising system models from MSC scenarios.
These techniques have tended to result in intractable models for industrial
sized specifications. They also reflect the simple message exchange aspects
of the scenarios rather than the central purpose of the protocols they are
specifying. In this paper we construct phase automata to represent the overall
system behaviour of each process in the scenarios. These reflect the transitions
between the major operational phases of the scenarios, rather than the entire
possible set of concurrent behaviour. This leads to tractable models that can
be statically analysed for certain types of interactions that are significant to
the system development.

Intuitively these automata describe a simple mechanism for overlapping differ-
ent scenarios when they meet certain semantic criteria that makes the overlap
valid. This overlapping provides a form of abstract cutting and pasting that
permits new scenarios to be automatically generated that describe interac-
tions between the different requirements. The difficulty arises in defining the
correct semantics so that useful overlaps are permitted, and inconsequential,
or incorrect overlaps are not. The paper defines one particular semantics that

2



has proved to be useful for Motorola in analysing requirements specifications
for 3G products they are currently developing. The paper illustrates the se-
mantics with a realistic example of requirements specification scenarios for the
high level functionality of a WAP browser application.

A terse discussion of the work reported in this paper was first presented in
[14], which discussed an elementary example of a WAP browser requirements
specification. This paper provides a more detailed discussion of the phase
semantics, including more detailed examples, and contains a discussion of the
difference between explicit state semantics and phase semantics, which was
not discussed in the preliminary report.

Phase Traces

This paper looks at MSC scenarios that define ‘phase transitions’. These are
MSC scenarios that define the transitions between major operational phases
of a protocol in conjunction with the events that cause the transitions between
these phases. It is typical for such phase information to be encoded within the
MSC condition symbols. We will adopt the same convention here. Examples
of major phases for a telecommunications protocol such as TETRA [19] are
call setup, call active, call roaming, call queued, and resource pre-emption.
The specifications for a TETRA system define transitions such as from call
setup to call active. Some of these transitions may involve other phases. For
example, the transition from call setup to call active may include intermediate
transitions to call queued or ruthless resource pre-emption.

From an MSC defining phase transitions we can derive the set of ‘phase traces’.
These are the event traces defined by the MSC where we annotate each event
with the phases that were active just before and just after the event. Usually
the MSC phases correspond to significant operational phases of the system,
and so do not normally change after an event. When they do this is an im-
portant point to focus analysis for interaction detection.

A phase transition can be triggered by different phase traces described by
different MSC scenarios. If we assume that each process in an MSC can be
represented as a deterministic finite state automata (which is not always theo-
retically possible for MSC-s that include iteration), it is a non trivial problem
to decide how to combine the different phase transitions of each phase within
the automata. For this paper it is important to define the automaton in such
a way that it is tractable and does not reflect concurrent behaviour that is not
directly relevant to the phase transitions. This is because the interaction anal-
ysis that is defined for these automata searches for implicit phase transitions
that were not explicitly contained in the original requirements scenarios. Anec-

3



dotal evidence from Motorola case studies has shown that these interactions
are significant.

Related Work

Alur and Yannakakis in [1] have proved that the general property checking
problem for a restricted set of iterative message sequence charts is undecid-
able. They also define criteria for when the problem becomes decidable, but
also NP complete. In [1] they define an algorithm for constructing a finite
state automaton that describes all the interleaving execution traces defined
by a set of MSC scenarios when their criteria is satisfied. Madhusudan [10]
defines a second order monadic logic that is decidable for a larger class of
MSC scenarios, which of course must also lead to NP complete algorithms.
This work focuses on synthesising models of the event traces defined by MSC
requirements specifications, and is not concerned with the phase transitions
that such scenarios usually describe.

In ([11], [12]) they consider a form of interleaving to compose interworkings,
which are similar in spirit to MSCs. This approach also works with event
traces rather than with phase traces. Superficially this is very similar to the
work reported here. Indeed their intention is to allow a collection of scenarios
described in terms of interworking diagrams to be composed together to de-
scribe the system as a whole. They also restrict the form of interleaving they
model so that their overall system view is a subset of all possible interleav-
ings, which helps to restrict the complexity that normally accompanies such
composition. Within the context of modeling the phase transition behavior of
a system, their semantics are very different from those given here. Some of the
compositional operators they consider would not be regarded as valid within
the context of phase overlapping as defined here.

