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Abstract
The statistical initiation and propagation characteristics of electrical trees in cross-linked
polyethylene (XLPE) cables with different voltage ratings from 66 to 500 kV were investigated
under a constant test voltage of 50 Hz/7 kV (the 66 kV rating cable is from UK, the others from
China). It was found that the characteristics of electrical trees in the inner region of 66 kV
cable insulation differed considerably from those in the outer region under the same test
conditions; however, no significant differences appeared in the 110 kV rating cable and above .
The initiation time of electrical trees in both the inner and the outer regions of the 66 kV cable
is much shorter than that in higher voltage rating cables; in addition the growth rate of
electrical trees in the 66 kV cable is much larger than that in the higher voltage rating cables.
By using x-ray diffraction, differential scanning calorimetry and thermogravimetry methods, it
was revealed that besides the extrusion process, the molecular weight of base polymer material
and its distribution are the prime factors deciding the crystallization state. The crystallization
state and the impurity content are responsible for the resistance to electrical trees.
Furthermore, it was proposed that big spherulites will cooperate with high impurity content in
enhancing the initiation and growth processes of electrical trees via the ‘synergetic effect’.
Finally, dense and small spherulites, high crystallinity, high purity level of base polymer
material and super-clean production processes are desirable for higher voltage rating cables.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

High voltage cross-linked polyethylene (XLPE) cables play
an important part in today’s power systems, whose reliability
and service life largely depend on the tree-like ageing in
the insulation layer of cables. In the past several decades,
numerous works have been dedicated to the electrical trees
in polymers. The characteristics of light emission during
the early stages of electrical trees in polyethylene were
investigated [1, 2]. Through the measurement and simulation
of electrical tree growth and partial discharge (PD) activity

in epoxy resins, various PD models have been established to
simulate the PD activity in tree channels and to investigate
the relation between PD and trees’ propagation [3–10], the
effect of externally applied mechanical stress on the electrical
tree growth behaviours in polymers [11, 12]. The fractal
and statistical characteristics of electrical treeing have been
simulated [13]. In addition to the ageing characteristics
of the electrical trees in the XLPE cable insulation, other
investigations include the luminescence characteristics before
the initiation of electrical trees with elevated temperatures
[14], the electrical tree inception phenomena and the analysis
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Table 1. Type and number of tested samples.

Type

66 kV 110 kV 220 kV 500 kV

Position Inner Outer Inner Outer Inner Outer Inner Outer
Number 20 10 8 7 8 9 10 10

of dominant factors affecting the XLPE cable insulation
breakdown under ac operating and lightning impulse voltages
using XLPE cable insulation block samples [15, 16], the
influence of insulation morphology on the electrical treeing
[17], the influence of internal residual mechanical stresses
on cables’ breakdown strength and the initiation and growth
characteristics of electrical trees [18, 19]. Laurent and Mayoux
[20] have studied electrical tree propagation characteristics
by simultaneous measurements of the spatial distribution of
the light emitted and the PD current pulses in the external
circuit during the growth of trees. It has been found that the
propagation rates are very different for bush-type, branch-type
and bush-branch-type trees. The differences in the propagation
rate are also reflected in light emission and discharge rate.
The changeover from large amplitude PD current pulses in the
external circuit to much smaller amplitude pulses is associated
with a change in the spatial distribution of the PD activity. The
higher amplitude PD pulses are correlated with the PD activity
occurring from the pin tip into the tree channels whereas the
lower magnitude discharges are correlated with the localized
discharges occurring at the isolated points in the tree structure
and at the growing tree tips.

