

Pr-Si-O Gate Stack with an Ultrathin Interfacial Layer Grown by MOCVD and PDA under Low O₂ Partial Pressure

Yoshishige Tsuchiya^{1,3*}, Ryosuke Furukawa^{1,2}, Koji Kitamura², Hiroshi Nohira², and Shunri Oda¹

¹Quantum Nanoelectronics Research Centre, Tokyo Institute of Technology, Tokyo 152-8552, Japan

²Dept. of Electrical and Electronic Engineering, Musashi Institute of Technology, Tokyo 158-8557, Japan

³School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

*TEL: +44-23-8059-9312 FAX: +44-23-8059-3029 Email:yt2@ecs.soton.ac.uk

1 Introduction

Praseodymium silicates/oxides (Pr-Si-O) high-k dielectrics have been considered as promising materials to overcome the gate leakage issue in MOSFET[1]. We have studied the growth of Pr-based materials by using metal-organic chemical vapour deposition (MOCVD) [2], focusing particularly on an issue of thick interfacial layer (IL) which might be formed during both deposition and annealing. In this paper, we performed post deposition annealing (PDA) of Pr-Si-O thin films under low partial pressure of O₂ to realise Pr silicate gate stack with an ultrathin IL. We also discuss the effects of PDA in detail based on the data of angular-resolved X-ray photoelectron spectroscopy (AR-XPS).

2 Experimental

We used p-type Si (100) substrates with a 0.9-nm-thick thermal oxide layer. Pr-Si-O thin films were grown on the substrates by MOCVD using Pr(DPM)₃ as a precursor at the deposition temperature of 350 °C. We transferred the sample to the UHV chamber which is connected to the AR-XPS measurement system (ESCA-300, Scienta Instruments AB) in vacuum and performed PDA in the temperature range of 300-900 °C for 20 min in N₂ with the pressure of 1.0 Torr. The partial pressure of oxygen was kept below 10⁻⁸ Torr throughout annealing. The AR-XPS measurements were subsequently performed after annealing without any air exposure.

3 Results and Discussion

First we show the cross-sectional TEM images of the as-deposited sample in Fig. 1(a) and of the sample with PDA at 900 °C in Fig. 1 (b). A 1.0-nm-thick SiO₂ IL shown in Fig. 1 (a) indicates that an additional IL was not grown during the deposition at 350 °C. Obviously thickness of IL decreased to below 0.5 nm after PDA at 900 °C. This result strongly suggests that PDA under low partial pressure of O₂ is quite effective to control the thickness of IL.

In order to discuss the detailed mechanism of reduction of the IL thickness, we analysed the O 1s photoelectron spectra for the samples before and every after PDA at from 300 to 900 °C with a step of 100 °C as shown in Fig. 2. With increasing the PDA temperature up to 500 °C, the intensity of peaks related

to Si-O-Si and Pr-O-H bonds at 533 eV gradually decreased, while the intensity of peak related to Pr-O-Pr bonds at 530 eV increased. Angle-resolved O 1s photoelectron spectra for the sample with PDA at 500 °C (Fig. 3(a)) were deconvoluted as shown in Fig. 3(b) and then the normalised Pr-O-Pr and Si-O-Si intensities were plotted as a function of take-off angle (TOA) in Fig. 4. Formation of Pr oxide on the Pr silicate/SiO₂ stack (see Fig. 7, left) was indicated from the analysis. Pr hydroxide formed by water absorption during the air exposure would be a possible origin.

In the O 1s spectra of the sample with PDA at temperatures above 600 °C in Fig. 2, on the other hand, the Pr-O-Pr peak intensity decreases with increasing the PDA temperature, and the intensity of the peak related to Pr-O-Si bonds at 531.5 eV was enhanced. The Si 2p_{2/3} spectra of the sample after PDA were deconvoluted using seven peaks as shown in Fig. 5. The normalised intensities $N_{\text{Pr}}/N_{\text{SiO}_2}$ and $N_{\text{Si}}/N_{\text{SiO}_2}$ were plotted as a function of PDA temperature in Fig. 6, where a rapid increase in $N_{\text{Pr}}/N_{\text{SiO}_2}$ and a decrease in $N_{\text{Si}}/N_{\text{SiO}_2}$ above 600 °C are observed. The analyses of the normalised intensities as a function of TOA indicate formation of Pr silicate/SiO₂ stack due to inter-diffusion of Pr, Si and O atoms (schematically in Fig. 7). The IL thicknesses extracted from the AR-XPS analyses are well consistent with the TEM results.