In [16], [15] they address the problem of synthesising statecharts from MSC
scenarios. In particular in [16] they look at how to use global state names that
are incorporated in the MSC scenarios using condition symbols to compose
MSC-s into statecharts for each process in the specification. The results in [16]
are defined for synchronous message passing, whereas wireless telecommuni-
cation protocols tend to be asynchronous. For exactly that reason the ITU
standard for MSC specifies message passing to be asynchronous. Phases do
not generally correspond to explicit states within an implementation. They
are more intuitively associated with predicates that guard when a particular
region of a process becomes active. Section 3 describes an example based on
the TETRA standard to illustrate this point.

4



2 Cutting and Pasting

This section will describe the intuition behind the abstract cutting and pasting
concept that underlies the formal semantics of phase trace composition that
will be defined later.

The MSC in figure 1 describes a scenario involving three processes, ‘Phone’,
‘Browser’ and ‘Air Interface’. Each vertical line is the time line describing the
events that occur for each process. Time increase downwards, but nonlinearly.
Hence it is not possible to deduce the relative occurrence of events of different
processes from their specific locations in the time line. The messages between
processes enforce a causal relationship that determines what order events can
occur in. However this only defines a partial order between events in general.
Messages are asynchronous in MSC-s, so that although by convention they are
drawn horizontally, suggesting synchronous transmission, they have arbitrary
latency. Throughout this document we will use !m to denote the send event
for a message m and ?m for the receive event of message m in accordance with
the ITU standard for MSC-s.

The MSC notation includes several complex concepts apart from simple mes-
sage exchange. These include process creation and destruction, inline refer-
ences to other MSC scenarios, iteration, timing constraints, and branching.
Interested readers are referred to the standard [17] for complete details. We
will not describe the full semantics of MSC-s here, but will use figure 1 to
illustrate some of the main constructs. Note the solid rectangles at the end of
each time line do not denote the termination of the process, but the conclusion
of the scenario. Similarly the process name boxes at the start of the time lines
denote the start of the scenario, not the creation of the processes.

The shortened hexagonal symbols in figure 1 are MSC condition symbols. In
this paper we will adopt a particular semantics for these which agrees with
common industrial practise, but which is an extension of the MSC standard.
Our semantics do not change the standard semantics with relation to any single
MSC, or higher order MSC, but permit us to restrict the type of composition
we use to synthesis a model of the phase transitions described by the MSC-s. In
this paper we assume that MSC condition symbols denote which operational
phase is active within each process. The phase remains active until the point
in the process time line where the next condition symbol occurs. From now
on we will refer to these as phase symbols. For example the ‘Air Interface’
process remains in the ‘Data’ phase until the ‘EOF’ message is transmitted,
when it transitions to the ‘Channel’ phase. It is very tempting to assume these
represent states in an implementation, but we will see in section 3 that is not
a suitable interpretation in our context.

5



Phone Browser Air Interface

Download Inactive Channel

load(URL)

Active

Resolve URL

get handle(file)

Data
file handle(file)

Read File

read(file handle)

send(file handle)

Check For Errors

loop< 0,∞ >

Error Found

corrupt file(file)

Display Failure Notice Inactive

read(file handle)

EOF

DownloadLoad File Channel

download OK

InactiveDisplay Notification

alt

Fig. 1. Error Checking File Download with Iterative MSC

The box labelled with ‘loop< 0,∞ >’ is an iterative loop. It represents that
the events within the loop can be unfolded any finite number of times be-
tween 0 and ∞. Note this means that the iterated events are inlined into the
scenario, which has subtle consequences for the event traces of the MSC. It
is because of this that the general property checking problem is undecidable
for general MSC scenarios. In figure 1 the loop describes how a file will be
iteratively downloaded from the ‘Air Interface’ by the ‘Browser’ process, ter-

6



minated either when the ‘EOF’ message is received or internal error checking
detects a corrupt file.

