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Abstract: An electrically small antenna based on a dielectric resonator antenna (DRA) is investigated. Two well-
known simulation techniques, the finite element method and the finite integration technique have been applied
to study a low volume high permittivity DRA. It is demonstrated that the design of a compact size and wide
frequency coverage DRA for 2.4–2.5 GHz ISM frequency band is possible by proper selection of the resonator
shape in combination with appropriate resonant modes. Numerical results for one particular antenna design
are reported.
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1 Introduction
In the last decade, the need for small size and wide band
antennas has increased tremendously, driven especially by
the huge demand of mobile and portable communication
systems. Antennas and RF front-end stage are key
components that often control the overall performance of
the wireless systems. Cost, size and weight are the most
important factors that can determine the success or failure
of wireless technology, unlike, say, in military applications
where performance is the main consideration. These factors
are even more critical when several wireless technologies –
such as GPS, GSM, UWB, Bluetooth and/or WLAN –
are integrated in a multi-functional device. Each of these
technologies has its own frequency band (Table 1) and
might need its unique antenna and its own RF front end.
It is imperative that small antennas have both a wide band
and a multi-frequency response.

An electrically small antenna, as described first by Wheeler
in 1940 [2] can be defined as an antenna that can fit inside a
hypothetical sphere with a radius a ¼ 1/k where k is the wave
number. In fact the antennas used for portable wireless
devices may often be considered to be electrically small.
One of the characteristics of electrically small antennas is
that they have far-field characteristics similar to an electric
or a magnetic dipole, or a combination of both. Although
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the far-field radiation pattern is comparable with the dipole
(electric or magnetic) the near field of a small antenna is
significantly different from that of a simple dipole. It is also
essential to appreciate that the near field distribution of a
small antenna affects its performance. One of the effects of
the size reduction of the antenna is a drop in the radiated
power (Prad); in fact the radiated power decreases faster
than the energy stored and power loss in the antenna
structure. Also, because of the size reduction, which is
below its resonant size, the structure will store energy in
the near field that can be electric or magnetic, depending
on the antenna type. Therefore for this type of an antenna,
it is essential to have a reactive lumped element (capacitor
or inductor) in its feed, to cancel the reactive input
impedance at the frequency of interest. This will change
the total input impedance of the antenna that now has a
form of a resonator. For such a resonator a quality factor Q
can be defined

Q ¼
vW

Ptot

(1)

where W is the total energy in the resonator and Ptot is the
total power in the antenna. Ptot consists of the radiated
power and the power loss in the antenna structure, as well
as its surroundings. As mentioned earlier, as the size is
reduced, the stored energy – especially in the near field –
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Table 1 Frequency bands and antenna types used in commercial wireless systems [1]

Wireless technology Frequency band Antenna

GSM 880–960, 1710–1880 and 1850–1990 MHz folded-F, patch, monopole

GPS 1227–1575 patch

Bluetooth, WLAN 2.4–2.5, 5.15–5.35 and 5.75–5.82 GHz folded-F, patch, monopole
is increased and the radiated power is reduced, which results
in a high quality factor resonator. As a result the bandwidth
of the antenna is reduced and is given by

BW ;
Df

fres

’ 1

Q
(2)

where Df is the bandwidth and fres is the resonant frequency
of the resonator. It should be noticed that for electrically
small antennas there is a trade-off between the size,
bandwidth and efficiency. For simple electrically small
linear and circular polarised antennas, a maximum
bandwidth efficiency product can be derived based on the
Chu–Harrington theory [3–6]. Here, the efficiency of the
antenna is defined as h ¼ Prad=Ptot

BW � hð ÞMAX ’ ka½ �3 linear polarisation

BW � hð ÞMAX ’ 2 � ka½ �3 circular polarisation
(3)

It can be inferred that the maximum bandwidth efficiency
product may be obtained when the antenna fills up
completely the volume of the hypothetical sphere defined
by Wheeler [2]. However, most integrated electrically small
antennas have a planar structure based on a microstrip
patch or PIFA antennas (Table 1) that are far from filling
the bounding sphere. Their main advantages are that they
are cheap and relatively easy to integrate. Moreover, for
such antennas, there are many techniques available to
reduce their size. However, for these types of antennas the
maximum attainable bandwidth–efficiency is significantly
lower than the theoretical limit. On top of that they usually
have low efficiency because of metal losses and surface wave
losses and also they can be very easily detuned, which in
turn makes them more difficult to be integrated efficiently
in personal communication systems. On the other hand,
dielectric resonator antennas (DRAs) have no metal losses
and the losses through surface waves in the substrate can be
completely avoided if the dielectric constant is higher than
that of the substrate itself. In addition, from the point of
view of the Chu–Harrington limit on bandwidth–
efficiency, DRAs offer the possibility of getting closer to
the theoretical limit mainly because of their three-
dimensional geometry, therefore the hypothetical Wheeler
sphere can be utilised in a more optimised manner. The
advantages of DRAs – such as high radiation efficiency,
simple feeding schemes, resistance to detuning and relative
small size – have been exploited at frequencies of several
gigahertz or even higher [7]. For cellular applications in
nstitution of Engineering and Technology 2009
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modern portable wireless systems, integration and
implementation of DRAs is not straightforward. The main
drawback is the relatively large size of the radiators when
used at lower frequencies, such as 902–928 MHz or
2.400–2.500 GHz. Recently, some attempts to design and
integrate a DRA of a reasonable size for these frequency
bands have been reported [8], but the volume of the
antenna is still quite large. In a recent work [9], the
authors experimented with the implementation of a
cylindrical DRA integrated at a package level into a fully
functional Bluetooth module. Even though the newly
developed module had much better performance – mainly
because of the excellent attributes of the DRA
implemented when compared with conventional technology
such as a chip antenna – the overall volume of the radiator
was not sufficiently small. To appreciate the volume
occupied by a DRA with a dielectric constant of 20 with
respect to the regular chip antenna usually used in such
Bluetooth modules, a comparison of sizes is provided in
Fig. 1.

New attempts to reduce the size of a DRA have recently
been reported. Kishk [10] proposed the use of electric and
magnetic conductors to reduce the size of the resonator.
With such a technique, the size of the radiator can be
reduced by up to 75%, but this will work only for certain
resonating modes for which the perfect magnetic conductor
condition (tangential component of H is zero) is fulfilled.
Furthermore, this technique will result in a deformation of

Figure 1 Bluetooth module with electrically small antennas

a Chip antenna (it can be seen at the top of the module)
b With integrated DRA (the cylindrical shaped ceramic resonator
mounted on top of the module)
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the radiation pattern; however, this might be acceptable for
applications such as personal communications in multipath
environments. Another possibility to reduce the size of a
resonator is to use a material with a vey high dielectric
constant. This approach will reduce the size of the DRA
but will result in an unacceptable reduction in bandwidth.
As the dielectric constant increases, a rise of the quality
factor (Q) of the resonator is observed. In fact Q increases
as 13/2 thus resulting in significant reduction of the
antenna bandwidth. Different methods have been
suggested to improve the bandwidth of high dielectric
constant resonator antennas [11].

A combination of two particular approaches appears
promising. First, an appropriate resonator shape that
minimises the surface to volume ratio is chosen. This is
followed by a design of a resonator that can support close
resonant modes. Another very important factor in
wideband operation is the feeding structure design, such
that efficient coupling is obtained for the desired resonant
modes.

The design of a resonator supporting more than one
resonant mode in close proximity is usually avoided in
conventional DRA designs since the radiation pattern is
strongly dependent on the resonator modes [12, 13].
However, the requirements for the polarisation and/or
radiation pattern of antennas used in hand-held wireless
systems are rather relaxed as they will usually be used in an
indoor environment, which is in fact a multipath
environment. For example, for an antenna to be used for
the IEEE 802.11b,g band (2.4–2.5 GHz), the most
important factor is that the bandwidth is well covered and
the efficiency of the antenna is as high as possible
(minimum 75%); then the next important factor is its size
such that it can be integrated into the hand-held system.
Another important fact that has to be taken into
consideration from the system point of view is that the
coupling between the antenna and the rest of the circuitry
is avoided.

The points raised above were considered and implemented
in the earlier work [9]. In this paper, a novel shape DRA is
proposed to reduce the size of the radiator. The method
used here is based on using a very high dielectric constant
for the resonator combined with a novel shape resonator
designed to support transverse electrical TE modes and
quasi-TE modes excited by simple means of a 50 V open
microstrip line. The open stub of the feed was used to tune
the bandwidth of the antenna.

2 Antenna structure
As explained in the introduction, for practical hand-held
applications at cellular frequencies, a compact DRA is
preferred. One way of achieving a compact resonator is by
using high permittivity materials. The Q factor of the
antenna is the key parameter, which controls the
T Sci. Meas. Technol., 2009, Vol. 3, Iss. 3, pp. 217–228
i: 10.1049/iet-smt:20080122

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on June
bandwidth of the antenna (2). It can be directly related to
the unloaded Q of the resonant mode excited in the
dielectric resonator. The unloaded Q factor can be linked
to the geometrical features of the resonator by the
following equation

Q ¼ 2v0

Stored energy

Radiatedpower
/ 2v01

p
r

Volume

Surface

� �s

(4)

with p . s � 1, where v0 is the resonant angular frequency
and 1r is the relative dielectric constant. From (4) it is
apparent that an increase in 1r will result in an increase of
Q and this will reduce the antenna bandwidth. Moreover,
it may be seen from (4) that 2 if the volume to surface
ratio is minimised 2 the quality factor will be reduced and
the bandwidth of the antenna increased.

Rectangular tile-shaped DRAs were studied and fabricated
as reported in [11, 12]. It was demonstrated that thin
rectangular DRAs have a wider bandwidth than cube-
shaped or thick rectangular DRAs made from the same
material at the same frequency. However, this study was
limited to rectangular shape structures – more specifically
to parallelepiped shapes, and even more specifically to a
parallelepiped with 908 angles between all pairs of adjacent
sides [12]. In this work, we wish to demonstrate that the
idea is not limited to parallelepiped structures but can also
be applied to cylindrical-based shapes. The results reported
here are based on simulations only. We have simulated the
structures published in [11, 12] and compared the
performance with the simulation results obtained for the
novel structure proposed here. These comparisons are
included in Section 3 of this paper.

The novel shape proposed and studied here is a ‘C’ shaped
resonator (Fig. 2) which has its thickness much smaller than
all the other dimensions. The ‘C’ shaped resonator is a
modification of a cylindrical resonator from which a circular
segment has been removed. The rationale for this peculiar
geometry will be explained in more detail in the following
sections. Most of the previously published data regarding
cylindrical resonators considered an arrangement with the
resonator mounted on top of a grounded substrate with one

Figure 2 ’C’ shaped resonator
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of the circular faces fixed to the substrate. In such a setup,
only TM and quasi-TM modes are possible to be excited
into the resonator. There is a lot of work done on
cylindrical resonators [7–10, 14, 15], mostly on extracting
approximate formulas to compute their resonant
frequencies and quality factors. However, not much
literature on cylindrical thin dielectric resonators (disk
shape) and their properties exist. In a study done by Kishk
and Glisson [15], the resonant frequencies and quality
factors of cylindrical resonators for the first four dominant
modes – namely TM01d, TE01d, HEM11d and HEM12d –
as a function of different radius-to-height ratios and for
different dielectric constant values, were measured and
computed numerically. The ratios considered varied from
0.3 to 2.7 [15]. The aim was to obtain curve-fit equations
for the data so that these equations could then be used to
design any arbitrary sized cylindrical resonator. Two of the
curve-fit equations for the resonant frequency of the TE01d,
HEM12d modes are quoted below

fTE01d ¼
2:9 � c

2p � r10:46
r

0:7þ 0:3
r

t
� 0:03

r

t

� �2
� �

(5)

fHEM12d¼
3:1 � c

2p � r10:5
r

1:2� 0:04�
3:4

e2:6r=t

� �
r

t
þ1:55 � log

r

t

� �� �
(6)

where r is the radius of the resonator and t its thickness.

Similar equations were derived for the other two modes
TM01d and HEM11d. An observation that came out from
this study was that the rates of change in the resonant
frequencies of the TE01d and HEM12d modes with respect
to the radius-to-height ratio are lower than for the other
two modes TM01d and HEM11d. This implies that a DRA
resonating with the TE01d, HEM12d will possibly have a
wider bandwidth than the same DRA working in the
TM01d, or HEM11d regime. Hence it may be desirable to
create an appropriate DRA structure to support the TE01d,
HEM12d modes. For the knowledge of the near field
distribution for each mode, it is necessary that an
appropriate excitation mechanism is chosen.

Another method through which the resonant frequency of
a cylindrical resonator can be approximately predicted is by
using the cavity resonator model. In this approximation,
the outer surfaces of the resonator are assumed to be
perfect magnetic walls and the wave functions of the
transverse electric TE and transverse magnetic TM, with
respect to the z direction, can be written as

cTEnpm ¼ Jn

2Xnp

2 � r
r

� �
sin nw
cos nw

� 	
sin

2 mþ 1ð Þpz

2t

� �
(7)

cTMnpm ¼ Jn

2X 0np

2 � r
r

 !
sin nw
cos nw

� 	
cos

2 mþ 1ð Þpz

2t

� �
(8)
0
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where Jn is the Bessel function of the first kind, Jn(Xnp) ¼ 0,
J 0n(X 0np) ¼ 0, n ¼ 0, 1, 2, 3, . . ., p ¼ 1, 2, 3, . . ., m ¼ 0, 1,
2,. . .. From (7) and (8), and using the separation equation
k2
r þ k2

z ¼ v2m1, one can find an expression for the
resonant frequency of the npm mode

fnpm ¼
c

2p � r
ffiffiffiffi
1r
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

np

X 02np

( )
þ

p � r

2t
2 mþ 1ð Þ

h i2

vuut (9)

From (9) it can be deduced that for thin resonators – where
the ratio of radius over thickness is much larger than unity –

the second term p � r=2 � tð Þ 2 mþ 1ð Þ½ �
2 will dominate the

first term
X 2

np

X 02np

( )
for small values of n and p which

corresponds to first dominant modes. As a consequence the
first resonant modes will be closely spaced together and it
will be possible to design an antenna based on a multimode
operation.

Both expressions quoted above (5) and (9) could be used to
calculate the first resonant frequency of a cylindrical
resonator. However, on close inspection, it can be noticed
that when 2t=lg , 1, where lg is the wavelength in the
dielectric waveguide at the frequency of interest, these
formulae produce erroneous results. As an illustration a
simple example may be considered. Assume a cylindrical
resonator with a high dielectric constant 1r of 80. If the
ratio of the radius of the resonator to its thickness is very
high (more than 3), the results obtained using (5) are very
different to the frequency computed by (9). However, when
the ratio is reduced to 2, or below, the two methods give
very similar results (Fig. 3). This is because for very thin
resonators fields do not change rapidly enough in the z

Figure 3 TE01 resonant frequencies of cylindrical resonators
with different radius over thickness ratio calculated using
four different methods

Dielectric constant of the resonator considered in this example
was 80
IET Sci. Meas. Technol., 2009, Vol. 3, Iss. 3, pp. 217–228
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direction and no standing wave patterns appear along this
direction. Therefore m should not necessarily be an integer
number as defined earlier but it could be a real number
between 0 and 1 to account for the thin feature of our
resonator.

The basic operation of the TE01d mode can be explained if
the dielectric resonator is considered as a short length (of
thickness t) of a dielectric waveguide open at both ends.
The lowest order TE mode of such a guide is the TE01

mode. Because of the high permittivity of the resonator,
propagation along its thickness can occur inside the
dielectric at the resonant frequency, but the fields will be
cut off in the air regions around the dielectric. Since the
resonant length for the TE01d mode is
, lg=2, d ¼ 2t=lg , 1 is used to denote the variation
along the thickness of the resonator at this resonating
mode. As the dielectric constant of the resonator is high,
we can consider magnetic walls on all resonator faces. For
these conditions, considering the TE mode implies Ez ¼ 0
(along the thickness of the resonator). Furthermore, if we
write the wave equation for Hz inside and outside the
resonator with the magnetic walls boundary condition
applied on all resonator faces, the following equation can be
derived [16]

tan
b � t

2
¼

a

b
(10)

where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X01=r
� �2

�k2
0

q
, b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1rk

2
0 � X01=r

� �2
q

and
k0 ¼ 2pf =c. The above equation can be solved using the
bisection method and thus the TE01 resonant frequency
found.

To verify the solution numerically a simple experiment was
conducted. Different cylindrical resonators with the dielectric
constant fixed (1r ¼ 80) and a radius of 14 mm were
considered. The ratios of radius over thickness ranging
from 0.5 to 7 were assumed and the resonant frequency for
the TE01 mode was calculated using (5), (9) and (10). A
T Sci. Meas. Technol., 2009, Vol. 3, Iss. 3, pp. 217–228
i: 10.1049/iet-smt:20080122

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on Jun
numerical solution based on the finite integration technique
(FIT) solver was also obtained for benchmarking. The
results are presented in Fig. 3. As mentioned before, both
(5) and (9) fail to predict the correct resonant frequency for
ratios bigger than 3; (5) underestimates the correct solution
whereas (9) grossly overestimates the resonant frequencies
for thin resonators. On the other hand, the solution based
on the transcendental equation (10) computes frequencies
that are slightly underestimated when compared with the
full wave solution obtained from the FIT solver but
nevertheless consistent over the whole range of ratios.
Therefore for a correct approximation of the resonant
frequency of the lowest resonant mode TE01d for a disk
shaped resonator, it is necessary to solve the transcendental
equation (10), or an even better alternative is to use a full
wave solver.

Equation (10) can be used to calculate the size of the
resonator if the band of the antenna is known. For
example, if the DRA is to be used for a Bluetooth
application, the first resonant mode of the resonator should
be around 2.4–2.5 GHz. If, for example, the ceramic used
has a dielectric constant of 80 and the thickness available
(which, from the system point of view, is 2 mm), then the
radius of the resonator will be 14 mm. If, however, the
radius has to be constrained from the system point of view,
say reduced to 10 mm, then when using the same material
the thickness of the resonator should be increased to 3 mm
to get a resonant frequency close to 2.4 GHz.

The near field distribution of the lowest resonant modes
can be obtained from the full wave solver. It is clear from
the electric field plots (Fig. 4) that the feed and the ground
have to be positioned with respect to resonator in such a
way that the magnetic field produced by the feed will be
orthogonal to the circular faces of the resonator. This is not
as easily achievable for a cylindrical shape as for a
parallelepiped shape [11, 12]; however, a simple solution
such as the one proposed here could be employed. If the
Figure 4 Electric field distribution for the first two resonant modes of a thin cylindrical dielectric resonator

a TE01d

b TE11d
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cylindrical resonator were transformed into a ‘C’ shaped
resonator, the feed problem would become very simple and
easy to implement; it would in fact yield similar results as
for the parallelepiped shape patented by Bit-Babik et al. [12].

The first resonant mode of the ‘C’ shaped resonator is
TE01d. The resonant frequency of this mode can be
approximated using the same method as described earlier.
The difference appears in the definition of a and b which
have to take into account the change in the resonator
volume. If a variable n ¼ Volume rmdisk/Volume ‘C’
shaped is defined, then a and b can be written as

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n � X01=r
� �2

�k2
0

q
, b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1rk2

0 � n � X01=r
� �2

q
(11)

For a radius r ¼ 14 mm, thickness t ¼ 2 mm and
h ¼ 10 mm, where h is the distance from the centre of the
circular face to the middle of the flat edge as shown in
Fig. 2, the variable defined above becomes n ¼ 1.096.
With this value the approximate resonance of the TE01d of
the ‘C’ shaped resonator (1r ¼ 80) is calculated to be at
2.42 GHz. Again, as in the cylinder calculation, the
approximate value compares well with the value of
2.53 GHz computed through the FIT solver, being only
slightly lower. Fig. 5 presents a comparison between the
resonant frequencies computed using (10) and computed
through the FIT solver for different ratios n.

The near field distribution within the ‘C’ shaped resonator
is very similar to the full cylinder. The vector electric field
plots for the first three resonant modes obtained from the
full solver software are shown bellow.