4 Conclusions

We have succeeded in the growth of the Pr-Si-O gate stack with an ultrathin IL with the thickness of less than 0.5 nm by MOCVD followed by PDA under the low partial pressure of O₂. The AR-XPS analyses indicated that Pr silicate was grown by the inter-reaction between Pr oxide, Pr silicate and SiO₂ with PDA in the temperature range from 600°C to 900°C so that the IL thickness could be reduced.

Acknowledgments

The authors thank Prof. K. Yamada and Prof. K. Ohmori for providing substrates and valuable comments, Prof. H. Mizuta for critical reading of the manuscript.

References

- [1] H. J. Osten *et al.*, IEDM 2000, p. 653; A. Sakai *et al.*, APL **85**, 5322 (2004); G. Lupina *et al.*, APL **89**, 222909 (2006).
- [2] H. Fujita *et al.*, Ext. Abst. IWDTF 2004, p.19; Y. Tsuchiya *et al.* Ext. Abst. IWDTF 2006, p. 103

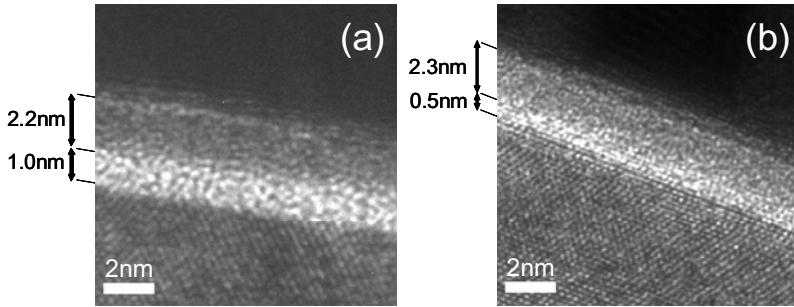


Fig. 1. Cross sectional TEM images of (a) the as-deposited sample and (b) the sample after PDA at 900 °C.

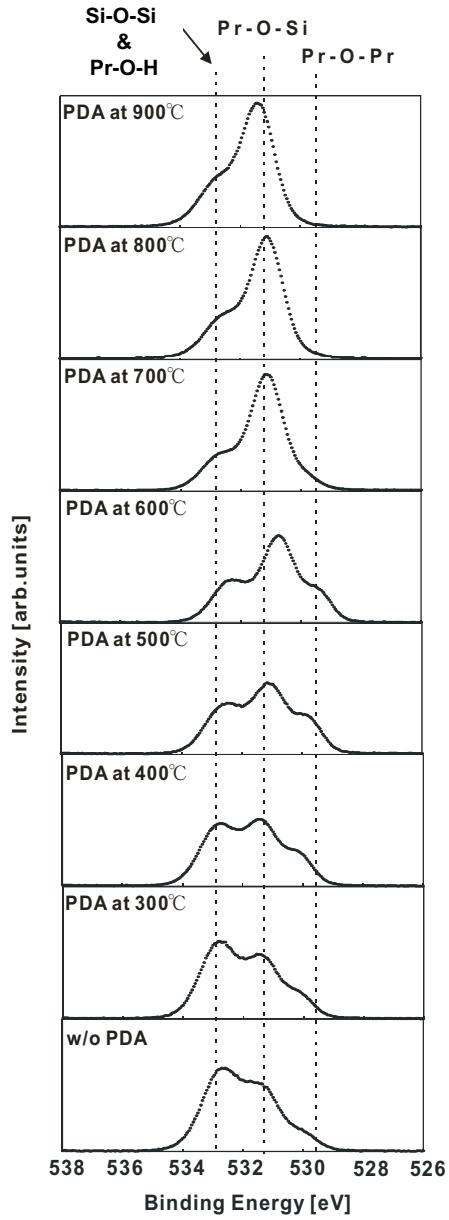


Fig. 2. XPS O 1s spectra of the sample before and after PDA at 300-900 °C (TOA = 52°).