The box labelled ‘alt’ (for alternative) describes possible branches that can
occur in the scenario. The dotted line across the box delineates the two differ-
ent possibilities that can occur in this example. In general there can be any
finite number of alternatives, including none. The alternatives are mutually
exclusive, and the choice of alternative is nondeterministic. MSC scenarios
are meant to describe externally observable events of a system, and not de-
scribe the internal actions that cause them. Internal actions of processes can
be defined by action boxes, which represent internal atomic events which can
not be externally witnessed. Process ‘Browser’ in figure 1 has an action box
‘Resolve URL’ immediately after the ‘Active’ phase becomes valid. In practise
engineering groups tend to use action boxes to store code fragments during
the architecture design stage, though they were not intended for this use.

In summary, figure 1 describes a scenario where the central process controlling
a mobile handset, the ‘phone’ process, delegates the task of downloading a file
to the ‘Browser’ process. This instigates a data channel connection with the
‘Air Interface’ process. Once this channel is allocated the file is iteratively
downloaded until either the download is complete, or an error is detected.
The ‘Browser’ reports back to the ‘Phone’ the final outcome, and the ‘Air
Interface’ returns to the ‘Channel’ phase, which is meant to represent the
teardown of the data channel, and the switch back to the control signaling
channel.

We interpret the initial phase symbols of the scenarios as acting as a kind
of universal guard. Thus whenever we observe ‘Phone’ in phase ‘Download’,
‘Browser’ in phase ‘Inactive’ and the ‘Air Interface’ in phase ‘Channel’ it
must be possible to witness the events described by the scenario in the order
it defines for them. Semantics for the phase symbols that are not initial, but
secondary is more complex.

Take the ‘Active’ phase for the ‘Browser’ process as an example. It is implicit
that this has the following semantics. Whenever the ‘Browser’ process reaches
the ‘Active’ phase from the ‘Inactive’ phase by receiving the ‘load(URL)’ mes-
sage, then it is always possible to observe the subsequent events described in
the MSC scenario.

More generally we can informally define the semantics for each phase symbol
thus. If a process transitions to a particular operational phase in accordance
with all the events and phase changes that are described in a scenario, then it
is always possible from that point to witness the subsequent events that are
described by that scenario.

Note these semantics would be correct if each phase is a global state name

7



User Phone Browser Air Interface

Java App Download Idle Inactive Channel

key press(java menu)

Java Menu

select(option)

Download

load(URL)

Load File Active

Resolve URL

read(URL)

Data

send(file)

ChannelCheck File

Check For Errors

Error Found

corrupt file(file)

Display Failure Notice Inactive

DownloadLoad File

download OK

InactiveDisplay Notification

alt

Fig. 2. Java App Download with Dedicated Key

within a statechart, for example. However, here we interpret a phase as hav-
ing the above dynamic semantics and also identify a phase with a collection
of states within an automata representing the behaviour of the relevant sce-
nario process. When a process transitions to a phase, that simply means that
a state transition has occurred to a state belonging to the set of states defined
by that phase. Now consider a second MSC example, figure 2 which represents
a requirement for downloading java applications via a specific menu that is
activated by a dedicated key on the handset. In this example the message ex-
changes to download the file once the ‘Browser’ has transitioned to the ‘Active’
phase differ significantly from figure 1. With our informal semantics we can
identify how these scenarios can be combined to give an interaction between
the two. In figure 2 the ‘Browser’ process reaches the ‘Active’ phase from
the ‘Inactive’ phase by receiving the ‘load(URL)’ message. From our informal
semantics from figure 1 that means we can always witness the subsequent
events from figure 1 after this point. In other words we can cut from figure 2
the events after the ‘Active’ phase, and paste in the corresponding events from

8



User Phone Browser Air Interface

Java App Download Idle ChannelInactive

key press(java menu)

Java Menu

select(option)

Download

load(URL)

Load File Active

Resolve URL

read(URL)

Data

send(file)

get handle(file)

Data

file handle(file)

alt

Fig. 3. Scenario difference as an alternative construct

figure 1. We now have two scenarios defining how a Java application is to be
downloaded via the ‘Browser’ process that can not both be valid. We can use
the MSC notation with the alternative construct to illustrate at what point
these two scenario differ. Figure 3 illustrates how the two scenarios contradict
each other with respect to downloading the application. It describes the first
place where the new cut and paste scenario will differ from figure 2. Note it
does not include all the events that can occur after the two scenarios then di-
verge. This illustrates a requirements interaction that could result in a defect
if not resolved. Clearly the ‘Browser’ application must be behaving incorrectly
in one of these two scenarios once it has resolved the URL it is meant to be
downloading.

