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Abstract

Observations of alarm calling behaviour in putty-nosed monkeys are

suggestive of a link with human language evolution. However, as is often

the case in studies of animal behaviour and cognition, competing theories

are under-determined by the available data. We argue that computational

modelling, and in particular the use of individual-based simulations, is an

effective way to reduce the size of the pool of candidate explanations.

Simulation achieves this both through the classification of evolutionary

trajectories as either plausible or implausible, and by putting lower bounds

on the cognitive complexity required to perform particular behaviours. A

case is made for using both of these strategies to understand the extent

to which the alarm calls of putty-nosed monkeys are likely to be a good

model for human language evolution.

Keywords: individual-based modelling, language, communication, evolution,

alarm calls, primates.
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1 Prologue

Picture the scene: in a remote valley in the rainforests of eastern Nigeria, a group

of putty-nosed monkeys (Cercopithecus nictitans) are feeding on fruits and seeds

in the forest canopy. The group includes a single dominant male, eight females,

and several juveniles. The male stops feeding and looks around, checking on

the positions of the other monkeys, and scanning the area for danger. He sees

a leopard in the fork of a tree, and calls loudly to warn the rest of the group:

“Pyow! Pyow! Hack! Hack! Hack!” The monkeys respond immediately, looking

around in alarm, grabbing and carrying juveniles, and scrambling away through

the treetops. They travel about a hundred and fifty metres before deciding

that this is a safe distance from the leopard. Gradually they return to feeding

behaviour.

What is really happening in this story? There is much here of interest to

students of the evolution of language. At first glance it seems that one mon-

key has become aware of a dangerous predator, and has decided to protect the

rest of the group by warning them about it. The sequence of calls seems to

carry meaning, as it certainly produces an appropriate reaction. It’s tempting

to gloss the call sequence as meaning “Look out, there’s a leopard”, and to see

the other monkeys in the group as having understood this message. It looks

like a paradigmatic case of successful animal communication, but moreover —

and perhaps this is partly because the animals involved are our primate cousins,

and the channel for communication is vocal — it looks a lot like proto-language

(Bickerton, 1990) in action. If this is genuinely proto-linguistic communica-

tion, it would follow that language-evolution theorists should be paying a lot of

attention to these monkeys and other species with similar behaviours.

The bare bones of the above story are true (Arnold & Zuberbühler, 2006;

Arnold et al., 2008) but much depends on the words used to express it. For
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example, we used the verb “call” to describe what the male did after seeing the

leopard, and we implied that he acted with the intention of warning the other

monkeys in the group. We also used quotation marks around the transcription

of the sounds he made, a convention normally reserved for human speech. If

we were to make a less generous interpretation, we might have used the word

“vocalize” instead of “call”, and studiously avoided ascribing any plan or goal

to the vocalizing male. This would flag the possibility that the male monkey’s

behaviour was somehow automatic, rather than the intentional use of a signalling

convention in order to get the warning message across to the others. The story

would start to look less relevant to language evolution.

On the other hand of course, we could have followed the lead of some re-

searchers in primatology (Savage-Rumbaugh et al., 1998) and animal behaviour

(Griffin, 1992) and cast off the careful scientific language that focuses on be-

haviour rather than mental states. We could have described the scene much

as we would describe a conversation between human beings: “one monkey no-

ticed the danger; he warned the others about it and the group decided to move

away.” If we take this approach to its logical extreme, it suggests not so much

that monkey communication is relevant to language evolution, but more that the

monkeys already possess a communication system that is functionally equivalent

to language.

There is a twist in the tale that is even more suggestive. It turns out that

the sequence of calls made by the male is important, in a way that could be

taken to suggest syntactic structure (Arnold & Zuberbühler, 2006). The male

could have produced a sequence made up only of “pyow!” calls, which would

often, but not always, indicate a leopard. Or he could have made a string of

“hack!” calls, which would be associated (again, not reliably) with the presence

of an eagle, another predator of the putty-nosed monkey that requires different
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escape behaviour. The fact that the male produced a pyow-hack sequence seems

to mean something like “Look out everyone, there’s a leopard and we urgently

need to move away from it.” Arnold & Zuberbühler established this by playing

back different call sequences and measuring the distance moved by groups of

monkeys in response. The ordering of the two call types in the sequence of calls

was found to be important in predicting the group’s reaction.

2 Outline of our approach

The situation with putty-nosed monkey alarm calls is typical of a wider problem

in studies of animal behaviour and cognition: we have a growing body of obser-

vational and experimental data, and a range of competing theoretical accounts

attempting to make sense of it all. But the theories are under-determined by

the available data — consider the difficulty of deciding whether the pyow-hack

sequence is descriptive (“there’s a leopard here”) or imperative (“run!”) based

only on the kinds of experiments conducted by Arnold & Zuberbühler.

In keeping with the theme of this special issue, and with earlier arguments

(see for example Todd, 1996; Di Paolo et al., 2000), we believe that the best

way forward is to construct individual-based simulation models of the behaviour

in question. By exploring the results of such models and comparing simulation

outputs with real data, we hope to be able to show, for example, that theory

A is a more plausible explanation of the data than theory B, that theory C is

more complex than it needs to be, that theory D contains a logical flaw, that

theory E could be tested with a novel experimental design, etc.

In section 3 we will show how simulation modelling can be used to examine

evolutionary trajectories. We concur with Dobzhansky (1964) that “nothing

in biology makes sense except in the light of evolution.” Good theories about

animal communication systems (including human language) need to make evo-
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lutionary sense, and, similarly, if a theory proposes a phylogenetic stage that is

evolutionarily implausible, it should be dropped. It is not always easy to tell

from the verbal statement of a theory, however, whether it is consistent with the

theory of evolution. A notable example is the long-held belief by many intelli-

gent biologists that communication could evolve “for the good of the species”.

We will show how simulation models can help with this “quality control” pro-

cess of ensuring that theories are evolutionarily plausible. This focus on the

importance of evolutionary constraints leads us to a view on biological function

and a definition of communication in evolutionary terms.

In section 4 we look at a second, complementary role for computational

modelling: investigating the complexity of the cognitive mechanisms involved

in performing a particular behaviour. It is a long-standing problem in the

behavioural sciences that whereas the available data involve descriptions of be-

haviour, the objects of most interest to investigators tend to be the mechanisms

underlying those behaviours. Inferring the nature of the enabling mechanisms

from their behavioural products is another example of the under-specification of

theory by data. Braitenberg (1984) showed that we probably have a tendency

to over-estimate the complexity of the internal machinery required to produce a

particular behaviour, but fortunately he also pointed to the usefulness of build-

ing simple models as a way of, at the very least, putting a lower bound on the

internal complexity implied by an observed behaviour.

The way forward that we are advocating is not entirely novel, and indeed

the existence of this special issue is evidence that some language-evolution re-

searchers are already well aware of the possibilities of a productive marriage

between empirical research and computational modelling (see also Kirby, 2002;

Cangelosi & Parisi, 2002; Lyon et al., 2007). In section 5 we will return to our

starting point with a detailed description of how simulation models could shed
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light on alarm-calling behaviour in putty-nosed monkeys.

3 Communicative behaviour as the result of a

history of selection

Why do we need formal models to help us show whether a theory about language

or communication is evolutionarily plausible? Darwin (1859) gave us the theory

of evolution 150 years ago; it can be adequately summarized as the effects of the

combined processes of variation, selection and heredity. You might think that

by now we would be used to expressing our theories about biological systems in

evolutionarily consistent terms. The problem is that although Darwin’s idea is

easily communicated, and some intuitions about animal behaviour can be drawn

directly from it, its full implications are not so easily seen. The evolution of

communication or indeed of any social behaviour will be a complicated story in-

volving the gradual elaboration of two or more complementary behavioural roles,

e.g., signaller and receiver. Unaided human intuition has a poor track record

in teasing out the various factors involved in this kind of historical process and

accounting for an evolutionary trajectory from some hypothesized original state

to a currently observable behaviour. Mathematical and, later, computational

models have proven tremendously useful in showing why one trajectory and not

another is likely to be taken by an evolving population (Maynard Smith, 1982,

1989; Belew & Mitchell, 1996; Grimm, 1999).

The evolution of communication seems to be an especially problematic case

as we are, of course, language-using creatures ourselves. In other words, we are

embedded in a highly evolved communication system which we use constantly

and which shapes our thinking about what counts as a normal or typical com-

municative act. We are all familiar with the experience of having a thought or a
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desire, finding words with which to express it, and more-or-less successfully get-

ting the message across to other language users. We are guided by what Reddy

(1979) and Lakoff & Johnson (1980) called “the conduit metaphor”: a mental

state in the sender’s head must be accurately transferred to the mind of the

receiver via a physical vehicle such as a spoken or written sentence. Note some

of the assumptions embedded in this sketch: that both sender and receiver pos-

sess internal representations of the world, that sender and receiver will normally

have a common interest in getting the message across, and that communication

is at heart about information transfer, i.e., reducing the receiver’s uncertainty

about the state of the world. It is this mindset that makes us so readily inter-

pret the behaviour of the putty-nosed monkeys in linguistic terms. However,

the conduit metaphor can get us into trouble when it suggests a communication

system that is not evolutionarily plausible.

The early ethologists (Selous, 1901, 1933; Huxley, 1923; Tinbergen, 1952)

pointed out that the evolutionary history of an animal communication system

must begin with behaviours that don’t yet have a signalling function. This idea

was sound and has been supported by later theoretical and modelling efforts

(notably Quinn, 2001). Given that evolution is a non-directed process, it makes

sense that a behaviour that later evolves into a signal cannot be functioning as

a signal when it first appears, nor can it be selected for its future value to the

animal. The behaviour must originally have some other function (e.g., panting

to lower body temperature) or potentially no function at all (e.g., a nervous

tic) such that the evolutionary process can elaborate it. Ethologists referred to

these behaviours as “derived activities”. Tinbergen (1964) and Lorenz (1967)

were particularly interested in a specific case: “intention movements” in which

one behaviour logically had to come before another, such as the baring of teeth

in preparation for biting. Bared teeth would thus be a predictor of biting and
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would be excellent raw material for later elaboration into a signal. Tinbergen

and Lorenz noted that many animal threat displays were of this form.

The ethologists were also interested in “ritualization”, the hypothesized pro-

cess by which derived activities were elaborated, over evolutionary time, into

true signals. This is of particular interest to us because this is where the ethol-

ogists — in the absence of a formal modelling framework — departed from

evolutionarily sound reasoning. The assumption was that the accurate trans-

mission of information would be of benefit to the species. Even in obviously

competitive situations such as contests over resources, the ethologists reasoned

that a species that successfully communicated information (like the intention,

determination, and capacity to fight) would do better than a species without

such communication, and that therefore the evolutionary process would favour

the communicative species. For them, it followed that any mutation that made

a nascent signal clearer, more obvious, or more exaggerated, would be selected

for. This reasoning is now regarded as deeply problematic.

The logical error in the ethologists’ reasoning was not detected until some

decades after their arguments were introduced. The framework that made it

possible to identify this kind of flawed evolutionary argument was the modern

synthesis. This was the joint effort by Fisher (1930), Wright (1931), Haldane

(1932), and others to bring together Darwin’s theory and the genetic discoveries

of Mendel in a mathematical framework. Why was this needed? The problem of

blending inheritance was a keen one for Darwin; he knew that his theory would

not work if inheritance led to offspring that were in every way a mixture of their

parents characteristics, as any single advantageous mutation would eventually

be lost in a sea of averaging. The particulate inheritance that Mendel observed

in his “factors” — later genes — was exactly what was needed if an evolving

species was to accumulate beneficial mutations. The new mathematical frame-
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work allowed questions such as “under what conditions will this mutation go

to fixation in the population?” to be asked and answered. The modern syn-

thesis led to the gene-centred view of evolution (epitomized by Dawkins, 1976)

and to the modern discipline of population genetics. Notably, it provided a

framework for Williams (1966) to criticize the careless use of group-selectionist

explanations that had become common in biological thought. The argument of

the ethologists, that ritualization can be expected in a species because it will

facilitate better communication, is just such an argument.

Another theoretical breakthrough of great relevance to understanding the

evolution of communication was the introduction, by Maynard Smith (1979,

1982), of game-theoretic thinking to biology. Game theory was devised by von

Neumann & Morgenstern (1947) and was originally intended as a model of

human strategic behaviour, asking what constitutes optimal behaviour when

two or more rational opponents face each other in a well-defined game. Game

theory requires a scale for measuring the preferences of each player across the

possible outcomes of the game; in economic contexts, this measure can be money

or the more abstract concept of utility. Maynard Smith’s great insight was

to see that fitness, measured in numbers of offspring, was the required success

measure in the biological world, and that the mathematics of game theory could

therefore be applied to the strategic interactions that occur between animals as

they pursue goals like feeding, fighting, fleeing and reproducing. There was no

need for an assumption that the interacting parties were both rational: the role

of rationality was replaced by evolutionary history. Over many generations,

animals practicing sub-optimal strategies would have fewer offspring and thus

those strategies would be weeded out.

In economic game theory one of the major theoretical advances had been the

Nash equilibrium concept (Nash, 1951). The key way to think about optimal
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strategies in games was to identify optimal pairs of strategies for which neither

party had any incentive to deviate from that strategy. For example, if two

drivers approach each other on a country road and both are driving on the

left, neither has any incentive to deviate and drive on the right or there will

be a collision. Thus the strategy set (drive on left, drive on left) is a Nash

equilibrium. Maynard Smith took the Nash equilibrium concept and applied it

to the evolutionary setting, devising the related idea of an evolutionarily stable

strategy or ESS. An ESS is a strategy or set of strategies that cannot be invaded

by any mutant strategy — because the mutant player achieves a lower fitness

than the ESS player when the two strategies interact — and is thus a stable

point for evolution. The ESS concept is an excellent example of the way formal

modelling techniques can help weed out bad theories: if it can be shown that a

hypothesized communication strategy would not be an ESS, there is no point

in proposing it to account for observations of animal behaviour.

When evolutionary game theory was applied to the arguments made by ethol-

ogists, i.e., that we can expect selection to favour increasingly communicative

behaviour between members of the same species, the flaw in the logic became

apparent. Suppose that the genetic interests of two animals are directly op-

posed, e.g., two males competing for access to the same female. Could animals

in this situation nevertheless be expected to evolve a signalling system indicat-

ing to each other their level of determination to mate? The answer is no: a

strategy that involves honestly signalling one’s intentions in this case would not

be an ESS. That is because mutant strategies of either lying about one’s inten-

tions or remaining poker-faced and giving nothing away will be able to invade

a population of truth-tellers. Indeed, the evolutionary-game-theory perspective

totally changed the landscape of thought about animal signals: honest signalling

went from being something that would “obviously” happen for the good of the

11



species to being an unusual phenomenon in need of special explanation.

The advance of game-theoretic and population-genetic modelling led Dawkins

& Krebs (1978) to propose a radical new “mind reading and manipulation” view

of signalling (see also Krebs & Dawkins, 1984). Dawkins and Krebs note that

it is often in an animal’s interest to manipulate objects in its world. Often the

object in question is inanimate or immobile, as when a rabbit displaces earth

while digging a burrow. On the other hand, sometimes the object is another

animal: for instance, it is in the interests of predators to ingest prey, males to

inseminate females, and territory holders to repel intruders. In manipulating

the inanimate environment, an animal generally has no choice but to use its

own muscle power. However, when one animal seeks to manipulate another, it

can stimulate the other’s sensory system, thereby exploiting the muscle power

of the second animal, and causing it to behave in a way that benefits the first.

For example, a male frog does not actively move about seeking females, but

instead sits in one place and makes sounds that cause females to approach him.

His croaking can be seen as a way of exploiting the females’ locomotive muscle

power.

Dawkins & Krebs (1978) suggested that animal communication should be

defined in this way; that communication or signalling is what happens when

one animal, the actor, has been selected to produce a response in a second ani-

mal, the reactor, such that the reactor’s behaviour (on average) changes to the

advantage of the actor. Dawkins and Krebs acknowledge that such a definition

moves a long way from our everyday understanding of the word “communica-

tion”, and that there is no implication, in their view, that animals should be

transmitting information to each other in order to qualify as communicating.

They admit (p. 283) that they are “tempted to abandon the word communica-

tion altogether.” Dawkins and Krebs argued that animal communication serves
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not to inform but to persuade, and that advertising and propaganda are more

apt metaphors than language for what goes on in the animal kingdom.

Mathematical modelling and evolutionary game theory in particular have

been productive tools in helping to identify flawed reasoning in theories of the

evolution of communication, and in suggesting new perspectives on what com-

munication really is. However, they suffer from a serious drawback: for a math-

ematical model to be of use, it must remain simple enough to be tractable.

Many game-theoretic models, for example, consider only a handful of alterna-

tive possible strategies — often just two. This is not because of any lack of

imagination on the part of the model’s authors. The relevant equations for ex-

tremely complex games and strategic situations can be written down, but they

cannot be usefully manipulated to arrive at a general solution. (Many of the

games people play for fun, such as chess or poker, are too complex for game-

theoretic analysis in their complete forms.) This is why computational models

are also required (Di Paolo et al., 2000). Computational models have their own

difficulties, including a potentially vast number of parameters and the potential

for epistemological confusion with real data (for discussion of these issues see for

example Grimm, 1999; Di Paolo et al., 2000; Bryden & Noble, 2006). However,

with sufficient computing power computational models can be used to tackle far

more complex scenarios than can be expressed mathematically. Indeed, we see

no fundamental difference between mathematical and computational modelling:

both are examples of a broader set of formal models, and mathematical models

represent the subset that is amenable to analytic techniques. Computational

models, in contrast, admit of no (currently known) short cuts to a solution and

must, like a recipe, be carried out in full to achieve a result (Bullock, 1997).