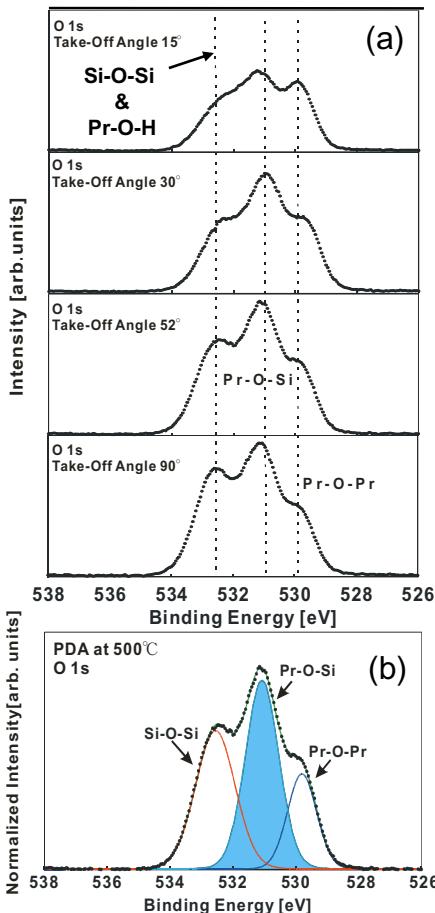


Fig. 3. (a) XPS O 1s spectra of the sample after PDA at 500 °C at TOA of 15, 30, 52, and 80 degrees, respectively. (b) Deconvoluted O 1s spectra at TOA of 52 degree.

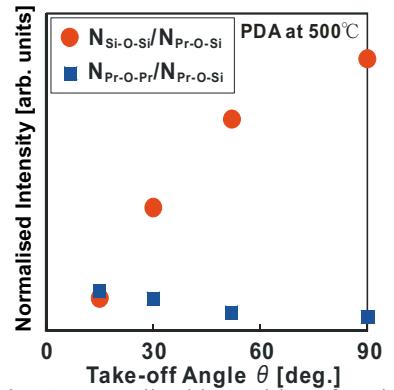


Fig. 4. Normalised intensities of peaks related to Si-O-Si ($N_{\text{Si-O-Si}}/N_{\text{Pr-O-Si}}$) and Pr-O-Pr ($N_{\text{Pr-O-Pr}}/N_{\text{Pr-O-Si}}$) as a function of TOA.

Fig. 5. XPS Si 2p_{3/2} spectra of the sample after PDA at 800 °C, deconvoluted by using seven peaks.

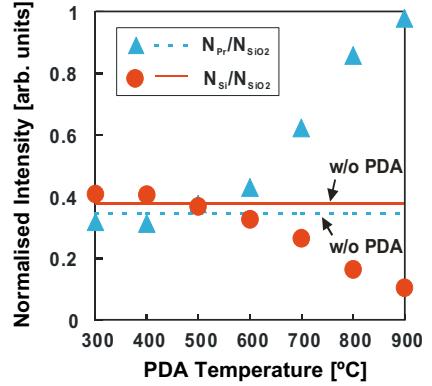


Fig. 6. Normalised intensities $N_{\text{Pr}}/N_{\text{SiO}_2}$ and $N_{\text{Si}}/N_{\text{SiO}_2}$ as a function of PDA temperature extracted from Si 2p_{3/2} spectra.

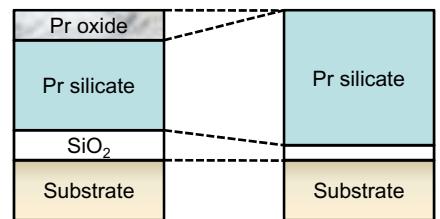


Fig. 7. Schematics of Pr-silicate/SiO₂ stack formation after PDA.