3 Phases are not States

This section will describe an example of two requirements scenarios that give
a very high level view of some aspects of the preemptive priority call (PPC)

9



TETRA Site Controller

TSC

Mobile Station

MS

Setup Preemption

ruthless preempt

Preempt Resource

call teminated

Reallocate Resource Idle

TETRA Site Controller

TSC

Mobile Station

MS

Setup Preemption

agreed preempt

Preempt Resource

tear down call

Call Clear Down

Fig. 4. Two Preempt Priority Call Scenarios

feature for the TETRA standard. This feature allows a high priority call to
preempt allocated channel resource from a lower priority call when there is
no other free resource. The channels allocated to the lower priority call can
either be released through agreed call tear down or through ruthless resource
preemption. Which occurs depends on the priority of the call. An emergency
call will always result in ruthless preemption. Assume for the moment that the
phases in the two scenario are explicit states in automata representations of
the scenario processes. It is then a straightforward exercise to construct finite
state automata from these scenarios describing the concurrent behaviour of
the processes. For brevity we will replace phase names and message names
by their initials. Hence, ‘Setup Preemption’ will become the state ‘SP’ in the
automata, ‘Call Clear Down’ becomes ‘CD’, ‘ruthless preempt’ becomes ‘rp’,
‘tear down call’ becomes ‘tdc’ and so on. Figure 5 gives the automata derived
from the two MSC in figure 4. These two automata running concurrently can
deadlock. This can occur when they have both reached state ‘PR’ and the
TSC automaton sends ‘!ct’ at the same time that the MS automaton sends
‘!tdc’.

Such a deadlock would not occur if the phases in the scenarios were not iden-
tified with explicit states in an automaton. Phase automata representations
of the processes constructed with the phase semantics outlined in section 2 do
not deadlock in this way.

Figure 6 defines the phase automata derived from figure 4 using the informal
phase semantics defined in section 2. Each phase in the scenarios defines a set
of states. In the illustration each phase is depicted as a box surrounding the
states that are contained within that phase.

Since the two scenarios of figure 4 start with the same phase transitions, each
scenario must apply whenever the other applies. Thus there must be a state
within the ‘SP’ (Setup Preempt) set of states from which we can observe both

10



SP

PR

CDRR

!rp

FSA for TSC

!ap

!ct ?tdc

SP

PR

CDidle

?rp

FSA for MS

?ap

?ct !tdc

Fig. 5. FSA Automata

SP

PR idle

?rp ?ap

?ct

CD

?tdc

SP

PR RR
!rp !ap

!ct

CD

?tdc

Phase Automata for MS Phase Automata for TSC

Fig. 6. Phase Automata for MS and TSC

scenarios unfolding. However there are no overlaps between the phase traces of
the two scenarios in figure 4, unlike the examples of section 2. Hence no other
states within the phase automata can be joined. This leads to the traces within
the phase automata being disjoint after the initial state. Because of this the
two automata do not deadlock when run concurrently. Either explicit state or
phase semantics can be used within the appropriate context. Phase semantics
are appropriate when the scenarios are more informal, even though they are
defined within a formal notation. Phase semantics allow scenarios to define
weaker constraints than explicit state semantics, whilst still constraining the
composition of phase transitions. This provides more flexibility for developers
during the early stages of requirements capture when they do not want to

11



unduly constrain design decisions for the software development teams. Note
that in general the set of traces from the phase automata are a subset of the
traces defined by the explicit state automata. So that if, at a later date, the
phases are used to define states in a more detailed model, the traces from the
phase automaton will still be valid in the new model.

4 Phase Semantics

This section will define the formal phase semantics for MSC scenarios, and
how to synthesise a phase automata from a set of phase traces.

Let the set of symbols E denote the set of events that can occur in the spec-
ifications. Let P be the set of phases that can occur in the specifications.
Let S be a set of states that will be used to construct phase automata, and
let φ : S −→ P be the phase function. This defines which phase a state
belongs to. Define a set of deterministic transitions to be a partial function
∂ : S × E −→ S. The tuple A = (S, E, ∂, φ) is defined to be a phase au-
tomaton. A phase trace is an alternating sequence of phases and events Si, ei,
terminated at both ends by a phase. An execution trace of A is a phase trace

S0 · e0 · S1 · · ·Sn−1 · en−1 · Sn

where there are states xi for 0 ≤ i ≤ n+1 such that φ(xi) = Si and ∂(xi, ei) =
xi+1.