To couple the modes presented in Fig. 6, a simple
microstrip line feed would suffice. As shown in Bit-Babik’s
work [11, 12] the resonator has to be placed on top of the

Figure 5 Resonant frequencies for the TE01d of the ‘C’
shaped resonator for different n – volume ratios
2
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microstrip line, parallel with the line (Fig. 7). In this
configuration, the magnetic field lines produced by the
current flowing into the microstrip line will close through
the ‘C’ shaped faces of the resonator. By placing the flat
face of the resonator on top of the metallic microstrip line,
the boundary condition of that face is changed from perfect
magnetic to perfect electric. This will influence the field
distribution of the field inside the resonator. The resonant
frequencies of first modes are also changed. A simple
analytical approach is not possible in this case, as the
problem loses its inherent circular symmetry, therefore a
numerical tool is employed to compute the first resonant
modes of this arrangement (Fig. 7b). Under these
circumstances, the problem has a perfect magnetic
boundary around the circumference of the resonator and a
perfect electric boundary along the straight bottom boundary.

The new electric field plots are presented in Fig. 8. The
computed resonances of the first three modes are
1.87 GHz for the TE01 mode (Fig. 8a), 2.79 GHz for the
TE12 mode (Fig. 8b) and 2.88 GHz for the TE11 mode
(Fig. 8c).

It can also be shown that the first resonant frequency of the
‘C’ shaped resonator with the flat face shortened (Fig. 7b) is
related to the first resonant of the complete cylinder
resonator, which has the same circular sector that is
removed for the ‘C’ shaped resonator shortened through
the same coefficient n ¼ Volume disk/Volume ‘C’ shaped
(Fig. 7a). The actual antenna structure is presented in
Fig. 9. The flat portion of the resonator is fixed above the
microstrip line that is routed on top of the grounded
substrate supporting the whole antenna structure. The
microstrip line becomes a simple and efficient feed for the
‘C’ shaped DRA.

The microstrip feeds are in general not the most efficient
way to couple the energy into a ceramic resonator, but
because the dielectric constant of this particular
implementation is very high such problems are avoided.
The dielectric material considered here has the dielectric
constant of 1r ¼ 80 and the loss tangent of 0.0005 at
2 GHz, but higher values of dielectric constants such as
100 or 120 could also be appropriate. This kind of a
resonator could be fabricated using ceramic materials based
on BaTiO3 compounds that provide a wide range of high
permittivity and low loss. Depending on the sintering
conditions and various binders added, the values of the
dielectric constants between 50 and 200 could be achieved.
Other materials are also available such as neodymium
titanate and magnesium calcium titanate [14].

3 Results and discussions
As mentioned earlier, all results generated throughout this
work are from numerical simulations. However, for the
purpose of increasing confidence in the results, two
commercially available software packages, using two
IET Sci. Meas. Technol., 2009, Vol. 3, Iss. 3, pp. 217–228
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Figure 6 Electric field distribution in the ‘C’ shaped resonator for the first three resonant modes

a TE01d

b TE11d

c TE12d

Figure 7 The boundary setup for the case of the ‘C’ shaped resonator sitting on top of the microstrip line
IET
o

different methods, were used to simulate the same structure.
The two packages were Microwave Studio from CST [17]
and HFSS from Ansoft [18]. Microwave Studio employs a
time-domain technique known as FIT, whereas HFSS uses
a frequency-domain technique based on the finite element
method (FEM). Both of are full wave solvers and generate
results in terms of scattering (S) parameters from the field
solution. Access to the field plots (electric and magnetic) is
also possible. The results for the same structure were
compared in terms of S parameters. The main difference
between the two packages – as already mentioned – is that
Sci. Meas. Technol., 2009, Vol. 3, Iss. 3, pp. 217–228
i: 10.1049/iet-smt:20080122
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Microwave Studio solves the problem time domain whereas
HFSS does it in frequency domain. The CST software was
set up to first adapt its rectangular mesh until the error
between successive solutions became ,1%. Once the
adaptive mesh was obtained a simulation with an accuracy
of better than 230 dB was initiated. As the code solves the
problem in time domain, this accuracy refers, in practice, to
the steady state reached after the initial Gaussian pulse has
passed through the structure being simulated. This value is
in fact the accuracy of the frequency-domain signals that
are calculated by Fourier transformation of the time signals.
Figure 8 Electric field distribution of the first three resonant modes in the ‘C’ shaped resonator in the new configuration
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Figure 10 Comparison between FIT and FEM solutions
showing the magnitude of S11

Figure 9 ’C’ shaped resonator on top of a microstrip feed
The Institution of Engineering and Technology 2009
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The Ansoft software, on the other hand, was set up to iterate
the mesh until an error of ,1% at the input has been
achieved. As this tool solves the problem in frequency
domain, a frequency of 5 GHz was chosen to adapt the
mesh until the error obtained at the input port became
,1%. The problem was then solved at 50 discrete points in
the domain 0.5 to 5 GHz using the mesh adapted at
5 GHz. Fig. 10 shows a comparison in terms of the
magnitude of return loss for one of the simulated cases,
which has been solved with both solvers.

The antenna structure depicted in Fig. 9 was further
investigated with the help of both solvers. Using the
methodology described in Section 2, the initial dimensions
of the resonator were chosen as follows: r ¼ 14 mm,
h ¼ 10 mm and the thickness t ¼ 2 mm (using 1r ¼ 80
and loss tangent of 0.0005 at 2 GHz, as specified before).
As mentioned earlier, the first resonance of the ‘C’ shaped
resonator placed on top of the microstrip is expected to be
around 1.9 GHz (calculated in Section 2). The full wave
results have confirmed this and when the length of the
open stub at the end of the resonator was taken as L ¼ 0,
the first resonance observed was indeed at 1.97 GHz, as
shown in Fig. 11a. The second resonance is around
2.78 GHz and the third one is 2.88 GHz, as predicted in
Section 2. Because the second and third resonances are very
close to each other, they form a continuous band from 2.7
to 2.9 GHz. A closer inspection of the electric field plots
reveals that the first three resonances are the same as the
ones described before (Figs. 11b–11d ).
Figure 11 Magnitude of S11 and the near field distribution of the first three resonant modes for the DRA antenna when L ¼ 0
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Figure 12 Magnitude of S11 and the near field distribution of the first three resonant modes for the DRA antenna when
L ¼ 13 mm
ET
oi
To increase the bandwidth of the antenna, one of the first
two resonant modes has to be shifted towards the other one
to create a continuous band in which the magnitude of S11 is
below 210 dB. However, for this structure an interesting
phenomenon has been observed, namely that the first
resonant mode is due to the combined effects of the
resonator and the length of the transmission line routed on
the flat side of the resonator used to excite the antenna.
When the length of the microstrip line is equal to the
length of the flat side of the ‘C’ shaped resonator W
(L ¼ 0), the resonant frequency is around 1.9 GHz as
predicted in Section 2 and shown in Fig. 11a. However,
when the length of the transmission line exceeds W
(L . 0), the resonant frequency is shifted upwards. Thus, a
simple and efficient way to increase the bandwidth is
through controlling the field distribution along the open
stub. This can be achieved by varying the length of the
stub accordingly. It is known that current density along the
microstrip open stub will have a peak at lg/4, where lg is
the wavelength of the guided wave along the microstrip
line. By choosing the appropriate length, the intensity of
the magnetic and electric field can be controlled so that the
energy coupled with the resonator is maximised. In this
case we know that the resonator has its natural resonance
around 2.45 GHz. Using this information, an open stub
can be designed such that a maximum of the magnetic (or
electric) field will exist at one end of the resonator and
another maximum – but with the opposite phase – will
exist at the other end of the resonator. The lg/4 is around
16 mm for the microstrip line on FR4 at 2.45 GHz. The
length of the flat surface w ¼ 20 mm, hence by adding an
Sci. Meas. Technol., 2009, Vol. 3, Iss. 3, pp. 217–228
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open stub of L ¼ 13 mm, the maximum field will appear at
about 3 mm inside the right-hand side of resonator. The
other maximum field region exists on the left-hand side of
the resonator, where the excitation is as shown in Fig. 12b.
In this arrangement the coupling of energy from the feed
into the resonator, when the TE01 mode naturally exists, is
maximised and a deep resonance at 2.41 is observed
(Fig. 12). Moreover, the addition of L at the end of the
feed does not disturb the field distribution at 2.77 GHz
(Fig. 12c), which is the resonance of the second mode.
This explains why by changing the length of the stub only
the first mode is changing position, while the second mode
stays fixed at around 2.79 GHz. The third mode is also
influenced by the length of the open stub, as may be
observed in Fig. 12. It appears at around 2.96 GHz but the
energy is not coupled efficiently into the resonator and the
resonance observed is not very pronounced.

Figure 13 Magnitude of S11 for different values of L
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Figure 14 Simulated radiation patterns for the two different modes in H and E plane

a Pattern at 2.41 GHz (first mode)
b Pattern at 2.77 GHz (second mode)
The effect of changing the length of the open stub is
further illustrated in Fig. 13. The length of the stub was
varied from 10 to 20 mm to find an optimum length so
that the bandwidth of the antenna is maximised. The
length of about 13 mm seems to be optimal, whereas the
500 MHz – from 2.3 GHz to about 2.8 GHz – appears to
be the maximum bandwidth achievable for this structure
(Fig. 13).

The antenna presented here can be considered an
electrically small antenna as its biggest dimension
(diameter) is smaller than one-fourth of the free space
wavelength corresponding to the lowest frequency mode of
operation. In the case computed above the diameter is
28 mm and the free space wavelength at 2.4 GHz is
125 mm. For this type of structure the size of the ground
plane is also very important. The ground plane reduces the
power radiated in one hemisphere and produces some
directionality in the radiation pattern in the other
hemisphere. From the simulations, it has been observed
that the ground plane should have the width at least equal
to the diameter of the resonator in order to reduce
substantially the radiation in one hemisphere. More
improvements in the directivity of the antenna could be
accomplished if the ground plane was increased further, but
little improvement has been observed when the width of
the ground was bigger than three times the radius of the
antenna. The simulated radiation patterns in Fig. 14 have
been obtained from a model that has a finite ground plane
with a width twice the diameter and the length three times
the diameter of the resonator (56 � 84 mm2).

The gain and radiation efficiency of the antenna was also
calculated. A very high efficiency was obtained for this
structure for both modes, with the computed values above
The Institution of Engineering and Technology 2009
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95%. It should be noted that the metal losses in the
microstrip line were ignored in the calculations, but these
are expected to be very small and should not affect the
efficiency of the DRA. The computed gain was for both
modes better than 4.4 dB.

The proposed antenna was compared in terms of its
bandwidth and radiation pattern with the parallelepiped
DRA described by Bit-Babik et al. [11, 12]. The model
that has been simulated here is identical with the DRA
described in [11] and has the length of 25 mm, the height
of 23 mm and the thickness of 2 mm with the dielectric
constant of 80. The size of the ground plane considered
here was 60 � 80 mm2

. For these dimensions, the volume
of the parallelepiped was 1150 mm3, whereas the volume of
the ‘C’ shaped resonator is slightly smaller at 1123 m3. The
calculated bandwidth of parallelepiped DRA is also slightly
smaller than for the proposed DRA as shown in Fig. 15.
The main difference between the two antennas is in their

Figure 15 Magnitude of S11 for parallelepiped and ‘C’
shaped DRAs
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Figure 16 Simulated radiation patterns for the two different modes in H and E plane – parallelepiped DRA

a Pattern at 2.41 GHz (first mode)
b Pattern at 2.77 GHz (second mode)
radiation patterns, especially in the E plane. For the C shaped
implementation both resonant modes have the maximum
field positioned towards the same direction (Fig. 14),
whereas the parallelepiped DRA has the maximum for the
first resonant mode in opposite direction when compared
with the second resonant mode (Fig. 16). This can be
explained by the nature of the second mode excited in the
resonators. The second mode for the parallelepiped
resonator is the TE12 mode (two nulls along the length of
the resonator), whereas the mode excited in the ‘C’ shaped
resonator has two nulls along its height (Fig. 12c). This
might be an advantage for the ‘C’ shaped resonator as the
directivity of the mode does not change as dramatically as
for the parallelepiped shape; however, in the
implementation of a small antenna for hand-held wireless
for indoor applications, this fact is of secondary importance.

4 Conclusions
A ‘C’ shaped high permittivity DRA has been studied
through numerical modelling. It has been shown that by
using a high enough permittivity material, and by selecting
an appropriate shape of the resonator coupled with a
multimode operation, a compact and wide bandwidth
antenna for cellular frequencies could be realised. Further
improvements of the size and bandwidth may be possible if
higher dielectric constant is used and other shapes that
minimise better the volume to surface ratio are employed.
Finally, the DRAs have a fundamental advantage over the
classical electrically small antennas as they are resonating
without the need of an external reactive component
(matching network). This will result in a more efficient
antenna and will also facilitate the integration into a real
wireless system.
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