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ABSTRACT 
 

Partial discharge (PD) measurements are an 

important tool for assessing the condition of power 

equipment. Different sources of PD have different 

effects on the insulation performance of power 

apparatus. Therefore, discrimination between PD 

sources is of great interest to both system utilities and 

equipment manufacturers. This paper investigates the 

use of a wide bandwidth PD on-line measurement 

system to facilitate automatic PD source 

identification. Three artificial PD models were used 

to simulate typical PD sources which may exist 

within power systems. Wavelet analysis was applied 

to pre-process the obtained measurement data. This 

data was then processed using correlation analysis to 

cluster the discharges into different groups. A 

machine learning technique, namely the support 

vector machine (SVM) was then used to identify 

between the different PD sources.  The SVM is 

trained to differentiate between the inherent features 

of each discharge source signal.  Laboratory 

experiments indicate that this approach is applicable 

for use with field measurement data. 

 

INTRODUCTION 

 

PD on-line monitoring reveals advantages over 

conventional PD measurement in many aspects, 

particularly in terms of monitoring the condition of 

equipment in service [1]. In practical power systems, 

more than one discharge source may exist within 

power apparatus and can be active at the same time. 

These PD sources can be different discharge types, of 

the same type but at different locations and of 

different sizes. Therefore, identification of multiple 

PD sources is of great importance for health 

assessment of in-service power assets. Characteristics 

that represent PD events and sources can be 

categorized in general into time and frequency 

domain components. Time domain based methods are 

suitable for representing the characteristics of a 

single PD source and type. However, in cases where 

more than one PD source exists, the obtained results 

using phase resolved information or pulse sequence 

analysis (PSA) are of less use for PD type 

identification. In this case, analysis in the frequency 

domain using the frequency spectrum and/or wavelet 

analysis is an effective method for discriminating and 

locating between different PD sources. The frequency 

domain is useful in locating and discriminating 

between different PD sources because the captured 

signal from the sensor is a convolution of the original 

signal at the PD source and the transfer function of 

the equivalent circuit from the source to the coupling 

sensor. Time domain analysis is an important tool to 

represent the stochastic, statistical and physical 

characteristics of the PD event and type. Therefore, a 

potential approach to discriminate between different 

PD types, sources or locations is to combine both 

frequency and time domain analysis [2].  

In this paper, the use of a PD on-line condition 

monitoring system which consists of a wide 

bandwidth sensor, a digital oscilloscope and a 

personal computer to assist the automatic PD source 

identification has been assessed. The obtained raw 

measurement data were pre-processed using wavelet 

decomposition. The data obtained from detail level 3 

were then processed using correlation analysis. The 

obtained pre-processed results have then been further 

analyzed by using accepted approaches, such as 

phase resolved techniques. A machine learning 

approach, namely the support vector machine (SVM) 

was also used to identify the PD sources and results 

indicate that this approach can identify different PD 

sources from raw measurement data. 

 

EXPERIMENTAL ARRANGEMENT 

 

In order to generate partial discharge measurement 

data from different sources and ensure similarity with 

signals obtained from on-line PD measurements 

associated with power transformers a simple 

experiment has been designed. One potential PD 

measurement point is at the bushing tap of high 

voltage apparatus such as large auto-transformers [3], 

[4]. The discharge current flowing to earth can be 

measured at the bushing tap point using a radio 

frequency current transducer (RFCT) and this 

approach has been applied to on-line PD monitoring 

of power transformers in the field [4]. 

 

PD Measurement System 

 

The experimental model is based on models of PD 

signal sources being coupled to a bushing core bar 

and the current flowing to earth measured at the tap 

point using a RFCT as shown in Figure 1.  

 



 
Figure 1  Experiment setup 

 

The 60 kV bushing, model 60HC755, has a 235 pF 

nominal capacitance, and is PD free under its 

standard application condition. As a sensor used in 

this investigation, the clamp-type split core RFCT 

EMCO model 93686-5 has a measurable frequency 

range from 10 kHz to 200 MHz. A digital 

oscilloscope, Tektronix DPO7254 with a bandwidth 

of 2.5 GHz and 400 MSample memory was used to 

display, analyse and store the obtained signals. A 

Robinson conventional PD detector Type 5 Model 

700 with 40 kHz - 300 kHz band-pass response was 

used for calibration for quantifying the apparent 

charge and generating suitable training data. The 

trained SVM was then tested using data obtained 

from the RFCT measurement. 

 

PD Source Models 

 

Three different artificial PD sources were studied: 

corona discharge with distant earth, surface discharge 

in air and internal void discharge in oil, sources are 

as shown in Figure 2.  Each artificial PD model has 

two different arrangements which are used to 

generate training data and testing data respectively. 