Each MSC defines a set of event traces as defined in the standard. These rep-
resent all possible observable interleavings that can occur for the events in the
scenario. The possible interleavings are given by the total order extensions
of the various partial order causal relationships that the message exchanges
define. We can extract the event traces for each process from the MSC event
traces by simply deleting those events from processes we are not concerned
with. For the examples of this paper the time lines of each process are always
continuous, so that the event traces for each process are very simple. When the
time lines are broken up with co-regions or references to the concurrent com-
position of other scenarios it becomes more complex to generate the process
event traces [3].

Each MSC scenario therefore defines a set of event traces for each process in
the scenario. A specification phase trace of process P is derived from an event
trace of P from one of the requirement MSC scenarios, by replacing event
e in the trace with a triple (S0, e, S1). Where S0 is the phase that is active
immediately prior to e in P , and S1 is the phase that is active immediately
after e. Recall that the MSC condition symbols define the current phase in

12



a scenario. An event e is active within phase S if that is the closest phase
symbol that precedes e on the same time line. The current phase within an
MSC trace changes after an event e if and only if the following symbol on the
time line after e is a condition symbol denoting a different phase. The triple
(S0, e, S1) is called an annotated event. When S0 6= S1, (S0, e, S1) is called a
phase transition event.

Define (S, e, S ′) = S · e, and (S, e, S ′) = S ′. Given a specification phase trace
t = α0 · · ·αn, where each αi = (Si, ei, Si+1), define the intrinsic phase trace of
t to be

t∗ = α0 · α1 · · ·αn · αn

This notation simply defines a compact form for representing a specification
phase trace. Note that consecutive events in t are (Si, ei, Si+1), (Si+1, ei+1, Si+2).
So that t can always be reconstructed from t∗.

A specification phase trace t is an execution phase trace of A when t∗ is an
execution trace of A. If there are states xi for 0 ≤ i ≤ n+1 such that φ(xi) = Si

and ∂(xi, ei) = xi+1, x0 is defined to be a start state of t in A, and xn+1 is the
accepting state for t. The states xi are called the execution states for t.

Given a set of specification phase traces for a process we want to define a phase
automata that generates these phase traces, and also generate those phase
traces that are given by the permissible overlapping of the MCS scenarios.
The informal semantics defined in section 2 can now be formally stated.

Suppose we can write t as a concatenation t1 · t2 where the final annotated
event of t1 is a phase transition. Then t1 is defined to be a phase precursor of
t.

Let A be a phase automata and t a specification phase trace as above. A
models the phase transitions of t if for every phase precursor t1 of t as above,
whenever t1 is an execution trace of A with accepting state x, then t2 is also
an execution trace of A with start state x.

A phase automata A is the phase semantic representation of a set of speci-
fication phase traces if, firstly all of these traces are execution traces of the
automaton, and secondly the automaton models the phase transitions of each
specification phase trace.

13



4.1 Phase Semantic Representation Construction

This section outlines how to construct a phase semantic representation A for a
set of specification phase traces. The suggested technique is very inefficient, it
is intended for reference only. In this section we assume that the representation
is intended to be a deterministic finite state automaton.

• For each phase trace t proceed as follows.
· For each phase precursor t1 of t we add states and transitions to A as

follows. Let t = t1 · t2. For each state x, test if there is a state x′ such that
x is a start state for t1, and x′ is an accepting state for t1. If so add states
and transitions (if necessary) to ensure that t2 can be generated from x′.

· If t is not an execution traces of A then add states and transitions to A
as follows. Suppose t∗ is of the form:

S0 · e0 · S1 · e1 · · · en · Sn+1

where each Si is not necessarily distinct. Define new states xi in phase
Si and transitions xi

ei−→ xi+1. This ensures the phase automaton can
generate t.

Note when this case occurs it must be that none of the phase precursors
of t were execution traces of A.

· Next force the resultant automaton to be deterministic whilst preserving
the phase structure. Finally minimise the phase automaton with a stan-
dard state reduction algorithm whilst again preserving the phase structure
of the automaton.

