
Grid-Based Business Partnerships
Using Service Level Agreements

Mike Boniface1, Stephen Phillips1, Mike Surridge1

[1] University of Southampton IT Innovation Centre

Abstract
The EU IST SIMDAT project is developing generic Grid
technology targeted at business users from several
representative industry sectors. We have developed an SLA
(Service Level Agreement) Management service for GRIA
middleware that allows service providers and customers to trade
resources (applications, data, processing, storage) under the
terms of bilateral SLAs. In this paper, we describe the SLA
architecture, QoS model and how the service has been deployed
to support Grid-based partnerships in the aerospace, automotive
and pharmaceutical sectors.

1 Introduction
The SIMDAT project [1] is developing and deploying Grid technology to support industrial
business partnerships within key economic sectors; aerospace, automotive, meteorology and
pharmaceutical. An important characteristic of Grid technology is its ability to support inter-
domain business partnerships allowing organisations share a wide range of business assets
within the constraints of commercial polices for security and protection of IPR. Traditional
academic Grids are based on collaborative resource sharing usually organised by service
providers, who agree to share their resources to create a single 'resource pool' that can meet the
needs of a common user community. However, this involves service providers and users
signing up to a 'virtual organisation' with a common objective (that of the relevant user
community), and agreeing unified policies for managing and granting user access to the shared
resources. This arrangement is very expensive to establish and operate, does not meet the
business needs of commercial service providers or consumers, and leaves no room for
participants to compete openly on price or quality of service. We have developed an SLA
(Service Level Agreement) Management service for GRIA [2] that allows service providers
and customers to trade resources (applications, data, processing, storage) under the terms of
bilateral SLAs allowing service providers to operate independently of each other, and compete
as necessary to provide services to paying customers. Customers are able to control which
services they consume, how much they are used, and by whom.

2 Background

The original GRIA project set out to provide business models for using the Grid, based on
earlier work on the agent-based DISTAL framework [3]. In DISTAL, users were obliged to
contact and negotiate with agents representing computing resource owners, specifying their
requirements in terms of machine specifications and usage time. The resource owner’s agent
then responded with an “offer” indicating their machine specification and available usage time.
The user could gather offers from several resource owners, select the best offer, and then
submit their computations to the resource owner. DISTAL used a proprietary schema within a
top-level FIPA agent protocol [4]. The GRIA 4 business model evolved from DISTAL to use a
modified quality of service (QoS) model, in which a single “offer” can cover multiple
computational “jobs” spread over a relatively long time interval. This approach requires far
fewer message exchanges to negotiate QoS for composite applications such as video rendering
or parametric optimisation. However, it also means it is not feasible to specify absolute job
submission and completion times, because neither side can guarantee the timings for

collections of inter-dependent jobs. A simpler QoS model is therefore required, based only on
the total usage across all jobs and data transfers over a specified interval. GRIA 4 provided a
QoS service, separate from the job execution and data storage services, allowing user actions
to be managed. Service providers respond to consumer QoS requests with offers based on
predicted resource availability, allowing the user to detect which providers can meet their QoS
needs, and accept offers only where capacity is sufficient for their needs. Users have to ask the
QoS service to set up a job or data store, specifying the resource requirements, allowing the
QoS service to check if these are within the agreed total before giving the user access to the
job and data services themselves. The job and data services keep track of the resources used
per job and data store, and terminate them when the declared usage limit is reached.
GRIA 4 was relatively easy to use, and has been extremely successful in the SIMDAT project
and as a test platform in the NextGRID [5] and SFW projects [6]. However, it had some
weaknesses that can be traced to the specific QoS model and management mechanisms. Users
find it hard to predict the QoS requirements for each job and data store. They often overstate
the true requirements to avoid premature termination by the service, but this in turn means they
have to overstate their needs when asking for QoS offers. Service providers have to assume
that QoS requests are realistic, and often decide that they cannot meet (user-inflated) QoS
requests, so that no services are provided. Also, users often want to reuse data for new
calculations in ways that could not easily be predicted in advance. Thus they frequently find
they want to use resources beyond the time period originally envisaged, but are prevented by
the QoS model from doing so. These drawbacks often cause service providers to refuse user
requests, even when the resources available are enough to meet the user’s true requirements,
which in a commercial situation would produce lower resource utilisation and higher prices.
The refusals often come when users don’t expect it, making GRIA 4 services less usable to
consumers. In SIMDAT, a new SLA management service was required for exploitation of
Grid infrastructure by industry that addresses some of the imperfections in the original QoS
model. The requirements include:

i) application service developers should be able to define their own qualitative QoS

criteria in terms of their operations, including error and failure criteria;
ii) metrics should provide simple mechanisms to define quantitative QoS criteria and

limits, and also resource usage and limits;
iii) metrics should include instantaneous rate measurements at some absolute time, and

total usage over a defined period between two absolute times;
iv) metrics should provide a simple aggregation model for both QoS measurements and

QoS limits, allowing SLA to cover multiple application services.

The need for absolute times is because we must capture the temporal relationships between
QoS measurements and their associated SLA limits, including different application services
under the same SLA, and the relationship between multiple SLA and overall resource capacity.

3 Related Work

Current Grid technology focuses middleware to support service provision of a wide range of IT
services. Web service technology is being increasingly adopted, and aspects such as security
and quality of service are the focus of many developments. Within the Grid community,
infrastructure technologies that support business partnership negotiation are relatively
immature, with most current Grid systems using some sort of priority queue system, based
around a low level job scheduler. Various OGF working groups are defining schema related to
QoS models and metrics. The GGF Usage Record (UR) Working Group has defined a usage
accounting record schema, designed to allow Grid sites to exchange usage data in a mutually
understood format [7]. The core schema currently supports computational job accounting only
with extensions for properties from individual sites or groups of sites. The GGF Job
Submission Description Language (JSDL) Working Group has published a specification for
describing the requirements of computational jobs for submission to resources, including but
not limited to Grid environments [8]. Where the GGF Usage Record focuses on records of job
resource usage during and primarily after execution, JSDL focuses on specifying resource

requirements (i.e. upper limits) at submission time. The UR and JDSL specifications are fairly
comprehensive in their coverage, and provide a useful basis for describing computational
resource requirements and usage. However, they are both highly specific to low-level job
execution scenarios, and so cannot be used in a business-oriented QoS model for describing
more generic consumer values.
WSDM [9] is an approved OASIS standard covering management of web services. WSDM
MUWS Part 2 (Management Using Web Services) specification defines manageability
capabilities for OperationStatus, State, Configuration and Metrics. The last of these includes a
schema for associated attributes describing the temporal nature of the underlying measurements
(e.g. measurements over an time interval, at a single instant, since the last reset, etc), how the
result can change (e.g. counters versus gauges, etc), when they are updated (regular or irregular
intervals, on demand, etc), and provides a way to associate metrics with metric groups. The
WSDM metrics are quite generic, and at first glance appear useful for describing QoS in a very
general way. However, it turns out that they describe only instantaneous values, even those
that are collected over an interval. The “interval” is defined as an xsd:duration type, which is
an amount of time (e.g. 1 hour) not an absolute interval (e.g. between 1605 and 1705 UTC on
Tuesday 28 Feb 2006). The time-scope properties the metrics describe how a value is
measured (e.g. a time average) and not its temporal relationship to other measurements or
events. The WSDM MOWS (Management of Web Services) specification describes how
MUWS can be applied to the management of web services via a MUWS-type management web
service. MOWS defines metrics such as NumberOfRequests, NumberOfFailedRequests,
NumberOfSuccessfulRequests, ServiceTime, MaxResponseTime, LastResponseTime. Clearly,
these properties may be useful for some purposes, but they don’t cover resource usage or limits,
and they provide only a crude description of consumer-centric QoS.

4 QoS Model

4.1 Overview

The SLA Management service handles a general set of “metrics” describing service quality,
delivery and resource usage. The SLA manager uses three sets of information based on these
metrics:
• service and resource usage reports from application services, expressed as a set of values

for named terms in the vector Z ∪ Y;
• quality of service criteria from each SLA, expressed as a set of value constraints on the

total value across all associated activities for named terms in the service usage vector Z;
• service provider capacity criteria, expressed as a set of value constraints on the total value

across all activities for named terms in the resource usage vector Y.
The SLA management service compares service usage reports with the QoS “constraints” to
decide whether a user should be allowed to start new activities or continue with existing
activities. Constraints are similar to metrics, except that they represent future usage over some
interval (the constraint is always set before the interval). Constraints are used to represent the
total capacity of a set of service provider resources, the level of service to be provided in an
SLA and the expected usage for a newly requested activity.
The SLA management service compares resource usage reports with the service capacity to
detect when resources are becoming overloaded, and may terminate some activities to prevent
others failing due to this. It also compares QoS constraints in existing SLA with the service
provider capacity constraints to determine whether to accept or refuse a new SLA. To do all
this, we define metrics in relation to a model, so the SLA manager can:

• combine usage reports Z from individual activities and get total usage for all activities
in an SLA, so this can be compared with SLA constraints on Z;

• combine usage reports Y from individual activities and get total usage for all activities
hosted by the service provider, so this can be compared with capacity constraints on Y;

• predict when a set of activities governed by an SLA will collectively breach the usage
limit specified by the SLA;

• calculate the resource usage bounds on Y corresponding to quality of service bounds

on Z, so the implications of a new SLA (in terms of Z) can be compared with capacity
constraints on Y; and

• calculate the fees to be charged (normally defined as a value X in currency units), for a
given usage Z.

This model has to be general, in the sense that it should not depend on what metrics are used
by a given application service or constrained by its SLA. Only the mathematical treatment of
metrics and constraints of various types should be defined in the model.

4.2 Mathematical Model

A significant complication that must be addressed in our model is that QoS and capacity
constraints, and price calculations may be defined in terms of the rate of usage and also the
total usage over time. Rate usage information is “instantaneous”, relating to a single instant in
time, while cumulative usage refers to an interval of time (i.e. has both a start and end time),
and represents an integration over that time interval of the instantaneous usage rate. Note that
cumulative usage does not appear related to “interval” metrics from WSDM, which are
associated with duration (e.g. 1 hour) and not to a true interval between two absolute times.

Application services may deliver reports on instantaneous or cumulative usage, or both. We
need a model that allows the SLA manager to derive a complete picture from the metrics
available to it, and to combine usage reports from different activities at different times in a
coherent fashion. The model should allow the SLA manager to compare usage with
constraints on either type of usage metric, even though none of the usage reports coincide in
time with the constraint or even with each other (See Fig 1). To support such comparisons, we
use the series of mathematical assumptions.

U
sa

ge
 R

at
e

Time

SLA usage
constraint

Usage reports
from different activities

Fig 1. SLA Metrics Challenge

If a cumulative usage is required over some interval, but only rate measurements are available,
we will assume that instantaneous rate reports refer to rate changes. Between two rate reports
from an activity, the usage rate is assumed to be equal to that given in the earlier report. It is
then easy to calculate the cumulative usage over a period during which reports have been
received. To match this mathematical assumption, an application service that provides usage
rate reports should do so whenever the usage rate of an activity changes. To match this
mathematical assumption, an application service that provides usage rate reports should do so
whenever the usage rate of an activity changes. Differentiation is used when we have
cumulative reports covering a period, but we need a rate at some time in that period. The
assumption we make here is that usage rates are constant in the interval covered by a
cumulative usage report, but zero outside it. The rate can thus be assumed equal to the
cumulative usage divided by the reporting interval duration, within the reporting time interval
only. To match this mathematical assumption, an application service would have to provide
cumulative usage reports whenever the usage rate changed, with each report covering the
interval since the last change. This is not realistic, especially since cumulative usage reports
are likely to be most popular when the usage rate is continuously varying. However, there is

no better assumption we could use in the absence of more data, so we have to accept that a rate
calculated from a cumulative report using the above assumptions is an approximation.
Because of this, usage rate reports will normally be more reliable than rates derived from
cumulative reports, and should be used where available.
Aggregation of cumulative usage reports is used to calculate the total usage for a collection of
activities in a given interval. We then have to add together the cumulative usage reports across
those activities in that period (these usage reports may have been obtained via integration of
rate reports). To do this, we use the cumulative usage differentiation assumption described
above. It is then possible to work out what proportion of the cumulative usage from each report
to include in the aggregate total, based on what proportion of the report interval overlaps the
required aggregated interval.
Aggregation of rates is needed when we have a constraint on the rate of usage, and we need to
determine whether the actual rate exceeds this. There are three scenarios:

• finding the total usage rate at the current time, e.g. to determine whether a new activity
would take the total over a limit, or to determine when a cumulative limit will be
reached;

• finding the total usage rate at a specified time in the past; and
• finding the time intervals during which the rate exceeded a specified limit, e.g. to

determine whether surcharges should be imposed.

U
sa

ge
 R

at
e

Time

Activity 1 Activity 1

Activity 2

Activity 3
Activity 3

Activity 4Activity 4

Boundaries between rate calculation
intervals

Usage rate reports

Cumulative usage
reports

Fig 2. Instantaneous rate limit transgression times

The first scenario is the simplest. Cumulative usage reports only give information about past
usage (since their reporting interval cannot extend into the future). They do not tell us
anything about usage outside their reporting interval, which must include the current time.
Thus the only way to get a current aggregated usage rate is to add together the latest usage rate
reports from all the relevant activities. The second scenario is more complicated because if the
specified time is in the past, we may have cumulative reports for some activities. The solution
is to find the most recent rate report from each activity prior to the specified time and add them
together. Then if there are any activities that did not produce rate reports, we should add the
average rates from cumulative usage reports whose reporting intervals span the specified time.
In this way, we ensure that directly reported rates are used from activities that provide such
reports, but we still take account of activities that can’t – e.g. because their usage rates are
continuously varying. The last scenario is most complicated, as shown in Fig 2. To work out
when the usage rate exceeds a certain level, we need to know how the usage rate of each
activity changes, and what the rate was in the intervals between changes. Thus it is easier to
work with “cumulative” usage data expressed over time intervals, even if these are actually
derived from usage rate reports (as for Activity 1 in Fig 2). We then take the start and end
times for all these intervals across all relevant activities, and define short intervals between
them. For each of these intervals, we can find the total usage rate across activities by adding

together the rates (direct or derived) from activity reports that overlap in time with the interval.
It is then trivial to compare with a usage rate limit and determine in which of these short
intervals the usage exceeded the rate limit.

5 Architecture

The new model is implemented through the use of service level agreements that define QoS
and other commitments by the service provider, in exchange for financial commitments by the
consumer. As described above, the QoS model is very generic and is capable of handling a
wide class of application services, allowing QoS to be expressed in user-centric as well as
resource-centric terms. The SLA service acts as a “service level agreement manager”
providing capabilities:

i) to provide access to service level agreement “templates” that can be filled in and
submitted by a potential consumer as service level “proposals”;

ii) to decide whether to enter into a new service level agreement (with a given QoS) when
proposed by a consumer, and to respond accordingly;

iii) to decide whether a requested application service “activity” is covered by an existing
service level agreement, and to detect when such an activity (even if covered) would
exceed the capacity of the provider;

iv) to decide which service level agreement(s) should be breached when capacity is about
to be exceeded, and to initiate load reductions in the corresponding application
service(s);

v) to track the quality of service actually delivered, and to initiate charges when
appropriate;

vi) to detect when a consumer is exceeding the limits of a service level agreement, and to
initiate load reductions in the corresponding application service(s) to prevent this.

Application
Service

SLA
Manager

Service
Manager
Service

Manager

Application
User

Application
User

CustomerCustomer

Proposes SLA Defines SLA templates

Deploys services

Manages
Service

Checks on
Activities

Requests activities

R
ep

or
ts

 u
sa

ge

Fig 3. Interactions between the GRIA SLA manager and an application service

The Service Manager in Fig 3 is responsible for deploying application services, and making
sure that the SLA templates available from the SLA manager cover the deployed services. A
Customer can obtain one of these templates, fill it in, and send it to the SLA manager as an
SLA proposal. At this point the SLA manager may accept the request, and start using the
proposed SLA to manage services, or refuse the request. If accepted, the SLA manager will
respond with a WS-Addressing Endpoint Reference (EPR) including a context reference for
the SLA. The Customer must include this reference in the context header for subsequent
requests to the SLA manager related to this SLA.
The Application User in Fig 3 interacts with application services provided under the terms of
an SLA. The nature of these interactions obviously depends on the application service, but in
general, the application service will consume resources in order to respond to the Application
User. It should do so only to the level specified in the SLA, or the service provider resources
may become overloaded and be unable to response to other Application Users to the required
level. The Application User must specify the EPR of the SLA (i.e. the SLA manager address

plus SLA context reference) when initiating an interaction. If the user has no SLA, or
specifies an SLA that doesn’t cover the application service interaction, or to which this user
has no access rights, the application service should reject the interaction.
The application services will ask the SLA manager when they need to check if the SLA
requires them to respond to a user request. The SLA manager will ask the application service
to terminate an interaction if it becomes necessary to stop the service from consuming
resources under a given SLA. In addition, the application service should report on the usage of
the service (Z) and the use of resources by the service (Y) – these reports can be sent
asynchronously, since the application service doesn’t need a reply.

6 Deployment by SIMDAT Industrial Partners

The GRIA SLA Management service has been deployed in SIMDAT to support business
partnerships in the aerospace, automotive and pharmaceutical sectors. Aerospace companies
have developed a prototype that demonstrates how Grid technologies can support pan-
European inter-Enterprise collaborative development of complex products. Each organisation
operates as a GRIA service provider offering specialised engineering services such as
optimisation (University of Southampton), parameterised CAD generation (University of
Southampton), aerodynamics (BAE SYSTEMS) aero-acoustics (EADS), and structural
analysis (MSC). GRIA’s explicit business process support for dynamic, bi-lateral SLAs allows
project managers at aerospace companies to not only create distributed multidisciplinary
engineering design teams but also quickly procure additional analysis services capabilities
from suppliers if necessary [10]. In the pharmaceuticals sector, a significant challenge for
companies is how to reduce cost and risk whilst increasing the probability of successfully
developing new drugs. Innovative solutions to assist drug development exist both within large
pharmaceutical and outside in the hands of hundreds of biotechnology businesses and
academic institutions. The GRIA SLA Management service has been deployed to support
business partnerships between GSK, Inpharmatica and academic service providers, fuelling the
drug discovery pipeline. In the automotive sector, both Audi and Renault have deployed GRIA
to support the product design process chain (CAE/CAD/CAT) including external engineering
companies, developers and design suppliers.

Fig 4. Aerospace business partnerships

7 Conclusions

In SIMDAT, GRIA has been successfully deployed to support business partnerships in the
aerospace, automotive, and pharmaceutical sectors. The SLA Management service allows
service providers to advertise SLA templates that are proposed by customers during SLA
negotiation. The SLA describes quality of service (QoS) and other commitments by a service
provider in exchange for financial commitments by a customer against an agreed schedule of
prices and payments. The SLA management service supports a very generic QoS model that
allows application service developers to define their own qualitative QoS criteria in terms of
their operations, including error and failure criteria. Metrics usage can be monitored,
constrained and billed for using instantaneous rate measurements at some absolute time, and

total usage over a defined period between two absolute times. The SLA negotiation is
automated making GRIA services very responsive to new user needs, yet inexpensive to
operate for providers. This is critical in a business Grid where human resources can easily
become the largest cost when running services - in GRIA these costs are minimised, so
services can be profitable for providers while still being affordable for customers.
Future work focuses on building upon GRIA’s SLA service core to provide higher-level
intelligent business services that can be used to drive SLA offerings and dynamic provisioning.
GridEcon [11] is developing a market based Pricing Service and ArguGRID [12] is developing
agent-based argumentation services to support SLA decision making and negotiation. Other
advancements include dynamic service provider configurations, where applications are
installed on demand to satisfy client requests. To manage such systems effectively requires
enhancements to the SLA service to both record, and provide to other components, more
information such as queue lengths and response times. These performance-based metrics are
of great importance to consumers who need to make business decisions about service provider
performance based on historical data. More dynamic cost models and the ability to constrain
and monitor functions of the basic metrics will also be investigated in order to encode penalties
for under-performance levied against the service provider.

The SLA Management service is part of GRIA’s Service Provider Management package,
which is available for download, free and open source, from www.gria.org.

References

1. EU IST SIMDAT Project, www.simdat.eu
2. Surridge, M., Taylor, S., De Roure, D. and Zaluska, E. (2005) Experiences with GRIA — Industrial Applications on a

Web Services Grid, in Proceedings of the First International Conference on e-Science and Grid Computing, pp. 98-105.
IEEE Press.

3. Addis, M. J., Allen, P. J. and Surridge, M. (2000) Simulation on Demand. E-business: Key Issues, Applications,
Technologies pp. 906-912.

4. FIPA Interaction Protocol Specifications, http://www.fipa.org/repository/ips.php3
5. NextGRID Architecture Vision,

http://www.nextgrid.org/download/publications/NextGRID_Architecture_White_Paper.pdf
6. Surridge, M., Payne, T. R., Taylor, S. J., Watkins, E. R., Leonard, T., Jacyno, M. and Ashri, R. (2006) Semantic

Security in Service Oriented Environments. In Proceedings of UK e-Science Programme All Hands Meeting 2006
(AHM2006) (in press)

7. GGF Usage Record specification, http://www.psc.edu/~lfm/PSC/Grid/UR-WG/UR-Spec-gfd.58-ggf18.doc
8. Job Submission Description Language (JSDL) Specification, Version 1.0,

http://www.gridforum.org/Public_Comment_Docs/Documents/July-2005/draft-ggf-jsdl-spec-021.pdf
9. WSDM 1.1 OASIS Standard Specifications, http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
10. Upstill, C. and Boniface, M. J. (2005) SIMDAT. CTWatch Quarterly 1(4) pp. 16-24.
11. GridEcon, http://www.gridecon.eu/
12. ARGUGRID, http://www.argugrid.org/