Harlin et al [17] studied the propagation characteristics
of electrical trees in 220 kV XLPE cables insulation and
suggested that insulation morphology has a great influence
on the initiation voltage, while its effects on propagation
and statistical characteristics of electrical trees for different
high voltage rating XLPE cables insulation have not been
considered yet. In our previous papers, the propagation
characteristics of electrical trees in both the inner and the outer
layers of the 66 kV XLPE cable insulation [21, 22] have been
compared, which indicates that the morphology, the structure
and the growth characteristics of electrical trees are very
different between the inner and the outer regions of the XLPE
cable insulation. It was also suggested that the propagation
characteristics have a close relationship with the morphology
of the material. In this paper we extend our research to higher
rating cables and a series of treeing experiments on samples
from 66, 110, 220 and 500 kV cables has been performed under
power frequency, in which special attention has been paid to the
comparison of structure and growth characteristics of electrical
trees in both the inner and the outer regions of the XLPE cables
insulation.

2. Sample preparation and experimental set-up

2.1. Sample preparation

The samples were taken from a 66 kV high voltage XLPE cable
supplied by a UK cable manufacturer and from 110, 220 and
500 kV high voltage XLPE cables supplied by the Qingdao
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Figure 1. Samples configuration.
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Figure 2. The experimental set-up for the electric treeing test.

Hanlan Cable Company of China. The type and number of
tested samples are listed in table 1. The cable insulation was cut
into hollow and semicircle disc shape with a thickness of 5 mm
(figure 1). The samples for treeing are cut consecutively along
the length direction of a section of the cable. The electrode
is a typical point–plane geometry and the needle electrode is
made of stainless steel with a tip curvature radius of 5 ±1 µm.
The ground electrode is 3 mm away from the needle tip. In
order to keep good contact between the needle electrode and
the XLPE material, the needle electrode was coated with a
very thin layer of polyethylene before being inserted into the
sample. The pretreated needle electrode was inserted into the
sample while it was heated in a special mould.

2.2. Experiment set-up

Figure 2 shows the experiment system for the treeing test
of the samples. It consists of a function signal generator
(TTi-TG1340 programmable Function Generator) and a wide
frequency high voltage amplifier (Trek Model 10/10B), an

2



J. Phys. D: Appl. Phys. 42 (2009) 125106 A Xie et al

online microscopic digital camera (JVC TK-C1380) and a
computer system. The optical bench microscope (Leitz-
Ergolux) was adjusted to a standard magnification level during
all stages of tree growth so as to minimize errors due to the
influence of magnification. The tree images were captured
using the KS400 system developed by Imaging Associates Ltd.
To obtain photos with high quality, it is of importance to make
the sample surface smooth. In addition, the XLPE samples
were also immersed in silicone oil during the experiments
in order to enhance the surface insulation and reduce the
backlights dispersion from the uneven surface of the sample.

2.3. Experiment method

All experiments were performed under the same testing
conditions, i.e. 10 kV peak value and 50 Hz sinewave voltage
at room temperature. During the experiment, the photos of
electrical trees, the growth rate of electrical trees and other
related data were recorded successively. Due to the statistical
nature of the propagation characteristics of the electrical trees
in XLPE cables, a number of samples with the same type have
been tested in order to obtain meaningful experimental results.

3. Experimental results

3.1. Electrical trees in the inner and the outer layers of
different voltage rating XLPE cables

3.1.1. Electrical trees in the 66 kV XLPE cables

Structure characteristics. Based on numerous experimental
observations, considerable differences in structural and
propagation characteristics of electrical trees exist between the
inner and the outer layers of the 66 kV XLPE cables insulation.
Electrical trees appearing in the inner layer can be divided
into five types by structure, i.e. branch-like (figure 3(a)),
branch-vine-like (figure 3(b)), branch-pine-like (figures 3(c)
and (d)), branch-bush-like (figure 3(e)) and pure-bush-like
(figure 3(f )), all of them are selected as representatives from
our experiments. Among the five types, the branch-vine like
and the pure branch-like electrical trees possess the lightest
colour, indicating that the tree channels are non-conducting.
On the other hand, only two types of electrical trees appeared
in the outer layer of the cable insulation, namely, pure-bush-
like and branch-bush-like trees (figure 4), both of which show a
darker colour, implying a semiconducting property of the tree.