• Continue the above steps until there are no more phase traces to be consid-
ered.

Motorola UK Research Labs have built a prototype tool for constructing a
phase semantic representation of a set of specification phase traces. This tool
incorporates various patented technologies that allows the tool to construct
phase automata in an optimal manner [4], [5]. The tool complements an exist-
ing Motorola UK Research tool [3] that automatically generates conformance
test suits from MSC specifications. The tool can statically analyse phase au-
tomata to detect certain elementary types of feature interactions. This has
been validated against a selection of randomly chosen examples from the in-
teraction benchmark paper [7], plus a number of examples for 3G requirements
scenarios. It is currently being used as part of a pilot study to analyse require-
ments specifications for a new Motorola product.

14



Phone Browser Air Interface

Download Inactive Channel

load(URL)

Active

Resolve URL

get handle(file)

Data
file handle(file)

Read File

Fig. 7. Initial section of browser download scenario

User Phone Browser Air Interface

Java App Download Idle Inactive Channel

key press(java menu)

Java Menu

select(option)

Download

load(URL)

Load File Active

Resolve URL

read(URL)

Data

send(file)

ChannelCheck File

Fig. 8. Initial section of java application download scenario

5 Phase Semantic Representation for Browser Download Examples

This section gives an example of the semantic representation for two MSC
scenarios. These are derived from figures 1, and 2. We consider just the initial
parts of these two scenarios which are relevant to discovering an interesting
overlap between them. These are given by figures 7 and 8.

We will consider the construction for a semantic representation of the ‘Browser’
process. We have constructed these MSC so that each scenario generates only

15



a single phase trace for each process. In general of course this does not always
hold. The intrinsic phase traces for the ‘Browser’ process are:

(1) τ1 = Inactive · ?load(URL) ·
Active · Resolve URL ·
Active · !get handle(file) ·
Active · ?file handle(file) ·
Read File

(2) τ2 = Inactive · ?load(URL) ·
Active · Resolve URL ·
Active · !read(URL) ·
Active · ?send(file) ·
Check File

Notice that both τ1 and τ2 have only one phase precursor which is the same
for each phase trace:

τ = Inactive · !load(URL) · Active

This is a slightly incorrect statement. Strictly speaking τ1 is a precursor of
itself since the last annotated event is a phase transition, which is also true
for τ2. However these precursors do not affect the semantic representation since
we are forced to make each complete semantic trace an execution trace in any
case.

Consider τ1 first. A semantic representation of this trace on its own is given
by figure 9. In this case the precursor τ can only be generated from state x
in the Inactive phase, so the phase automata consists of a single phase trace,
where v is the start state for τ1 and z is the accepting state for τ1. τ is also
the precursor of τ2. Let τ2 = τ · τ3. Since τ is an execution trace of A0 with
accepting state w, it must be the case the w is the start state for τ3 for any
phase automata that represents both τ1 and τ2. That implies we need to add
other states and transitions as shown in figure 10 in order to extend A0 into
an automata A1 that represents both phase traces.

A1 generates both phase traces and models the phase transitions of both of the
phase traces in the specification. It is not however deterministic. To make it so
requires the identification of states x and x′. The result is phase automata A2

shown in figure 11. Phase automaton A2 is a phase semantic representation for
phase traces τ1 and τ2. It is also the minimal such deterministic automaton.

16



Inactive

w

Active

x y

Read File

v z

?load(URL)

Resolve URL !get_handle(file)

?file_handle(file)

Fig. 9. Semantic representation A0 for τ1

Inactive

w

Active

x y

Read File

v z

?load(URL)

Resolve URL !get_handle(file)

?file_handle(file)

x’ y’

z’

Check File

Resolve URL !read(URL)

?send(file)

Fig. 10. Semantic representation A1 for τ1 and τ2

6 Elementary Error Detection with Semantic Representations

It is possible to statically analyse phase automaton to detect certain simple
types of elementary conflict without user input. More sophisticated conflict
analysis requires additional properties of the specifications to be defined that
describe the purpose of the features in a form that can be verified against the
automaton. A phase automaton can be verified with standard model check-
ing techniques against any modal property. Care must be exercised since, for
example, searching for unreachable states is not appropriate for partial re-
quirements.