Figure 2a illustrates corona in air with distant ground 

model which is achieved by suspending a piece of 

thin aluminum wire from the high voltage conductor. 

By adjusting the length of the wire, different PD 

inception voltages can be realized. To simulate 

surface discharge behaviour, a perspex block was 

inserted between a pair of planar electrodes, the 

upper electrode was connected to the high voltage 

power supply, and the lower electrode was grounded, 

as shown in Figure 2b. To generate testing surface 

PD data, the upper planar electrode was replaced by a 

needle electrode. A void of 5 mm(diameter) × 1 

mm(depth) was embedded between two pieces of 

perspex, which was placed between two symmetric 

planar electrodes. Again the HV source was 

connected to the upper electrode and the lower 

electrode earthed. The whole arrangement was 

immersed in transformer oil, as shown in Figure 2c. 

A perspex block containing a smaller void of size 2 

mm(diameter) × 1 mm(depth) was also used between 

the two electrodes to generate internal PD data for 

testing. 

 

Training Sources             Testing Sources 

 
a Corona in air with remote earth 

 
b Surface discharge in air 

 
c Internal void discharge in oil 

Figure 2 Artificial PD sources 

 

DATA ACQUISITION AND PRE-PROCESSING 

 

Data Acquisition 

 

The signal from the Robinson detector was displayed 

and sampled via the oscilloscope at 500 kSample/s 

for 500 power cycles as one acquisition. The output 

of the RFCT was also connected to the oscilloscope 

for display and storage. The sampling rate was set to 

500 MSample/s to coordinate with the bandwidth of 

the RFCT for 20 power cycles as one acquisition. 

Table 1 summarizes the structure of the obtained 

data. 

 

TABLE 1  Structure of obtained  PD data 

Sensor 
Robinson 

Detector 
RFCT 

Sampling rate 500 kSample/s 500 MSample/s 

Sampling 

duration 
20 ms 20 ms 

Sampling length 10 k points 10 M points 

Sampling 

quantity 
500 cycles 20 cycles 

 

The training data was only obtained from the 

Robinson detector and each of the three different PD 

sources were energized at two different voltages. The 

testing data generated by the other three PD sources 



was collected via the RFCT and they were tested at 

two different applied voltages. Table 2 shows the 

data structure of the training and testing data. 

 

TABLE 2  Summary of training and testing data 

Data type Training data Testing data 

Sensor Robinson detector RFCT 

Data 

quantity 

500 cycles 

× 3 PD sources 

× 2 applied 

voltages 

20 cycles 

× 3 PD sources 

× 2 applied 

voltages 

 

Data Pre-processing 

 

The raw data from the RFCT stored on computer for 

each power cycle is approximately 100 Mbytes in 

size. Therefore, some pre-processing procedures must 

be undertaken to reduce the dimensionality of the 

data and recover the useful information. Previous 

research [5], [6] has shown the advantages of wavelet 

decomposition coefficients on PD signal analysis in 

both time and frequency domain. Some successful 

results have been achieved not only when applied to 

the simulated data but also when applied to field data 

[2], [7], [8]. The wavelet decomposition process 

works like a pair of complementary high-pass and 

low-pass filters, which decomposes the original 

signal into series of detail and approximate 

coefficients respectively, as shown in Figure 3a, 

where S represents the original signal, D represents 

the detail decomposition coefficients and A 

represents the approximate decomposition 

coefficients.  

 

 

a Complementary filters decomposition 

 

b Iterative decomposition process 

Figure 3  The concept of wavelet decomposition 

coefficients 

 
As an iterative process, the original signal can be 

decomposed into different levels and each level is 

half the bandwidth (sampling rate in frequency 

domain) and half the length (sample number in time 

domain) than the above level, as shown in Figure 3b, 

where cA and cD represent the approximate and 

detail decomposition coefficients respectively and the 

number after cA or cD represents the decomposition 

level. 

The “symlet” family of order 7 was chosen as the 

mother wavelet and detail coefficients of level 3 

(referred to as sym7D3) were used as the feature 

output for further processing since good results in PD 

denoising have been reported [6], [9]. After 

processing, the data length was reduced to 

approximate 1/8 of the original. A peak searching 

algorithm was used on the pre-processed data to 

extract useful PD pulse details and record the 

position of the phase occurrence. Pulses were located 

by comparing measurements with a threshold value 

which represents the noise level, i.e. the sensitivity of 

the measurement system. Figure 4 shows an example 

of an extracted PD pulse. 

 
Figure 4  Wavelet decomposition coefficients 

(sym7D3) of a PD pulse 
 

PD SOURCE IDENTIFICATION 

 

Overview of SVM 
 

As a pattern recognition tool, the support vector 

machine (SVM) is based on statistical learning theory 

which has been researched since the 1960s. As an 

application of statistical learning theory, the SVM 

was first proposed by V. N. Vapnik in 1995 [10]. 

This learning machine uses a central concept of 

SVMs, as well as kernels, for a number of learning 

tasks [11]. Based on kernel methods, SVMs can be 

adapted to different tasks and domains by the choice 

of the kernel function and base algorithm [10]. They 

represent great advantages in small sample quantity, 

nonlinear and high dimensionality pattern recognition 

problems. Successful applications have demonstrated 

that SVMs can perform as well or better than neural 

networks in a wide variety of fields, including 

engineering, information retrieval, and bioinformatics 

[11]. 

The SVM is a method for finding functions from a set 

of labeled training data. Individual sets of 

measurement data (e.g. discrete PD measurements) 

can be represented by specific features (e.g. φ-q 

representation for a PD event). Thus each set of data 



can be described by a vector whose length/dimension 

is dependent on the number of features chosen to 

represent it. The function can be either a 

classification function or a regression function. SVM 

earns its name by constructing the solution to the 

learning problem in terms of a subset of the training 

data; this subset is referred to as the support vectors 

(SVs) [12]. 

 

Data Normalization 

 
Normalizing or scaling data is very important not 

only in the application of SVM but also in many 

other pattern recognition tools such as neural 

networks. The main advantage of normalization is to 

avoid attributes existent in greater numeric ranges 

dominating over those in smaller numeric ranges. 

Another advantage is to avoid numerical difficulties 

during the calculation using kernel functions. In this 

investigation, the φ-average q feature vector is 

normalized to be within the range of 0 and +1.  

 

Kernel Selection 
 

The application of various kernels to PD data has 

been assessed [13]. It has been found that the 

Gaussian Radial Basis Function (Gaussian-RBF) 

kernel is the most effective for PD pulse-like data, 

where the Gaussian-RBF kernel is defined as: 

( ) ( )2
, exp                      (1)i j i jK x x x xγ= − −  

whereγ> 0 is the kernel parameter controlling the 

flexibility of classifiers. 

 

Training of the SVM 

 

As summarized in Table 2, the data used to train the 

SVM were obtained from the Robinson detector. The 

processed φ q n pattern using the data from Robinson 

detector has 200 phase windows in one power cycle 

in order to generate the two dimensional histograms 

and three dimensional φ-q-n pattern. The selection of 

200 phase windows per power cycle is based on the 

output data characteristic of the measurement system 

and is a compromise between the output resolution 

and data processing speed. 

 

Clustering and Identification 

 

The wavelet decomposition coefficients obtained 

contain both frequency and time domain information 

and represent characteristics of PD pulses from 

different sources. Therefore, the wavelet 

decomposition coefficients (in this paper sym7D3) 

can be used as a potential feature parameter in 

distinguishing between different PD sources. While 

clustering the PD pulses (sym7D3) from the same 

source into a group the phase occurrence of the pulse 

is also recorded. After this process, the time domain 

information that represents stochastic, statistical and 

physical characteristics of PD types can be also 

obtained. In this paper, φ-average q results have been 

obtained. Applying the SVM to the φ-average q 

results, identification of different PD types is 

therefore possible. 

 

Clustering using correlation analysis.  As a 

commonly used operator in probability theory and 

statistics, the correlation coefficient represents the 

strength and direction of a linear relationship between 

two variables. In general applications, it can be used 

to measure the similarity between two different 

variables. The correlation coefficient R between two 

n dimensional variables X and Y (referred to xi and 

yi, i=1, 2, …, n) is defined in (2): 
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where X  and Y  are the means of X and Y, X
σ

 and 

Y
σ

 are the standard deviations of X and Y. The 

obtained R is in the range of −1 ≤ R ≤ +1. 

The correlation coefficient function used in this 

investigation can return a matrix of P-values for 

testing the hypothesis of no correlation. Each P-value 

is the probability of obtaining a correlation that tends 

to zero. If P is small, for example less than 0.05, the 

correlation R is significant having a magnitude of at 

least 0.95. The P-value is computed by transforming 

the correlation to create a t statistic having n-2 

degrees of freedom, where n is the dimension of the 

input vector. The confidence bounds are based on an 

asymptotic normal distribution of (3), with an 

approximate variance equal to 1/(n-3). 

1
0.5log                                              (3)

1

R

R

+

−  
Some guidelines for interpretation of a correlation 

coefficient have been developed. However, it is 

accepted that all pre-defined criteria are arbitrary and 

dependent on the specific application. For example, a 

correlation coefficient of 0.9 may represent a very 

low correlation but a coefficient of 0.1 in another 

application may represent a very strong correlation. 

Therefore, the correlation coefficient used as the 

criteria to evaluate the correlation between different 

PD sources must be carefully considered. 

By using the non-linear transform, the obtained P is 

more representative than the correlation coefficient R 

in this application. One RFCT testing data set 

containing the three PD sources is used to evaluate 

the selection of the P value. The energy spectrum of 

the wavelet decomposition coefficients defined as 
2                                                      (4)

s
E S=  

This has been found to be more characteristic for 

representing the PD activities than the decomposition 

coefficients themselves. Figure 5 shows the mean 

energy spectra of the wavelet decomposition 



coefficients of the three PD sources. The energy unit 

is in the range of an arbitrary normalized unit. A P 

value of 0.5, representing a correlation confidence of 

50% achieves 100% clustering accuracies for the 

three PD sources when they are tested individually. 

Therefore this value may be a suitable threshold for 

further applications. 

 
Figure 5  Energy spectra of the wavelet 

decomposition coefficients 

 

The testing data as summarized in Table 2 are 

manually combined to simulate the simultaneous 

multiple PD sources. The obtained processed phased 

resolved φ-q-n patterns are shown in Figure 6.  

Before discriminating the multiple PD sources, the 

well trained SVM was applied to test the single PD 

sources of each type. The extracted sym7D3 pulses 

were compared with the reference pulse of each 

group in sequence using correlation coefficient P 

value. If the obtained P value is small than the preset 

expected value (in this case P=0.5) the pulse is 

categorized to the current pulse group and the 

reference pulse representing that group is updated by 

averaging with the new pulse. Otherwise the pulse is 

categorized as a new group and used as the first 

reference pulse in that group. 

 

 
a 2D phase-resolved histograms 

 
b 3D φ-q-n pattern 

Figure 6  Phase resolved analysis of simulated 

three PD sources 
 

SVM identification.  The obtained φ-average q 

information was then used as the feature vector for 

SVM identification. The SVM was trained using the 

data set obtained from the Robinson detector. The 

SVM identification results using correlation 

coefficient grouped data for single PD source are 

shown in Table 3. The numbers in the lower left 

corners represent the cycle numbers of each single 

PD source for testing. The numbers in the upper right 

corners are the identified cycle numbers.  Each PD 

source consists of 20 cycles data. For corona 

discharge, 20 cycles were correctly classified and 1 

cycle is misclassified to internal discharge in oil. For 

surface discharge in air, 23 cycles were identified. 

Among them, 22 cycles were correctly classified and 

1 cycle is misclassified to internal discharge. For 

internal discharge in oil, all 20 cycles testing data 

were classified successfully. 

 

Table 3 Correlation analysis based SVM 

identification results (single source) 

 

           

Identification 

type 

 

Testing type   

Corona Surface Internal 

Corona in air 

20 

 

20 

0 

 

0 

1 

 

0 

Surface 

discharge in 

air 

0 

 

0 

22 

 

20 

1 

 

0 

Internal 

discharge in oil 

0 

 

0 

0 

 

0 

20 

 

20 

 

For multiple PD sources, there are 20 cycles of 

testing data which consist of three types of different 

PD: corona in air, surface discharge in air and 

internal void discharge in oil. Different from the 

identification result for the unprocessed data without 



using correlation analysis, which classified the 20 

cycles data as surface discharge, the correlation 

coefficient based SVM identified the correlation 

analysis grouped data as three types: corona in air, 

surface discharge in air, internal void discharge in 

oil, as shown in Table 4. 

 

Table 4 Correlation analysis based SVM 

identification results (multiple sources) 

PD type 
Testing 

cycles 

Identification 

cycles 
Weights 

Corona 

in air 
20 20 28.2% 

Surface 

discharge 

in air 

20 22 31.0% 

Internal 

discharge 

in oil 

20 29 40.8% 

 

CONCLUSION 
 

The application of SVM for PD identification has 

been investigated in this paper. A prototype 

algorithm for multiple PD sources classification has 

also been developed and assessed. 

The feasibility of using a wide bandwidth sensor and 

a digital oscilloscope equipped with massive storage 

memory system to detect and analyse partial 

discharge information has been investigated.  

The use of more than one feature parameter (for 

example phase resolved information and wavelet 

decomposition coefficients) reveals a good 

performance for multiple PD source identification. 

The information in time domain can be used to 

determine the PD types and the frequency or time 

frequency domain information can be used to 

clustering different PD sources. 

An abundant database of training samples and proper 

training processes are both of great importance to 

SVM based PD identification. An approach using 

correlation analysis based SVM has been assessed 

and some satisfactory automatic classification and 

identification results have also been obtained. 

However, the performance is restricted by the 

limitation of correlation analysis and SVM. 

Therefore, some potential improvements on this 

method, for example seeking different feature 

vectors, unsupervised algorithms and improved 

machine learning techniques could be developed 

from this initial study in the future. 
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