Growth characteristics. The growth characteristics of the
electrical trees from the inner and the outer layers of the 66 kV
XLPE cables insulation are compared in figure 5. Figure 5(a)
represents the growth characteristics of the electrical trees
shown in figure 3, while figure 5(b) illustrates the growth
characteristics of the electrical trees randomly selected in the
outer layer of the cable insulation. It is obvious that there
is a significant difference in the growth characteristics of
electrical trees from the two positions. For the inner layer
except the bush-like and the branch-bush-like electrical trees
that propagate slowly, other types of inner layer trees approach
the ground electrode in about 100 min, which implied that

Figure 3. The electrical trees in the inner layer of the 66 kV XLPE
cables insulation.

Figure 4. The electrical trees in the outer layer of the 66 kV XLPE
cables insulation.

defects, mainly non-ideal morphology, impurities and micro-
hole concentration, must exist in the inner layer. On the
other hand, the trees in the outer layer of the cable insulation
propagate so slowly that no accelerated growth can be observed
even after 1000 min, except one tree that shows an accelerated
growth to 2.4 mm after 600 min, the longest growth time of
which can be as long as several days and shows a step-like
growth characteristic, implying a more desirable morphology
in the outer layer of the XLPE cable insulation.

For the electrical trees in figures 3(e) and (f ), it is found
that no significant growing phenomena can be observed before
600 min and 840 min, respectively. In order to make the whole
graph clear, the horizontal axis of figure 5(a) is limited to
120 min. The same principle applies to figure 5(b).

3.1.2. Electrical trees in the 110 kV XLPE cables.

Structure characteristics. Based on the experimental
observations, four types of electrical trees appeared in the
inner layer of the 110 kV XLPE cables, namely, branch-
like, branch-pine-like, branch-bush-like and pure-bush-like
(figure 6(a)) (compared with the electrical trees in the 66 kV
cables, the branch-vine like trees were not found in the 110 kV
cable insulation). In addition, all the trees here show a dark
colour, implying a different propagation mechanism compared
with those light colour trees in the 66 kV cable insulation.The
electrical trees in the outer layer show three types, branch-pine-
like, pine-bush-like and pure-bush-like trees, but no branch-
like trees (figure 6(b)). It can be found that the electrical trees
which appear in both positions show few differences in struc-
ture and all have a darker colour, indicating the deposition of
carbon and conducting property of the tree channel.
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Figure 5. The propagation characteristics of the electrical trees in
the inner (a) and the outer (b) layers of the 66 kV XLPE cables
insulation.
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Figure 6. The electrical trees in the inner (a) and the outer (b)
layers of the 110 kV XLPE cables insulation.

Growth characteristics. The growth characteristics of the
electrical trees grown in the inner and the outer layers of the
110 kV XLPE cables are compared in figure 7. Figures 7(a)
and (b) correspond to the growth characteristics of the electrical
trees shown in figures 6(a) and (b), respectively, from which it
can be found that the propagation characteristics are nearly the
same for electrical trees from both positions. In figure 7(a), the
electrical trees from the inner layer did not show accelerated
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Figure 7. The propagation characteristics of the electrical trees in
the inner (a) and the outer (b) layers of the 110 kV XLPE cables
insulation.

growth before 800 min, except the branch-pine-like structure
that grew quickly and nearly reached the ground electrode
after about 200 min; for figure 7(b), electrical trees grown in
the outer layer of the cables insulation show an accelerated
growth before 300 min, yet only one propagates slowly even
after 1600 min. Generally, the treeing rates in the 110 kV cable
insulation are much slower than that in the 66 kV XLPE cable.

3.1.3. Electrical trees in the 220 kV XLPE cables.

Structure characteristics. The representative structure char-
acteristics of the electrical trees from the inner and the outer
layers of the 220 kV XLPE cable insulation are compared in
figure 8. It can be found that only the branch-bush-like and the
pure-bush-like trees initiated in both the inner and the outer
layers of the cable insulation and with similar structure and
darker colour indicating the conducting property of the chan-
nel of the tree.

Growth characteristics. The comparisons of growth charac-
teristics of randomly selected electrical trees from the inner
and the outer layers of the 220 kV cables insulation are shown
in figure 9, from which it can be seen that the growth charac-
teristics from both positions are nearly the same. In addition,
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(a)

(b)

Figure 8. The electrical trees in the inner (a) and the outer (b)
layers of the 220 kV XLPE cables insulation.

only two propagation phases appeared in the whole growth
process, and the propagation seems to cease between 2200
and 2500 min, which indicates that the treeing resisting char-
acteristics of the 220 kV cable insulation are much better than
the 110 kV and lower voltage rating cables.

3.1.4. Electrical trees in the 500 kV XLPE cables.

Structure characteristics. The representative growth types of
the electrical trees from the inner and the outer layers of the
500 kV cables are shown in figure 10, from which it is seen that
only the branch-bush-like and the pure-bush-like trees appear
just like the case in the 220 kV cable insulation.

Growth characteristics. The comparisons of growth char-
acteristics of the randomly selected electrical trees from the
inner and the outer layers of the 500 kV cables are shown in
figure 11. It is seen that the growth characteristics from both
positions are nearly the same. And nearly all the trees in the
inner layer stop propagating after 1500 min, except one electri-
cal tree, which nearly reached the ground electrode after about
2000 min; while all the trees in the outer layer come to a stop
after about 2000 min. However, the differences of the treeing
resistance between the 220 and the 500 kV cables have not
been identified.

3.2. Statistical analysis of the experiment results

The initiation and propagation characteristics of the electrical
trees in semi-crystalline polymers are somewhat dispersive,
which will be further enlarged due to some manufacturing
procedures, such as extrusion, cross-linking of PE and cooling
course. Therefore, the statistical method was applied to
analyse the characteristics of the electrical trees in the inner
and the outer layers of the four different voltage rating XLPE
cables. The structure characteristics of the electrical trees are
shown in table 2.

From table 2 we can conclude that in the 66 kV XLPE
cables, the fast growing trees, such as the branch-like, the
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Figure 9. The propagation characteristics of the electrical trees in
the inner (a) and the outer (b) layers of the 220 kV XLPE cables
insulation.

(a)

(b)

Figure 10. The electrical trees in the inner (a) and the outer (b)
layers of the 500 kV XLPE cables insulation.

branch-pine-like and the branch-vine-like trees, amount to
85% in the inner layer, while the slowly propagating trees
dominate (80%) in the outer layer, indicating a considerable
difference in the electrical tree structure between the inner
and the outer layers of the cable; for the 110 kV XLPE cable,
branch-like and mixed-like trees together come up to 40% and
bush-like 60% in the inner layer, while in the outer layer their
proportions are 29% and 57%, respectively, illustrating that
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Figure 11. The propagation characteristics of the electrical trees in
the inner (a) and the outer (b) layers of the 500 kV XLPE cables
insulation.

similar electrical tree structures exist in the inner and the outer
layers; for the 220 and 500 kV cables, no distinct differences
can be detected from the inner and the outer layers.

The initiation and propagation characteristics are listed
in table 3. From table 3, it can be shown that the average
initiation time of the electrical trees in both the inner and the
outer layers of the 66 kV XLPE cable is the shortest, and the
growth rates also differ for the inner layer and the outer layer.
The actual growth rates of the trees in the inner layer are much
greater than that in the outer layer. This is also true for the
other higher voltage rating cable insulation. While, for the
110 kV and above voltage rating cables, the initiation time
and growth rate from the inner layer are close to that from the
outer layer, and it seems that the higher the voltage rating of the
cable, the slower the propagation rate. In the experiment, the
growth rates of the bush-like trees are so slow (<0.04 mm h−1)
that the constructive method is to ‘truncate’ the observation
at some time (>3000 min) after the electrical trees stopped
propagation.

3.3. Crystallinity analysis of the cable insulations

The crystallinities of the inner and the outer layers for the four
different voltage rating XLPE cables insulation are investigated
by x-ray diffraction; the results are listed in table 4.

3.4. Molecule weight and its distribution of the cable
insulation materials

Molecule weight and its distribution exert an important
influence on the morphology and the physical properties
of semi-crystalline polymers [23, 24]. The melting and
crystallization behaviours of the four different voltage rating
XLPE cables insulation are evaluated by DSC. Figure 12 shows
the DSC curves of the four different voltage rating cables
insulation, and table 5 gives the results of DSC curves and the
calculated crystallinity (Xc). From figure 12, it can be observed
that with higher voltage rating, the melting temperature (Tm)
of the XLPE cable insulation will drop a little bit, indicating
a reduction in the molecule weight and a narrowing of the
molecular weight distribution of the base polymer material,
which in turn weakens the interaction between the large and
small molecules, forms dense crystallization centres, increases
the crystallinity, narrows the spherulites size distribution,
makes the crystallization ideal and enhances the resistance
to treeing. From table 5, it is found that the higher
voltage rating XLPE cables insulation possesses the largest
average crystallinity, implying the narrowest molecular weight
distribution of the cables’ base polymer material.

3.5. The purity level of the cable material

It is commonly believed that under the same production
conditions and for the same material, the thicker the insulation
layer, the bigger the crystallization difference of the inner and
the outer layers due to the different cooling rate between the
inner and the outer layers of the insulation, but it does not
happen in our experiments. In our experiment, on the contrary,
it seems that the resistivity to the electrical trees of the thicker
cable is better than that of the thinner cable, which implies
that there must be another factor besides crystallinity, which is
responsible for the enhanced resistivity to the electrical trees.
And it is known that the electrical trees will propagate along
the direction of the impurity concentration, so it is suggested
that the impurity content for each cable is different, which is
proved by TG. Figure 13 contains the enlarged local graphs
of TG curves from 500 to 800 ◦C, from which the remaining
fraction after samples being burnt at 800 ◦C can be calculated
as follows: 66 kV, 1.31%, 100 kV, 1.13%, 220 kV, 1.05% and
500 kV, 0.095%.

4. Discussions

The electrical tree follows the path where the material under
investigation is locally weakest, i.e. the tree will progress
taking into account the local dielectric strength. It has been
proposed [20] that the propagation of electrical trees is related
to the PDs within the microchannels. Each type of tree is
characterized by a particular discharge rate measured.

It has been proposed that the different electrical tree
structures and growth characteristics, which appeared in the
inner and the outer layers of the 66 kV XLPE cables, are the
results of an accumulation of both micro-holes due to non-ideal
crystallization and impurities around big spherulites and of the
formation of a net-like electrical weak region [22]. Through
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Table 2. The distribution of electrical trees in the inner and the outer layers of different voltage rating cables.

The shape of the tree

Mixed-like Bush-like

Position and number Branch-like branch-vine like branch-pine like pure-bush like branch-bush like

A (66 kV) Inner Numbers 5 4 8 2 1
% 25 20 40 10 5

Outer Numbers 0 0 0 8 2
% 0 0 0 80 20

B (110 kV) Inner Numbers 2 1 1 6 0
% 20 10 10 60 0

Outer Numbers 0 1 1 4 1
% 0 14.3 14.3 57.1 14.3

C (220 kV) Inner Numbers 0 0 0 2 6
% 0 0 0 25 75

Outer Numbers 0 0 0 4 5
% 0 0 0 44 56

D (500 kV) Inner Numbers 0 0 0 2 8
% 0 0 0 20 80

Outer Numbers 0 0 0 6 4
% 0 0 0 60 40

Table 3. The statistical initiation and growth characteristics of the
electrical trees in the inner and outer layers of different voltage
rating cables.