17



Inactive

w

Active

x y

Read File

v z

?load(URL)

Resolve URL !get_handle(file)

?file_handle(file)

y’

z’

Check File

!read(URL)

?send(file)

Fig. 11. Semantic representation A2 for τ1 and τ2

There are two types of elementary errors that can be statically detected dur-
ing the construction of the phase automaton, which avoids expensive dynamic
detection. There is anecdotal evidence to suggest that these kinds of inconsis-
tency can account for a significant proportion of feature interactions. These
two types of error are the most fundamental that can be detected. Since they
are caused by flaws in the phase automaton structure they can also be detected
without any need for user input. These elementary structural errors can not
be removed by adding new specification scenarios to the requirements.

Phase inconsistencies

A significant static error that can occur is where two phase traces define the
same events initially, but disagree with the phase transition that later occurs.
Here is an example of two such phase traces.

S0, ?u, S0, !a, S1

S0, !a, S2

The phase semantics force there to be two distinct transitions labeled with !a
leading to different phases from the same state. In general this conflict leads to
a nondeterministic automaton where the next composite state is not uniquely
defined. This is generally an error, since it represents a particular phase trace
that causes an ambiguous phase transition.

18



Structural inconsistencies

When a specification process is also a system component, it is often the case
that it is constrained to always take the same action for a given sequence of
events. That is for a given phase precursor that triggers a component to send a
message event, that event should be unique. Consider a state x and transitions

x
!a−→ x1

x
!b−→ x2

where a and b are distinct. A system component will not know whether it
should send a or send b. For example assuming ‘Browser’ is meant to chose
a response deterministically for each set of inputs, then state x in A2 should
not have a nondeterministic choice of outputs. Hence this would represent an
error.

The Motorola prototype performs exactly these two types of error detection
at present.

6.1 Semantic Representation equivalence

The phase semantics of a set of specification phase traces (defined with MSC-
s for example) do not uniquely define the phase automaton that implements
them. This section briefly describes the equivalence class of phase automata
that are generated by a given set of specifications.

For a phase automata A = (S, E, ∂, φ), that is the semantic representation
of a set of specification phase traces T , we can define a standard finite state
automaton X(A) that define the specification phase traces generated by A.
Define the states of X(A) to be the same as those of A. The events of X(A)
are annotated events of A. The transitions of X(A) are

∂(xi, (Si, ei, Si+1)) = xi+1

where xi
ei−→ xi+1 is a transition in A, φ(xi) = Si, and φ(xi+1) = Si+1. A

start state of X(A) is any start state for a specification phase trace of A, and
similarly, an accepting state of X(A) is any accepting state for a specification
phase trace of A. All that we have done to define X(A) is to add the phase
information from φ explicitly on to the transitions from A. We may regard
any finite state automaton as a process that can be described by a process

19



Inactive

w

Active

x y

Read File

v z

?load(URL)

Resolve URL !get_handle(file)

?file_handle(file)

y’

z’

Check File

!read(URL)

?send(file)

x’ y’’

z’’

!read(URL)

?send(file)

Fig. 12. Semantic representation A3

algebra such as CCS [13] or CSP [9]. Recall the simulation relation @ between
processes can be defined as:

P @ Q iff for each P ′ such that P
a−→ P ′ there is some Q′ such that

Q
a−→ Q′ and P ′ @ Q′

Given two semantic representations A1 and A2 for the same set of phase traces,
they are simulation equivalent in the sense that:

X(A1) @ X(A2) and X(A2) @ X(A1)

The main motivation for considering phase automaton is to permit the detec-
tion of feature interactions that are caused by phase transitions. The types of
elementary errors that are defined in section 6 are invariant with respect to
simulation equivalence. Note this equivalence is not bisimulation equivalence
(either weak or strong). To illustrate this point, add another specification
phase trace τ4 to the pair that define A2. Let

τ4 = Active · !read(URL) · Active · ?send(file) · Check File

Phase automaton A2 is a semantic representation of τ1, τ2, and τ4. However so
is phase automaton A3 in figure 12. X(A3) is simulation equivalent to X(A2),
but not bisimulation equivalent. Note that if we minimise X(A3) we obtain
X(A2). It is conjectured that the minimal representation for X(A) is unique
up to strong bisimulation.

