
Repair Techniques for Hybrid Nano/CMOS
Computational Architecture
Saket Srivastava, Aissa Melouki and Bashir M. Al-Hashimi

School of Electronics and Computer Science
University of Southampton, Southampton SO17 1BJ, UK

(ss3, am06r, bmah)@ecs.soton.ac.uk

Abstract—Presence of high defect rate in nanofabrics due to the
inadequate fabrication processes has held back the development
of emerging technology architecture. In this work, we propose
two repair techniques to provide high level of defect tolerance in
lookup table (LUT) based Boolean logic approach implemented
in nano/CMOS. Further, we demonstrate that direct application
of memory repair techniques is ineffective in dealing with high
defect rate in hybrid nano/CMOS architecture. We show that
the proposed techniques are capable of handling more than
20% defect rate in hybrid nano/CMOS architecture with efficient
utilization of spare units.

I. INTRODUCTION

Hybrid nano/CMOS architecture has shown promise in
bridging the gap between CMOS and emerging technolo-
gies [1]. Tremendous gain in device density that can be
achieved using nanoscale systems presents a compelling case
for developing hybrid nano/CMOS computing architecture [2],
[3], [4] where unreliable but highly dense nano/molecular
systems are used to provide data storage and computation
while CMOS components are utilized for interfacing and
for highly critical circuit operations. It is acknowledged that
due to high defect rate associated with nanotechnology, it
is unlikely to compete with CMOS for general purpose
computing in the near future and hence defect tolerance is
necessary. Recently, error correcting techniques (ECC) have
been proposed to improve the yield of hybrid nano/CMOS
architecture in [5]. However, the reported ECC techniques
are mainly used for the suppression of soft errors rather
than physical defects i.e. maintaining the fault tolerance level
rather than enhancing defect tolerance. Reconfiguration [6] is
another technique that can circumvent physical defects by first
mapping defects on reconfigurable fabrics then synthesizing
a feasible configuration to realize an application for each
nanofabric instance. While exact manufacturing defect rate
is not yet pinpointed, it is believed to exceed 10% [7].
Repair techniques are very effective in memory design and
this represents the starting point for this work. Traditional
CMOS memory repair algorithms, when applied to hybrid
nano/CMOS computational architecture, incur huge overhead
in the decoder circuitry, which is implemented in CMOS.
Moreover, as we will see later in this work, direct application
of memory repair techniques is ineffective in dealing with high
defect rate in nano/CMOS computational architecture. Most
of the earlier work in nano/CMOS co-design have targeted
memory [8] or crossbar architecture. To advance computa-
tional nanocircuits, new architectures must be pursued. One

such promising architecture is the Look-Up Table (LUT) based
Boolean logic approach considered in this paper.

LUT implementation targeted in this work, is an effective
functional-coding approach that provides low-level protection
of individual Boolean logic functions [9], [10]. We show
that our proposed repair techniques are capable of targeting
high defect rates using a tagging mechanism that results in
low CMOS overhead. This technique is called Tagged Repair
technique. We demonstrate the efficiency of the proposed
repair techniques on hybrid nano/CMOS circuits synthesized
into LUTs of different sizes. A further improvement in this
technique, in terms of targeted defect rate, has been achieved
by dividing the original LUT into smaller sub-LUTs (column-
wise). This approach, called the Modified Tagged Repair
technique, is capable of targeting higher defect rates (upto
20%), at a cost of extra CMOS tagging bits when compared
to Tagged Repair technique. The novelty of this work lies
in the development of highly efficient repair techniques in
the context of emerging technology (nano/CMOS) architecture
implemented as LUTs. An added advantage of the proposed
techniques is reduced CMOS area overhead, as compared to
traditional memory repair algorithms that require physical to
logical address mapping [8]. To the best of our knowledge,
there are no reported repair techniques that target such high
defect rates in LUT based hybrid nano/CMOS architecture.