Item

Average Average Average Average
initiation growth growth growth
time time length rate

Type Position (min) (min) (mm) (mm h−1)

A Inner 121.6 292.3 2.85 0.65
(66 kV) Outer 125 >505 1.18 <0.14

B Inner 160.1 1113.5 1.23 0.068
(110 kV) Outer 180 >745 1.15 <0.093

C Inner 243.5 1750.6 1.25 0.045
(220 kV) Outer 220.6 2314.3 1.56 0.040

D Inner 260.5 2321.5 1.77 0.046
(500 kV) Outer 289.6 >2500 1.43 <0.034

the experiments in the inner and the outer layers of the 110,
220 and 500 kV XLPE cables, no distinct differences appeared
in both positions of the thick cable insulation opposite to what
we expected initially. On the contrary, it is found that the
higher voltage rating XLPE cable insulation has a much better
treeing resistance than the lower voltage rating XLPE cable.
The underlying reasons can be explained as follows.

4.1. Crystallization states of the cable insulation

For the 66 kV XLPE cable insulation, the cut samples are nearly
transparent and their photos are distinct, implying large but
fewer spherulites in the sample, which has been proved by
SEM and polarization microscopy [21]. The morphologies in
the inner and the outer layers of the XLPE cables insulation
are very different: the spherulites are large but few in the
inner layer, while they are small but dense in the outer layer.
However, for the 110 kV and above voltage rating XLPE
cables insulation, there are no distinct differences in the inner

and the outer layers and the samples exhibit a lighter grey
colour indicating a crystallization state of densest but small
spherulites. The crystallization state with dense but small
spherulites can not only reduce the concentration of impurities
and micro-holes but also avoid the formation of defective
interfaces between the two morphology phases, i.e. the crystal
region and the amorphous region. Thus, the crystallization
state should be of prime importance to resist treeing in cables
insulation.

4.2. Crystallinity of the cable insulations

From table 4, it can be concluded that the crystallinity from
the outer layer in the same voltage rating cable insulation is
a little bigger than that in the inner layer, and the higher the
voltage rating, the higher the crystallinity of the cable and
fewer differences in crystallinity between the inner and the
outer layers. Based on the above study, it is indicated that
the structure and growth characteristics of the electrical trees
have a close relationship with crystallinity, and the higher the
crystallinity, the better the resistivity of the cables insulation
to electrical trees; in addition, a crystallinity of at least about
42% should be reached for producing the ideal resistivity to
electrical trees. When the crystallinity is beyond 42%, the
structure and growth characteristics of electrical trees from the
inner and the outer layers of cables insulation will not be much
different, i.e. unaffected by the crystallinity difference between
the inner and the outer layers.

4.3. Molecular weight and its distribution of the cable
insulation materials

The non-isothermal crystallizing dynamic analysis of the four
different voltage rating cables insulation is made by DSC to
give a further description of the influence of molecule weight
and its distribution on electrical trees. Actually, the production
process is a somewhat non-isothermal process from melting
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Table 4. The crystallinity of the inner and the outer layers of the four different voltage rating samples.

Type

A (66 kV) B (110 kV) C (220 kV) D (500 kV)

Position Inner Outer Inner Outer Inner Outer Inner Outer
Crystallinity (%) 38.5 40.3 42.0 42.5 54.4 53.5 55.4 56.8
RCD (%) 4.57 1.18 −1.65 2.50

Note: RCD (relative crystallinity difference) = 2(Xo − Xi)/(Xo + Xi); Xi: the
crystallinity of the inner layer; Xo: the crystallinity of the outer layer.

Table 5. The results of the DSC curves.

Tm Crystallinity,
No Samples (◦C) Xc

A 66 kV 112.93 41.76
B 110 kV 111.59 43.75
C 220 kV 110.99 52.23
D 500 kV 110.63 55.69

temperature to room temperature, which can be studied by
DSC. Based on isothermal crystallization together with the
characteristics of non-isothermal crystallization, we can treat
the non-isothermal process of DSC as isothermal only with
some corrections. The method proposed by Avrami and
Jeziorny [25] is adopted to analyse the obtained DSC curves of
the samples from four different voltage rating cables. Avrami
equation can be written as

ln[−n(1 − Xt)] = ln Z + n ln t, (1)

where Xt is the relative crystallinity at time t , n is the Avrami
exponent and Z is the crystallization rate constant. Xt can be
calculated by the following equation:

Xt =
∫ T

T0
(dHc/dT ) dT

∫ T∞
T0

(dHc/dT ) dT
, (2)

where Hc is the heat of crystallization, T0 is the starting
temperature of crystallization, T∞ is the end temperature of
crystallization and T is the crystallization temperature. During
the non-isothermal process, time t , temperature T and cooling
rate have the following relationship:

t = T0 − T

�
, (3)

where t is the crystallization time, T0 is the starting temperature
of crystallization, T is the crystallization temperature and �

is the cooling rate. With the equation above, the Xt–t can be
obtained, as shown in figure 14.