20



7 Conclusion

The MSC notation is an international standard defined by the ITU and recom-
mended by ETSI as a notation for defining requirements specification scenar-
ios. In practise requirements specifications in the telecommunications industry
are often made up of MSC scenarios and little else.

MSC scenarios are a very effective way of describing major phase transitions
within a protocol. The general property checking problem for recursive MSC-
s is undecidable, and even for restricted MSC notations the model checking
problem is intractable. This paper has defined a formal semantics that per-
mit tractable phase automata to be constructed that define the implicit phase
transitions contained within the requirements specifications. These can be
statically analysed without user input to detect certain elementary forms of
undesirable interactions that are invariant under additions to the requirements
specifications, and therefore represent significant interactions within the spec-
ification.

References

[1] R. Alur and M. Yannakakis, Model checking of message sequence charts,
Proceedings of the Tenth International Conference on Concurrency Theory,
Springer Verlag, 1999

[2] R. Alur, K. Etessami, M. Yannakakis, Inference of Message Sequence Charts,
Proceedings 22nd International Conference on Software Engineering, pp
304-313, 2000.

[3] P. Baker, P. Bristow, C. Jervis, D. King, B. Mitchell, Automatic Generation
of Conformance Tests From Message Sequence Charts, Proceedings of 3rd
SAM (SDL And MSC) Workshop, Telecommunication and Beyond,
Aberystwyth 24th-26th June 2002, to appear in LNCS 2003.

[4] P. Baker, C. Jervis, D. King, An optimised algorithm for test script
generation, patent GB18137.0, 2000.

[5] P. Baker, C. Jervis, B. Mitchell, Method of Generating Coordinating Messages
for Distributed Test Scripts, patent GB18138.8, 2000.

[6] M. Calder, E. Magil, Feature Interaction in Telecommunications and Software
Systems VI, IOS, 2000.

[7] N.Griffeth, R. Blumenthal, J-C, Gregorie, T. Ohta, A feature Interaction
Benchmark for the first feature interaction detection contest, in journal of
Computer Networks, Vol 32, No 4,April 2000

21



[8] K. Kimbler, L. G. Bouma, Feature Interaction in Telecommunications and
Software Systems V, IOS, 1998.

[9] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.

[10] P. Madhusudan, Reasoning about Sequential and Branching Behaviours of
Message Sequence Graphs, proceedings of 28th International Colloquium on
Automata, Languages and Programming, Crete, Greece 8-12 July 2001, LNCS
2076.

[11] S. Mauw, M. van Wijk, and T. Winter. A Formal Semantics of Synchronous
Interworkings. In O. Faergemand and A. Sarma, editors, SDL’93 Using
Objects, Proceedings of the Sixth SDL Forum, pages 167-178, Darmstadt,
1993. Elsevier Science Publishers, Amsterdam. ISBN 0-444-81486-8.
http://citeseer.nj.nec.com/mauw93formal.html

[12] S. Mauw, M.A. Reniers, A process algebra for Interworkings,
http://citeseer.nj.nec.com/mauw00proces.html

[13] R. Milner, Communication and Concurrency, Prentice Hall 1989.

[14] Bill Mitchell, Robert Thomson, Clive Jervis, Phase Automaton for
Requirements Scenarios, Feature Interactions in Telecommunications and
Software Systems VII, 77-84, 2003, IOS Press.

[15] Johann Schumann, Jon Whittle, Generating Statechart Designs From
Scenarios, Proceedings of the 22nd international conference on on Software
engineering, 2000.

[16] Sebastian Uchitel, Jeff Kramer, Jeff Magee, Synthesis of Behavioral Models
from Scenarios, IEEE Transactions on Software Engineering, vol. 29, no. 2,
February 2003

[17] Z.120 (11/99)ITU-T Recommendation - Message Sequence Chart (MSC)

[18] Z.100 (11/99) ITU-T Recommendation - Languages for telecommunications
applications - Specification and description language

[19] Annex C, Service Diagrams related to the model of Mobile user, Terrestrial
Trunked Radio (TETRA); Voice plus Data (V+D); Designers’ guide; Part 2:
Radio channels, network protocols and service performance, European
Telecommunications Standards Institute 1997.

22

http://citeseer.nj.nec.com/mauw93formal.html�
http://citeseer.nj.nec.com/mauw00proces.html�

