IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 6, JUNE 2011

Evolutionary Algorithm Aided Interleaver Design for
Serially Concatenated Codes

R. G. Maunder and L. Hanzo

Abstract— Previous interleavers designed for Serially Concate-
nated Codes (SCCs) have achieved a limited Minimum Hamming
Distance (MHD) between the legitimate permutations of the
encoded bit sequence. Hence, we propose a novel Evolutionary
Algorithm (EA) capable of designing improved interleavers for
SCCs, without artificially limiting the achievable MHD. As a
result, increased MHDs and therefore reduced error floors are
achieved, even if only a modest EA complexity can be afforded.

Index Terms— Joint source and channel coding, trellis codes,
information rates.

I. INTRODUCTION

N Serially Concatenated Codes (SCCs) [1] like that of
Fig. 1, the Symbol Error Ratio (SER) is governed by the
union bound [2, Equation (2.5)]

Ja o Na EaA
SER < 2" BaBa 1
- E§1 E§1 Na(1 + Eo/No)Ps M

when the N,-symbol source sequence a is represented by the
Ng-bit encoded sequence d and transmitted over an uncorre-
lated narrowband Rayleigh fading channel, having a Signal to
Noise Ratio (SNR) of Ey/Ny. Here, Ag, g, [3, Equation (8)]
is the component of the distance spectrum corresponding to
permutations of a that are separated by a Hamming distance
of F, and that are mapped to permutations of d that are
separated by a Hamming distance of Eq4. The bound of (1) is
tight at high SNRs [2], where it is dominated by the Minimum
Hamming Distance (MHD) w, which is the lowest value of Eq
that is associated with non-zero distance spectrum components
Ag, B, As aresult, we have SER ~ m/(1+4 Ey/Ny)", where
m =35, L2 Ap, . is the multiplicity of the MHD. Since
the distance spectrum is dictated by the interleaver IT of Fig. 1
[4], this may be beneficially designed to yield a high MHD
w having a low multiplicity m and hence to yield a reduced
SER at high SNRs.

While the references of [4] have proposed many interleaver
designs for increasing the MHD w of Parallel Concatenated
Codes (PCCs), these are typically unsuitable for SCCs. This
is because, in contrast to PCCs, SCCs typically employ a
concatenation of different codes, having different Hamming
distance properties. Furthermore, while PCCs are typically
linear, in SCCs often non-linear outer codes are employed for
joint source and channel coding [5]. In these applications, the

Paper approved by A. K. Khandani, the Editor for Coding and Information
Theory of the IEEE Communications Society. Manuscript received June 8,
2009; revised June 19, 2010 and December 20, 2010.

The authors are with the School of Electronics and Computer Science, Uni-
versity of Southampton, 4004 Mountbatten Building, Salisbury Road, SO17
1BJ United Kingdom (e-mail: rm@ecs.soton.ac.uk; lh@ecs.soton.ac.uk).

Digital Object Identifier 10.1109/TCOMM.2011.01.xxxxx

a Outer
— FLC
Encoder

Inner d
URC
Encoder

BPSK
Modulator

Termination
FLC
Encoder

Channel

Termination
FLC
Decoder

a Outer
-~ FLC
Decoder

Inner d —
URC BPSK

Decoder Demodulator

Fig. 1. SCC schematic. LLR sequences are indicated by applying a diacritical
tilde to the notation of the corresponding bit sequence. A subscript of ‘a’
indicates a priori LLRs, while a subscript of ‘e’ is employed for extrinsic
LLRs. The boxed crosses indicate either a multiplexing or a demultiplexing
operation.

error sensitivity and entropy of the source may vary throughout
the source sequence a, motivating the employment of an
irregular outer encoder [6]. Finally, the input b of an SCC’s
interleaver has only a limited set of legitimate permutations,
since it is provided by the encoded bit sequence generated by
the outer encoder.

Against this backdrop, interleaver designs that can increase
the MHD w of SCCs remain scarce. Similarly to S-random
interleavers [7], the interleavers proposed in [8], [9] were
designed for mitigating the correlation between neighbour-
ing Logarithmic Likelihood Ratios (LLRs) in the extrinsic
sequences b, and c. during iterative decoding. Since this
approach increased the associated MHDs to a certain degree
[4], the corresponding error floors were slightly improved. By
contrast, the Code Matched Interleaver (CMI) of [10] was
specifically designed to improve the MHD of a particular SCC,
although it was unable to guarantee a MHD above w = 3.

In Section II of this letter, we propose a novel Evolutionary
Algorithm (EA) for designing the interleaver of an SCC. In
contrast to the approaches of [7]-[10], our EA is capable of
achieving an MHD w that is limited only by the degree of
freedom offered by the interleaver’s length Ny,. By removing
all artificial limits on the MHD w, our EA achieves lower error
floors than all previous approaches, even if only a modest EA
complexity can be afforded, as demonstrated in Section III.
Furthermore, our EA may be applied to the entire range of
SCCs that is represented by Fig. 1, where Binary Phase Shift
Keying (BPSK) is employed. Here, we refer to our outer code
as a Fixed Length Code (FLC), which we define as an arbitrary
linear or non-linear, regular or irregular block code. The inner
code is referred to as a Unity Rate Code (URC), which we
define as an arbitrary regular or irregular convolutional code,
provided that it has a coding rate of unity, which is a necessary
condition for avoiding capacity loss [11]. Albeit we consider

0090-6778/11$25.00 (© 2011 IEEE

the termination [12] of the URC in this letter, our EA may
be readily adapted to the case where the termination code of
Fig. 1 is removed. We will therefore conclude in Section IV
that our approach may be used in numerous applications,
ranging from the conventional SCCs of [1] to the specialised
joint source and channel codes of [5].

II. EVOLUTIONARY ALGORITHM

In this section, we detail our EA conceived for designing the
interleaver IT of the scheme shown in Fig. 1. In Section II-A,
we demonstrate that the components of the distance spectrum
Ag, E, can be expressed in terms of the Woven Error Patterns
(WEPs) [13] that are facilitated by the design of the interleaver
II. Section II-B shows that the set of all WEPs can be
uniquely and efficiently represented using a tree structure. In
Section II-C, we show that an A* search algorithm [14] can be
employed to direct the construction of the WEP tree, in order
to efficiently identify the WEPs that contribute to the MHD
w. Section II-C also shows that a second A* search algorithm
can be iteratively employed in order to efficiently determine
the pair of indices in the interleaver II that can be swapped
for the sake of yielding the highest attainable improvements
in the MHD w, as well as in its multiplicity m and hence
ultimately in the attainable SER.

A. Woven Error Patterns

Our EA employs the data structure of Fig. 2 to represent
the WEPs that are facilitated by a particular interleaver design
II.

Here, each WEP e describes the transformations imposed
on the bit sequences b, ¢ and d, when the FLC input sequence
a is switched from one permutation to another. Naturally, this
permutation-switching corresponds to the transformation of
some of the FLC codewords within b/, as well as the potential
transformation of the termination FLC codeword t [12]. In
order to describe these transformations, a specific FLC Error
Pattern (EP) e.f in the list e.f identifies the indices e.f.i of
the toggled bits within each of the transformed codewords in
the FLC output sequence b. Furthermore, the toggling of bits
in b causes the toggling of the corresponding interleaved bits
in the URC input sequence c. In turn, the toggled bits in the
sequence c are associated with disjoint sequences of toggled
bits in the URC output sequence d. A URC EP e.u in the list
e.u therefore identifies the indices e.u.i of the toggled bits in
the sequence c that are associated with each of these disjoint
sequences.

It can be shown that the components of the distance
spectrum are given by

AEa7Ed = E e.m, (2)
ece(IT)| £0=Fe

where the notation is defined in Fig. 2 and e(II) is a set
comprising all WEPs that are facilitated by the interleaver
II, as well as all possible Combinations of WEPs (CWEPs)
that do not interfere with each other [13]. As implied by
(2), the total URC output weight e.w of a WEP identifies
the Hamming distance between the corresponding pair of

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 6, JUNE 2011

Fig. 2. Data structure employed to construct WEPs in the proposed EA.

Each WEP e comprises the following:

e A list of FLC EPs e.f, each of which e.f € e.f affects a different
FLC codeword in the FLC output sequence b. Each FLC EP e.f € e.f
comprises the following:

— A list of FLC output bit indices e.f.i, which identify the bits of
the FLC codeword in b that are toggled by the FLC EP e. f when
the WEP e occurs;

— A multiplicity e.f.m, which quantifies the probability that the
FLC codeword will adopt a permutation that is susceptible to the
FLC EP e.f. Note that when the FLC is non-linear, the FLC EP
may not transform all FLC codeword permutations into another
legitimate permutation. Also note that different FLC codeword
permutations may occur with different probabilities in joint source
and channel coding applications.

e a list of URC EPs e.u, each of which e.u € e.u affects a different
disjoint subset of the URC input sequence c. Each URC EP e.u € e.u
comprises:

— A list of URC input bit indices e.u.i, which identify the bits in ¢
that are toggled by the URC EP e.u, when the WEP e occurs;

— a URC output weight e.u.w, which quantifies the number of bits
in the URC output sequence d that are toggled by the URC EP
e.u when the WEP e occurs.

o alist of URC input bit index repositories e.q1, each of which e.@ € e.Qa
comprises:

— alist of so-called unallocated URC input bit indices e.%.i. While
these indices identify bits in c that are toggled, when the WEP e
occurs, URC EPs in e.u have not yet been created to accommodate
them,;

— a minimum value e.@.w™ for the total URC output weight that
can be obtained by creating (one or more) URC EPs in e.u to
accommodate all of the unallocated URC input bit indices in e.w.1i.
This may be determined using the method of constrained subcodes
[15].

o the number e.n of FLC codewords in the sequence b’ that are corrupted
by the WEP, which will equal the cardinality |e.f] if the termination
FLC codeword t is unaffected by the WEP, or |e.f| — 1 if it is;

o amultiplicity em =], se.pe.fm

o atotal URC output weight e.w = 3", . eu.w;

e a minimum value e.wt = YencenCUWE D acoq e.G.w™ for
the total URC output weight that can be obtained by creating new URC
EPs in e.u to accommodate all of the unallocated URC input bit indices
in e.q;

e arank e.r, as will be detailed in Section II-B.1.

legitimate permutations of the URC output sequence d [4].
Therefore, our EA endeavours to redesign the interleaver I1
in order to eliminate the WEPs having the lowest total URC
output weight e.w, as described in the following sections.

B. WEP Tree

The proposed EA efficiently identifies and eliminates the
WEDPs having the lowest total URC output weight with the aid
of a tree structure. Here, each leaf node uniquely represents a
different one of the WEPs that are facilitated by the interleaver
IT. In contrast to these so-called complete WEPs, each branch
node represents a WEP e that is referred to as incomplete,
since its list of repositories e.Gi contains some unallocated
URC input bit indices, as described in Fig. 2. The unallocated
indices of e.i are the basis of the relationship between
the corresponding branch node and its children nodes. More
specifically, there is a child node for each of the different

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 6, JUNE 2011

WEPs that can be obtained by augmenting the FLC EPs in e.f,
in order to eliminate the unallocated URC input bit indices in
e.u. A child node becomes a leaf, if the augmented FLC EPs
eliminate all of the unallocated URC input bit indices without
creating any new ones. Otherwise, the child node becomes a
branch and the corresponding WEP is said to be incomplete.
The WEP tree may be initialised and constructed as described
in Sections II-B.1 and II-B.2, respectively.

1) WEP Tree Initialisation: The WEP tree is initialised by
creating the nodes at a depth of one. This is achieved using the
initialisation function e(i;,, IT, r), where IT is the interleaver’s
sequence of bit mappings and the other parameters are detailed
below. This function provides a list e(é;,, IT, r) of incomplete
WEPs that reside at a depth of one in the tree. Each of these
incomplete WEPs e € e(iiy, II, 1) has a list of FLC EPs e.f
containing only a single entry e.f, plus a list of unallocated
URC input bit index repositories e.ti containing only a single
entry e.t and finally an empty list of URC EPs e.u.

Each call to the initialisation function will only generate
WEPs that toggle a particular bit in the URC input sequence
c, as specified by the index ¢;, in the function’s parameters.
The deinterleaver TI~! = {T1~'[i]}*, maps the URC input
bit having the index ¢;, to the bit in the FLC output sequence
b that has the index IT~![i;,]. This FLC output bit will also
be toggled by the WEP considered, but this is additionally
required to form part of a legitimate FLC EP. The initialisation
function therefore considers the set of all valid FLC EPs
that contain the FLC output bit having the index IT~![i;y].
A different FLC EP from this set provides the single FLC EP
e.f for each of the WEPs in the list e € e(ii,, IT,).

Furthermore, the interleaver IT = {IT[i]}.® maps each of
the FLC output bit indices e.f.i € e.f.i in the FLC EP e.f
to a particular URC input bit index II[e. f.i]. The set of these
indices are assigned to the WEP’s single unallocated URC
input bit index repository e.u. Note that one of the unallocated
bit indices in e.u.i will be equal to the URC input bit index
1in that was specified as a parameter of the function call.

As we shall show in Section II-C, the initialisation function
e(iin, II,r) is called for every URC input bit index i, €
{1,2,3... Np} at the commencement of our EA. In order to
prevent consecutive calls to the initialisation function from
creating redundant copies of the same WEPs, a common
ranking list r = {r[i]}® is provided as a parameter for each
call. This provides a unique rank r[¢] for each of the URC
input bit indices ¢ € {1,2,3...Np}. The rank e.r of each
WEP e € e(iin, II,r) obtained by the initialisation function
is set equal to that of the URC input bit index ¢;, provided in
the function’s parameters, e.r = r[ii,]. During the operation
of the initialisation function, a WEP e is only admitted to the
list e(4in, I,) if each of its unallocated URC input bit indices
e.i.i € e.0.i has a rank r[e.t.7] that satisfies r[e.@.i] < e.r.

2) WEP Tree Construction: A second function is employed
to obtain the WEPs, which are represented by branch and
leaf nodes at depths of more than one in the tree structure.
This function provides a list of child WEPs e(eiy,, IT, r, wiy,)
by developing the particular parent WEP e;,, that is provided
as a parameter for the function-call. In general, this WEP
ein may contain multiple FLC EPs in e;,.f, multiple URC
EPs in e;,.u and multiple unallocated URC input bit index

repositories in ej,. 0. The input WEP’s list of FLC EPs e;,,.f
forms a subset of the corresponding list e.f in each WEP
e € e(eiy, I, r, wiy) developed. Similarly, the list of URC EPs
ein.u forms a subset of e.u. However, none of the unallocated
URC input bit indices in e;,.0 appear in the repositories e.i
of any WEP e developed.

Instead, new URC EPs are created in e.u that (a) accommo-
date all of the unallocated URC input bit indices in e;,.1 and
(b) give a total URC output weight e.w, which is equal to the
value specified by the parameter w;,, where wiy, > ep.w™.
Note that each of the newly created URC EPs in e.u is
required to contain at least one of the unallocated URC input
bit indices in ej,.0. Besides this however, the newly created
URC EPs are permitted to invoke additional URC input bit
indices that are not included in e;,.0. These additional URC
input bit indices imply that the WEP e developed toggles
additional URC input bits and, following deinterleaving by
II-!, additional FLC output bits, as described in Section II-
B.1. The development function accommodates the indices of
these additional FLC output bits by creating new FLC EPs in
e.f, which are similarly permitted to invoke additional FLC
output bit indices. Furthermore, the interleaver II maps these
additional FLC output bit indices to corresponding URC input
bit indices, which remain unallocated in the WEP e developed
and are assigned to e.li accordingly. The development function
employs a search proceedure in order to include every possible
valid combination of new FLC EPs and URC EPs within the
resultant list of WEPs e(eiy, IL, r, wiy).

Every WEP e € e(ej,, IT, r, wi,) provided by the develop-
ment function is assigned the same rank as the WEP provided
by the parameter e;,, e.r = ej,.r. The development function
will reject a WEP e developed if e.u or e.l include any URC
input bit indices that have a rank higher than this. As described
in Section II-B.1, this approach prevents the duplication of
WEPs. Furthermore, a WEP e developed will be rejected,
if any of the bit indices added to e.u, e.f or e.qi either (a)
interferes with any of the EPs that were inherited from e;,.u
and e;,.f or (b) prevents the creation of legitimate EPs in
e.u or e.f in this and in future calls to the development
function. Since there are numerous reasons to reject the WEPs
developed, the size of the list e(e;y,, IL, r, w;,) provided by the
development function is limited and the complexity of our EA
is kept manageable, as we shall demonstrate in Section III.

Note that a WEP e developed will be complete if it is
obtained without inserting any unallocated URC input bit
indices into e.ti. Otherwise, the WEP e must be developed
further in subsequent iterations of the EA.

C. A* Algorithms

Our EA employs the data structure and functions of Sec-
tions II-A — II-B.2 to design an interleaver IT that satisfies
two constraints. Firstly, like an S-random interleaver [7],
the interleaver is required to map the bits within each FLC
codeword to URC input bits that are separated by at least
s other bit positions. This mitigates the correlation between
neighbouring LLRs in the extrinsic sequences b, and C.
during iterative decoding, hence improving the convergence
of this process [7]. Secondly, the interleaver is required to

satisfy the constraints of [12], which allows the termination
FLC encoder of Fig. 1 to terminate the trellis of the URC.
Within these constraints, our EA attempts to maximise the
minimum of the WEPs’ total URC output weights w, since
this is equal to the MHD between any two permutations of the
encoded bit sequence d. The EA’s secondary objective is to
minimise the total multiplicity m of the WEPs e that have the
minimal total URC output weight e.w = w. In this way, low
error floors can be obtained, as described in Section I. Our
EA proceeds according to the pseudo code of Algorithm 1.

Observe that in line 1 of Algorithm 1, the EA is initialised
using a random interleaver design IT that satisfies the above-
mentioned two constraints. Following this, the EA is entirely
deterministic, employing no further randomisations. In lines 2
to 9 of Algorithm 1, the EA uses an A* algorithm to efficiently
determine the MHD w and multiplicity m that results for
the initial interleaver. More specifically, the EA searches for
complete WEPs that have a particular total URC output target
weight, which is incremented in a loop, until the search
becomes successful. During this search, a list of WEPs e is
developed gradually, allowing the results of each iteration in
the loop to assist those that follow.

As the EA progresses, the design of the interleaver IT
is gradually evolved, with the creation of a new generation
occurring in each iteration of the loop between lines 10 and
43. In each generation, WEPs having the minimum total URC
output weight w are eliminated in such a way that we only
create new WEPs that have a total URC output weight higher
than w. This is achieved by carefully selecting two of the
interleaver’s bit mappings and swapping them, exchanging the
two FLC output bits that are mapped to a particular pair of
URC input bits.

A second A* algorithm is employed to efficiently find the
particular bit mapping swap that satisfies the above-mentioned
constraints and achieves the highest improvement of the
scheme’s MHD w and/or multiplicity m. More specifically,
the potential improvement that is offered by every possible
swap is tentatively assessed in line 12. Starting with the swaps
having the greatest potential, the actual improvement (if any)
that each offers is determined in the loop between lines 13
and 41. This loop terminates, when none of the remaining
swaps has the potential to improve upon the best swap found
so far. As a result, the duration of the search employed by
each generation of the EA is minimised.

The improvement offered by a particular swap is assessed in
lines 18 to 34 of Algorithm 1. This is achieved by searching
for complete WEPs that have a particular target total URC
output weight, which is incremented in a loop, until the search
becomes successful. However, in contrast to when the EA
was initialised in lines 2 to 9, it is not necessary to start this
search from scratch. Instead, the list of WEPs obtained in the
previous generation of the EA may be updated by removing
only those WEPs that are directly affected by the swap and
replacing them with new WEPs. As a result, the complexity
of our proposed EA is minimised.

The proposed EA is terminated in line 43, when no more
swaps that improve the scheme’s MHD w and/or multiplicity
m remain. However, the EA can also be manually terminated
before this occurs in order to limit its total run time. In this

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 6, JUNE 2011

Algorithm 1 EA for designing the interleavers of serially
concatenated FLC and URC codes.

1: Generate a random interleaver IT that has a length Ny, a separation s
[7] and facilitates the termination of the URC [12].

2: Initialise the ranking list r = {r[z} Nb with an arbitrary unique rank

for each URC input bit index 3.

for each ¢ € {1,2,3... Ny}, use the initialisation function to add

WEPs to a list e — e(z’7 II,r).

Initialise the MHD w = 0.

repeat {the development of the WEP list}
w=w+ 1.
for each e € e, if w > e.w™ then use the development function to
add WEPs to the list e — e(e, I, r, w).

8: until the subset comp(e) of e containing all complete WEPs is not
empty.

[95]

A

9: Set the multiplicity m = ZeeComp(e) Soem.

10: repeat {the evolution of a new generatl()iﬁ

11: Initialise the best Hamming distance, multiplicity, interleaver and
ranking list found so far wpest = W, Mpest = M, Hpest = II,
Thest = I'.

12: Assess the minimum multiplicities M = {m[i1][i2]} that could

result from swapping the two FLC output bits that the interleaver
IT maps to each particular pair of URC input bits, having the indices
i1 > 42 € {1,2,3... Np}. Here, m[i1][i2] may be obtained by
summing the multiplicities of every WEP in comp(e) having a list
of URC EPs that does not contain exactly one of the URC input bit
indices 771 and io.

13: while min(M) = 0 or (w = wpesy and min(M) < Myest) do

14: Initialise the URC input bit indices i1, 42 = argmin(M).

15: Initialise a new interleaver, ranking list and WEP list ITew = I,
Tnew = I, €new = €.

16: Swap H;elw [i1] with Hnew ia] or, equivalently, swap

Ihew [H;elw [ZIH with ITpew [Hnew [ZQH-

17: if the swap maintains a separation exceeding s between each pair
of URC input bits that the deinterleaver IT~1 maps to the same
FLC codeword [7] and the swap still facilitates the termination of
the URC [12] then {develop the interleaver further}

18: Set Tnew|[i1] and rnew[i2] to unique values greater than
max(new)

19: Remove each e € enew if e.u or e.01 contains at least one of
il or iQ.

20: for both ¢ € {i1,i2}, use the initialisation function to add
WEPs to another list € «— (i, IInew, Fnew)-

21: Initialise the new Hamming distance wnew = 0.

22: repeat {the development of the WEP list}

23: Wnew = Wnew + 1.

24: for each e € €, if wnew > eawd then use the

development function to add WEPs to the list e «
e(ey IMhew, Tnew, wnew)~

25: until wpew = w or the subset comp(e’) of €’ containing all
complete WEPs is not empty.

26: if wnew = w then {there is potential for improvement}

27: Add the WEPs in €’ to the list epew-.

28: if comp(enew) is empty then

29: repeat {the development of the WEP list}

30: Wnew = Wnew + 1.

31: for each e € enew, if Wnew > e.w™ then use the

development function to add WEPs to the list enew «—
e(e, IMhew, rnew, wnew)-

32: until the subset comp(enew) 0f €new containing all
complete WEPs is not empty.

33: end if

34: Set the multiplicity mnpew = zeeoamp(enew) S " e.m.

35: if wnew > Whest OF (Wnew = Whest and Mpew < mbest)

then {an improvement has been found}

36: Whest = Wnew, Mpest — Mnew, Hbest = Ilhew,
I'best = Inew-

37: end if

38: end if

39: end if

40: m[n][w] = Mbpest-

41: end while

42: W = Whests M = Mpest, 1T = Ipest, T = Ipest-

43: until no more improvements are found.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 6, JUNE 2011

case, the best interleaver IIy,s¢ found so far is output.

III. SIMULATION RESULTS

In this section, we compare the performance of the scheme
shown in Fig. 1, when employing random and S-random
designs for the interleaver II, as well as designs obtained using
the proposed EA of Section II. We consider the joint source
and channel coding of source symbol sequences a having var-
ious lengths in the set N, € {25,50, 100,200}, which are typ-
ical in challenging Wireless Sensor Network (WSN) scenarios
or in speech and audio applications. The FLC encoder of Fig. 1
maps the K, = 8-ary uncorrelated source symbols to Ly, = 5-
bit FLC codewords, which occur with the unequal probabilities
of occurrence P(11001) = 0.0402, P(01010) = 0.1066,
P(11110) = 0.1615, P(10011) = 0.1917, P(01101) =
0.1917, P(00000) = 0.1615, P(10100) = 0.1066 and
P(00111) = 0.0402. Furthermore, the memory-1 URC and
the corresponding Ly = 3-bit termination FLC encoder of
[12] are employed to obtain the bit sequence d.

Transmission over an uncorrelated narrowband Rayleigh
fading channel having various SNR values per bit, Fj /Ny,
was simulated. In order to assess their average performance,
different random and S-random interleaver designs were em-
ployed for the transmission of each source symbol sequence.
In the case of the S-random designs [7], separations of s ~
VN /2 € {8,11, 16, 22} were employed for source sequence
lengths of N, € {25, 50,100,200}, respectively. By contrast,
the same EA-designed interleaver was employed for all source
symbol sequences having the same length N,. Here, the same
separation of s = 8 was employed for each source sequence
length N,, since this was found to be sufficient for mitigating
the correlation between the extrinsic LLRs, as described in
Section II-C. These EA-designed interleavers were obtained
by running ten instances of the proposed EA in parallel for
four hours on an Beowulf cluster [16]. In this duration, the
average number of swaps considered between lines 18 and
38 of Algorithm 1 was found to be approximately six times
higher than the value of N,. Of the ten resultant interleaver
designs obtained for each value of N, considered, we selected
the one having the most desirable MHD w and multiplicity
m. Our SER versus Ej, /Ny results are presented in Fig. 3.

As shown in Fig. 3, the EA-designed interleavers offer less
pronounced error floors than the S-random interleavers, which
in turn offer lower error floors than the random interleavers.
These findings may be explained by the MHDs w, which were
found to be 1, 2 and 5 in the case of the random, S-random
and EA-designed interleavers, respectively.

In order to quantify how remarkable the MHD of w = 5
achieved by the EA is, we conducted an additional simulation.
This used lines 2 to 9 of Algorithm 1 to determine the MHD
offered by 16 million random interleaver designs, for the case
where N, = 25. Of these, none had a MHD higher than that
of our design and only 32 exhibited the same MHD of w = 5,
which is just 0.0002%. However, none of those 32 interleavers
exhibited a multiplicity m as low as that of our design, a
separation s as high as ours, while facilitating termination, like
our design. Indeed, the percentage of all interleaver designs
that can be considered to out-perform ours is likely to be
significantly lower than 0.0002%.

10°
1071
1072
ae
€3
5]
10 = g
=) 0. B
Qo . (O
a! N N RSN
> SRE N,
1074 15 e
Q Y \\\@ RSN -
< AP g
oY SN B C S
S Greee
W .
107° -
2 4 6 8 10 12 14
Ly /No [dB]
Fig. 3. Comparison of the SER versus Ej/Ng performance of the scheme

shown in Figure 1 when employing random, S-random and EA-designed
interleavers for various source symbol sequence lengths Na.

IV. CONCLUSIONS

In this letter, we have proposed an EA that can design
interleavers for a wide range of SCCs, without imposing an
artificial limit on the achievable MHDs w. As a result, our
EA can achieve significantly higher MHDs and lower error
floors than previous approaches, even if only a modest EA
complexity can be afforded. Indeed, Fig. 3 shows that, while
random and S-random interleavers can impose error floors
at SERs above 1075, these can be significantly lowered by
employing interleavers designed using the proposed EA. As
a result, at an SER of 10~%, the EA-designed interleavers
offer gains of 1 — 3 dB over S-random interleavers and 5
— 11 dB over random interleavers, depending on the length of
the source sequences.

REFERENCES

[1] S. Benedetto and G. Montorsi, “Iterative decoding of serially concate-
nated convolutional codes,” Electron. Lett., vol. 32, no. 13, pp. 1186—
1188, June 1996.

I. Sason and S. Shamai, “Performance analysis of linear codes under

maximum-likelihood decoding: A tutorial, foundation and trends,” Foun-

dations Trends Commun. Inf. Theory, vol. 3, no. 1/2, pp. 1-225, 2006.

[3] X. Jaspar and L. Vandendorpe, “Design and performance analysis of

joint source-channel turbo schemes with variable length codes,” in Proc.

IEEE Int. Conf. Commun., May 2005, pp. 526-530.

B. Vucetic, Y. Li, L. C. Perez, and F. Jiang, “Recent advances in turbo

code design and theory,” Proc. IEEE, vol. 95, no. 6, pp. 1323-1344,

June 2007.

[5] J. Hagenauer and N. Gortz, “The turbo principle in joint source-channel

coding,” in Proc. IEEE Inform. Theory Workshop, Mar. 2003, pp. 275—

278.

M. Tiichler and J. Hagenauer, “EXIT charts of irregular codes,” in Proc.

Conf. Inform. Sci. Syst., Mar. 2002, pp. 748-753.

[7] S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using
random and nonrandom permutations,” Telecommun. Data Acquisition
Progress Report, vol. 122, pp. 56-65, Apr. 1995.

[8] F. Kienle and N. Wehn, “Macro interleaver design for bit interleaved
coded modulation with low-density parity-check codes,” in Proc. IEEE
Veh. Technol. Conf., May 2008, pp. 763-766.

[2

—

[4

=

[6

—

(91

[10]

[11]

[12]

[13]

J. Yu, M.-L. Boucheret, R. Vallet, A. Duverdier, and G. Mesnager,
“Interleaver design for serial concatenated convolutional codes,” IEEE
Commun. Lett., vol. 8, no. 8, pp. 523-525, Aug. 2004.

N. Ehtiati, A. Ghrayeb, and M. R. Soleymani, “Improved interleaver
design for turbo coded intersymbol interference channels,” in Proc. IEEE
Veh. Technol. Conf., Oct. 2003, vol. 1, pp. 327-331.

J. Kliewer, A. Huebner, and D. J. Costello, “On the achievable extrinsic
information of inner decoders in serial concatenation,” in Proc. IEEE
Int. Symp. Inf. Theory, July 2006, pp. 2680-2684.

R. G. Maunder and L. Hanzo, “Iterative decoding convergence and
termination of serially concatenated codes,” IEEE Trans. Veh. Technol.,
vol. 59, no. 1, pp. 216224, Jan. 2010. [Online]. Available: http:
//eprints.ecs.soton.ac.uk/16133/

M. Breiling, “Analysis and design of turbo code interleavers,” Ph.D.

[14]

[15]

[16]

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 6, JUNE 2011

dissertation, Erlanger Berichte aus Informations und Kommunikation-
stechnik, 2002.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci.
Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968.

R. Garello, P. Pierleoni, and S. Benedetto, “Computing the free distance
of turbo codes and serially concatenated codes with interleavers: Algo-
rithms and applications,” IEEE J. Sel. Areas Commun., vol. 19, no. 5,
pp- 800-812, May 2001.

T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake,
and C. V. Packer, “Beowulf: A parallel workstation for scientific
computation,” in Proc. Int. Conf. Parallel Processing, Aug. 1995, pp.
11-14.