In figure 13, it can be seen that the crystallization time of
the higher voltage rating cables insulation is shorter than that of
the lower voltage rating cables insulation, which implies that,
after the reducing of the molecular weight and the narrowing
of the molecular weight distribution, a shorter crystallization
time, a greater crystallization rate, a rise of crystallinity and
a uniform spherulite size distribution can be realized. These
show that the molecular weight and its distribution of the base
polymer material are important to enhance the resistivity to
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Figure 12. DSC curves of the four different voltage rating cables:
(A) 66 kV, (B) 110 kV, (C) 220 kV and (D) 500 kV.
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Figure 13. Thermogravimetry curves of the four different voltage
rating cables samples: (A) 66 kV, (B) 110 kV, (C) 220 kV and
(D) 500 kV.

treeing. On the whole, the higher the voltage rating of the
cables, the stricter the demands on the base polymer material
will be.

4.4. Purity level of the cable material

From figure 13, obviously, the higher the voltage rating of the
cables insulation, the purer the base polymer materials, which
indicates that impurities as well as high crystallinity are two key
factors for XLPE cables insulation to enhance the resistivity to
treeing.
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Figure 14. Xt–t plots of the four different voltage rating cables
samples: (A) 66 kV, (B) 110 kV, (C) 220 kV and (D) 500 kV.

4.5. Synergetic effect

It is found in the experiment that the ideal initiation and
growth conditions for electrical trees are low crystallinity, big
spherulites and high impurity level. During the formation of
non-uniform big spherulites, if the impurity level is high, the
‘synergetic’ effect takes place that will drive the impurities
to concentrate on the surface of spherulites leading to a net-
like insulation weak region, in which the electrical trees
will initiate and grow easily. This combined effect, big
spherulites cooperating with impurities, will exert far more
influence on the electrical trees than the single effect induced by
either big spherulites or impurities (e.g. impurities in absolute
amorphous polymers). Thus, inhibiting big spherulites,
enhancing crystallinity and purity level of the base polymer
material, employing the super-clean production technique and
proper post-treatment are the ways to develop higher voltage
rating cables.

5. Conclusions

The initiation and growth of electrical trees in four different
voltage rating XLPE power cables have been investigated (the
66 kV rating cable is from UK, the others from China). The
following conclusions may be drawn.

Under the same experiment conditions, the structure and
propagation characteristics of the electrical trees in the inner
layer of the 66 kV cables are different from that in the outer
layer, and the growth rate of the electrical trees in the inner
layer is higher than that in the outer layer. The non-uniform
crystallization between the inner layer and the outer layer is
responsible for the difference and there exist big spherulites
and more impurities in the inner layer. However, for the
110 kV and above voltage rating XLPE cables insulation, the
narrower molecular weight distribution and lower impurity
content have been proved, so they have a higher and more
uniform crystallinity which will enhance the resistance to
electrical treeing.

The molecular weight and its distribution of the base PE
material are the prime factors that affect the crystallinity. A
narrower molecular weight distribution will lead to a higher
crystallinity and more uniform small spherulites.

In the initiation and propagation processes of the electrical
trees, big spherulites will cooperate with impurities, termed as
the ‘synergetic effect’, which is obvious when the impurity
content is more than 1.13% and crystallinity is less than 42%.
From a practical point of view, to enhance the resistance to
electrical treeing in the XLPE cables insulation, it is important
to consider these two factors first and then control molecular
weight and its distribution and the purity level of the base
materials.
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