II. PROPOSED REPAIR TECHNIQUES

In this section we propose two repair techniques that have
been developed specifically for LUT based Boolean logic
approach implemented in nano/CMOS. The original algorithm
used in CMOS memory repair incurs a significant CMOS area
overhead when applied to LUT based approach which will
nullify the device density gained by using nano components.
The modified algorithm involves replacing rows and columns
instead of blocks of defective units. We have also included
a tagging mechanism to isolate defective rows and columns.
Each row/column is associated with a CMOS tag that holds
one bit of information. A ‘1’ or ‘0’ tag value specifies whether
or not a row/column is selected in the final LUT after repair.
We refer to this technique as Tagged Repair technique. A
further improvement in this technique, in terms of targeted
defect rate, has been achieved by dividing the original LUT
into smaller sub-LUTs (column-wise). This approach, called
the Modified Tagged Repair method, is capable of targeting



2

higher defect rates (upto 20%), at a cost of extra CMOS
tagging bits when compared to Tagged Repair technique.

A. Tagged Repair Technique

(a) (b)

rSP Spare 

Rows

cSP Spare 

ColumnsOriginal 

2N X N LUT

Spare Rows/

Columns

1
-b

it
 C

M
O

S
 R

o
w

 T
a
g

s
 (

2
N

+
 r

S
P
)

1-bit CMOS Columns Tags (N + cSP)

Fig. 1. Tagged Repair Technique: (a) Implementation for a 2N ×N LUT
with csp spare columns and rsp spare rows (b) Use of tags to repair columns
and rows

The aim of our proposed Tagged Repair technique is to
identify a defect-free instance of a LUT of size (2N (rows) ×N
(columns)) within a defective fabric given a certain amount of
spare columns csp and spare rows rsp. Hence, a theoretical
estimation of the circuit failure rate of this technique reduces
to the calculation of the probability of the non-existance of a
subset of defect-free resources (2N ×N) within the partially-
usable fabric

(
(2N + rsp)× (N + csp)

)
. We first calculate the

probability P(col,L) of a column of size (r + L) is defective
(i.e. in which the total number of defective bits exceeds the
number of spare rows L). The probability of successfully
finding enough resources to create an instance of a given LUT
using our Tagged Repair technique where the number of spare
rows is L = rsp:

Psucc =
c+csp

∑
x=c

(
c+ csp

x

)
Pinst(x,rsp) (1)

where Pinst is the probability that n columns out of (c + csp)
are not defective and aligned. Pinst = f (P,c,csp,r,rsp) and P is
the defect rate. Therefore, the overall failure rate, Pf ailure is:

Pf ailure = 1−Psucc (2)

Fig. 1(b) shows the implementation of the Tagged Repair
technique. This technique uses a tagging method to tag rows
and columns that are least defective. Initially the tags for
original 2N rows and N columns in LUT are set to 1 and tags
for spare rows and spare columns (rsp and csp respectively) are
set to 0. The implementation algorithm for this architecture is
presented below:

1: Initialize LUT size, spare rows and spare columns
2: Initialize all LUT tags
{S}can Column-wise

3: for all i(< N) do

4: for all j(< csp) do
5: if totalDefects(csp( j)) < totalDefects(column(i))

(Tag(csp( j)) = 1, Tag(column(i)) = 0)
6: end for
7: end for
{R}epeat scan Row-wise

After the repair process, the tags will hold ‘1’ for the least
defective rows and columns and ‘0’ for the excluded ones.
The proposed architecture is comparatively simpler as it does
not require encoding/decoding circuitry that will also lead to
additional area overhead in CMOS domain (as compared to
other techniques such as [6], [11]).

B. Modified Tagged Repair Technique

(a) (b)

cSP Spare 

ColumnsOriginal 

2N X N LUT

Spare Rows/

Columns

1-bit CMOS Columns Tags 2x(N + cSP)

1
-b

it
 C

M
O

S
 R

o
w

 T
a
g

s
 (

2
N

+
 r

S
P
)

rSP Spare 

Rows

Fig. 2. Modified Tagged Repair Technique (a) Implementation for a 2N ×N
LUT with csp spare columns and rsp spare rows (b) Use of tags to repair
columns and rows

To address even higher defect rates, we investigate a modi-
fied technique as presented in Fig. 2 which is a modified im-
plementation of the previous Tagged Repair technique shown
in Fig. 1. In this technique instead of replacing entire columns,
we have split the columns in two equal sections before
applying tagging and replacement, to make more optimized
usage of the spare units.

In the Modified Tagged Repair technique, a successful
instantiation of a LUT on the fabric is achieved by successfully
instantiating each half of the LUT (2N−1×N) on the fabric
given the amount of spare columns csp for each half and
the spare rows rsp that is reserved for both of them. Eq.(3)
represents the total probability Psucc that can be used to
calculate Pf ailure from Eq. 2. Variable i is the number of spare
rows used by our technique to repair the defective rows in the
first half, whereas the rest of spare rows (rsp− i) are used in
the repair of the second half of the LUT. Hence Psucc can be
computed as follows:

Psucc =
rsp

∑
i=0

[( c+csp

∑
x=c

(
c+ csp

x

)
Pinst(x, i)

)

×
( c+csp

∑
x′=c

(
c+ csp

x′

)
Pinst(x′,rsp− i)

)] (3)



3

The implementation algorithm used for this technique is
similar to Tagged Repair technique however slightly more
complex due to the split column implementation. In the
algorithm for Modified Tagged repair technique, the column-
wise scan needs to be done in two stages and the row-wise
scan will be done in a single stage. The reason for this is as
follows: since a 2N ×N LUT will always have even number
of rows (2N), it is easy to use this approach in splitting the
columns halfway each of size 2N−1. A similar approach to split
and tag columns cannot be used since the column length can
be odd or even depending on value of N and an odd value of
N cannot be split in two equal integers. The downside of this
approach is that it makes the technique more complex since
the number of column tags required will be double that of the
Tagged Repair technique (section III).

III. EXPERIMENTAL RESULTS

In this section we first evaluate the performance of the
two proposed repair techniques (Tagged Repair and Modified
Tagged Repair). Simulations were performed on randomly-
generated symmetric LUTs where the probability of 0 and
1 are equal. The LUTs are of sizes ranging from 23 × 3 to
26× 6. Larger circuits (such as ISCAS’85 benchmarks) with
even higher number of inputs and outputs can be synthesized
to smaller LUTs using synthesis tools such as Synplicity [12].
The circuit failure probability Pf ailure, resulting from randomly
injecting m defects, is obtained by calculating the ratio of
defective LUTs after repair to the total number of simulation
iterations I = 5000. Targeted defect rate for a particular repair
technique is the maximum defect rate for which 0% failure rate
can be achieved. Redundancy (or Spares) is the percentage of
extra rows/columns that are allocated for repair. All the simula-
tions were carried out in C/C++. To demonstrate the limitation
of current memory repair techniques in the context of LUT
based hybrid nano/CMOS architecture, we simulated Repair
Most technique [8], that was proposed recently in the context
of hybrid nano/CMOS memory design. We compared the
results of Repair Most technique with our proposed techniques
to show the gain in repair efficiency. For implementation
details of Repair Most technique, please refer to [8]. The
simulations for Repair Most technique have been performed
by fixing the values of column threshold (cth) at 3 and row
threshold (rth) at 1.

A. Simulation of the Proposed Techniques

Fig. 3 shows the plot of Failure rate Vs Defect rate using
Tagged Repair technique for different LUT sizes. As can be
seen, the Tagged Repair technique exhibits significantly higher
defect tolerance (upto 17%) in the case of smaller sized LUTs
(such as 23×3 LUT) than larger LUTs (such as 26×6 LUT).
Hence synthesis of larger circuits into smaller LUTs will result
in improved defect tolerance for the targeted nano/CMOS
architecture. The results shown assume 100% redundancy (i.e.
csp = N and rsp = 2N ) with 0% DCCs in the LUTs.

As can be seen from the results shown in Fig. 4 the
modified technique further improves the defect tolerance of the
given LUT architecture when compared to the Tagged Repair

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

Defect Rate

F
a
il

u
r
e
 R

a
te

3x3 LUT

4x4 LUT

6x6 LUT

Fig. 3. Plot of Failure rate Vs Defect rate using Tagged Repair technique
for different LUT sizes with 100% redundancy in rows and columns.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

Defect Rate

F
a
il

u
r
e
 R

a
te

3x3 LUT

4x4 LUT

6x6 LUT

Fig. 4. Plot of Failure rate Vs Defect rate using Modified Tagged Repair
technique for different LUT sizes with 100% redundancy in rows and columns.

technique. Taking an example of a 23× 3 LUT, we compare
the results of Fig. 3 with Fig. 4. It can be seen that while
the Tagged Repair technique can achieve 0% failure rate at
defect rates of upto 17%, the modified technique can target
defect rate upto 20%. This improvement in efficiency is due
to the more optimized usage (by splitting the columns in two
before applying repair) of the redundant spare units. Similar
improvement in repair efficiency can also be seen for other
LUT sizes.

Fig. 5 compares the efficiency of the proposed techniques
with the Repair Most technique [8] for LUTs of size 24× 4
LUT with 100% redundancy. As can be seen, the Modified
Tagged Repair technique targets the highest defect rate fol-
lowed by the Tagged Repair and Repair Most respectively. For
example, when the defect rate is 15%, the Modified Tagged

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
01

0.
03

0.
05

0.
07

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

0.
23

0.
25

0.
27

0.
29

Defect Rate

F
a

il
u

r
e

 R
a

te

Repair Most[9]

Tagged Repair

Modified Tagged Repair

Fig. 5. Comparative study of the proposed repair techniques with the Repair
Most technique for the failure rate of 24×4 LUT with 100% redundancy



4

Spares LUT
size

Repair
Most [8]

Tagged
Repair
(proposed)

Mod. Tagged
Repair
(proposed)

3x3 7.0% 10.0% 12.0%
25% 4x4 4.0% 5.0% 6.0%

6x6 2.0% 3.0% 4.0%
3x3 8.0% 11.0% 14.0%

50% 4x4 6.0% 9.0% 9.0%
6x6 2.0% 6.0% 6.0%
3x3 9.0% 17.0% 20.0%

100% 4x4 8.0% 14.0% 15.0%
6x6 2.0% 10.0% 11.0%

TABLE I
COMPARATIVE REPAIR COST OF THE PROPOSED TECHNIQUES AND THE

REPAIR MOST TECHNIQUE IN TERMS OF TARGETED DEFECT RATE

repair technique gives a failure rate of 0%, and the original
Tagged Repair technique gives a failure rate of 2%, whereas,
the Repair Most technique gives a failure rate of 90%.

B. Cost of Repair

A key advantage of our proposed techniques is that they
use considerably less redundancy (percentage of spare units)
to tolerate even higher defect rates compared to Repair Most
technique. The overall nanodevice area of the proposed tech-
niques (Fig. 1 and 2) for a 2N×N LUT with csp spare columns
and rsp spare rows will be (2N + rsp)× (N +csp)− (rsp×csp).
However, due to the implementation architecture of Repair
Most technique, the total area (including original LUT and
the spare units) of the Repair Most implementation will be
(2N + rsp)× (N + csp) units/LUT. As as example, the total
nanodevice area in case of a 23×3 LUT implementation with
100% spares for the proposed techniques will be 3×23×3 =
72 units/LUT. Whereas for the Repair Most technique, the
total nanodevice area will be 4×23×3 = 72 units/LUT, which
is 25% higher. Table I shows the comparative repair cost of
the two proposed techniques with the Repair Most technique
in terms of targeted defect rate. It can be seen that in case
of a 23 × 3 LUT, Modified Tagged Repair can target upto
12% defect with only 25% spares, Repair Most is not able
to target 10% defect rate even with 100% spares. The targeted
defect rate values given in this table have been rounded off to
the nearest 1%. Similarly the number of spare units has been
rounded off to the nearest whole number based on percentage
of spares.

The CMOS area overhead for the Tagged Repair technique
is (2N +rsp) single bit row tags and (N +csp) single bit column
tags. As an example, assuming 100% redundancy, the CMOS
area overhead for a 23×3 LUT using Tagged Repair technique
will be a total of 2× (23 + 3) = 22 single bit tags. However,
the Modified Tagged Repair technique will require an extra
(N + csp) single bit column tags (making it a total of 2×
(N + csp) column tags). Hence the CMOS area overhead for
a 23× 3 LUT, with 100% redundancy, will be 2× (23 + 3 +
3) = 28 tags for a single 23 × 3 LUT. Considering a single
bit SRAM cell requires 6 transistors [13], this will result in
(28−22)×6 = 36 extra CMOS transistors/LUT as compared
to Tagged Repair technique. The overall CMOS area overhead
in terms of transistor count for other LUTs can be calculated

accordingly. The number of row tags for the Modified Tagged
Repair technique will be equal to the Tagged Repair technique.

IV. CONCLUSION

In this work we proposed two new repair techniques for
emerging technology (nano/CMOS) architecture implemented
as LUTs. We have presented theoretical equations and im-
plementation algorithm for our proposed repair techniques.
Simulation results have shown that our proposed techniques
are capable of handling upto 20% defect rates in LUT based
hybrid nano/CMOS architecture. We have also shown that
our repair efficiency of our proposed techniques is better
if circuits are synthesized in smaller sized LUTs. To the
best of our knowledge, the proposed methods are the only
techniques capable of targeting such high defect rates in
LUT implementation in hybrid nano/CMOS architecture. We
have also presented a detailed study of repair cost in terms
of percentage redundancy and an estimate of CMOS area
overhead for the proposed techniques.

V. ACKNOWLEDGEMENT

The authors would like to acknowledge the EPSRC (UK) for
funding this project in part under grant EP/E035965/1 as well
as the Algerian Ministry of Higher Education and Scientific
Research.

REFERENCES

[1] M. M. Ziegler and M. R. Stan, “A Case for CMOS/nano co-design,”
in ICCAD ’02: Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, (New York, NY, USA), pp. 348–
352, ACM, 2002.

[2] C. Jeffery, A. Basagalar, and R. Figueiredo, “Dynamic sparing and
error correction techniques for fault tolerance in nanoscale memory
structures,” Nanotechnology, 2004. 4th IEEE Conference on, pp. 168–
170, Aug. 2004.

[3] F. Sun and T. Zhang, “Defect and Transient Fault-Tolerant System
Design for Hybrid CMOS/Nanodevice Digital Memories,” Nanotech.,
vol. 6, no. 3, pp. 341–351, 2007.

[4] A. DeHon, S. Goldstein, P. Kuekes, and P. Lincoln, “Nonphotolitho-
graphic nanoscale memory density prospects,” Nanotechnology, IEEE
Transactions on, vol. 4, pp. 215–228, March 2005.

[5] A. Singh, H. Zeineddine, A. Aziz, S. Vishwanath, and M. Orshansky,
“A heterogeneous CMOS-CNT architecture utilizing novel coding of
boolean functions,” NANOARCH 07, pp. 15–20, Oct. 2007.

[6] M. Mishra and S. Goldstein, “Defect tolerance at the end of the
roadmap,” In ITC, vol. 1, pp. 1201–1210, 30-Oct. 2, 2003.

[7] M. Stan et.al., “Molecular Electronics: From Devices and Interconnect to
Circuits and Architecture,” Proceedings of the IEEE, vol. 91, pp. 1940–,
Nov. 2003.

[8] D. B. Strukov and K. K. Likharev, “Prospects for terabit-scale nanoelec-
tronic memories,” Nanotech., vol. 16, no. 1, pp. 137–148, 2005.

[9] S. Paul, R. S. Chakraborty, and S. Bhunia, “Defect-aware configurable
computing in nanoscale crossbar for improved yield,” IEEE International
On-Line Testing Symposium, vol. 0, pp. 29–36, 2007.

[10] N. R. Shanbhag, S. Mitra, G. de Veciana, M. Orshansky, R. Marculescu,
J. Roychowdhury, D. Jones, and J. M. Rabaey, “The search for alter-
native computational paradigms,” IEEE Design and Test of Computers,
vol. 25, no. 4, pp. 334–343, 2008.

[11] S. Goldstein and M. Budiu, “NanoFabrics: spatial computing using
molecular electronics,” IEEE ISCA, pp. 178–189, 2001.

[12] “http://www.synplicity.com/,”
[13] A. Bellaouar and M. Elmasry, “Low-Power Digital VLSI Design:

Circuits and Systems,” Springer Publication, . 1995.