The two types of modelling are complementary rather than opposed.

Over the last two decades, work in computational modelling, and specifically
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the use of evolutionary simulation models, has extended the game-theoretic

perspective and told us much about how communication can evolve. Early

work focused on simple, abstract communication systems (MacLennan, 1992;

MacLennan & Burghardt, 1994) and then branched out to cover different con-

texts for animal communication such as sexual display (Werner & Todd, 1997;

Bullock, 1998; Noble, 1999b) and aggressive signalling (Wheeler & de Bourcier,

1995; Noble, 2000; Quinn & Noble, 2001). Simulation models have been used

to question the standard paradigm of communication as information-transfer,

emphasizing coordinated action instead (Di Paolo, 1997; Quinn, 2001; Williams

et al., 2008). Researchers interested in human language have looked at the mul-

tiple adaptive processes involved (Kirby & Hurford, 1997; Smith et al., 2003)

and at the origins of reference (Cangelosi & Harnad, 2000; Vogt, 2006; Vogt &

Divina, 2007; Donaldson et al., 2007). Kirby (2002) provides an excellent review

of simulation work relevant to language evolution; Lyon et al. (2007) is a recent

collection. An important general result has been that the evolutionary path to

communication can be counter-intuitive: sometimes things that seem easy to

evolve are in fact hard (such as alarm calls, e.g., Noble, 1999a) and sometimes

things that initially look impossible turn out to work under the right conditions

(e.g., honest sexual signalling under the handicap principle: Bullock, 1998). We

conclude from this that building formal models is essential to making sure that

theories about how communication evolved really do make evolutionary sense.

Some readers may feel that the argument presented so far is an abstract

one about mathematical results in evolutionary theory and that it is not rele-

vant to such traditionally social-science domains as language and culture. This

would be a mistake. Although the human animal is certainly exceptional, and

phenomena like “ratchet culture” (Tomasello, 1999) appear to be unique to our

species, continuity between ourselves and the rest of the biological world is a
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non-optional consequence of Darwin’s theory (see Darwin, 1871; Tooby & Cos-

mides, 1992; Pinker, 1994, among many others, for more detailed arguments).

The need for a plausible evolutionary history applies as much to haiku and

political parties as it does to hacks and pyows.

Furthermore, we believe that in trying to explain the origin of phenomena

such as meaning, reference, and intentionality, evolution is ultimately the only

game in town. In her book Language, Thought, and Other Biological Categories,

Millikan (1984) argues that, given a physicalist view of the universe, the only

process that can give rise to something like purpose is natural selection. Millikan

claims that the function of a biological phenomenon is determined not by looking

at its place in a causal network in the here and now, but by examining its

evolutionary history. Specifically, the purpose of a trait, or, to use Millikan’s

terminology, its proper function, is to do that which gave a fitness advantage

to ancestral holders of the trait. In other words, the proper function of a trait

— what it’s for — is to do whatever it did in the past that led to its being

here today. For example, suppose that a herbivore has a tendency to run from

any sudden movement, and that this tendency leads, over many generations, to

the differential survival of those who possess it because they are more likely to

escape attacks by predators. The proper function of this tendency is therefore

to assist the animal in evading predators, whether or not it actually achieves

this on average, or indeed ever, in the modern environment. The modern trait

is to be explained with reference to its evolutionary history.

Consider these positions together: Millikan on evolved function, Dawkins

and Krebs on a new view of communication, mathematical and computational

approaches to modelling evolutionary trajectories, and the insight from ethology

that communication must begin with non-communicative roots. We are led

to a typology of communicative and related phenomena (figure 1) where the
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emphasis is on the history of selection behind the behaviours involved. We

suggest the general term “influence interaction” to refer to an event where one

animal acts in such a way as to influence the perceived states of the world, and

thus alter the subsequent behavioural response, of a second animal. Note that

the first animal’s action is itself a response to its perceived states of the world,

and that the action’s effect on the second animal is mediated by the environment.

In any given influence interaction, we can ask whether the actions of the first

and of the second animal are fulfilling their proper functions in Millikan’s sense.

The possible answers to these two questions (yes or no in each case) constitute

four distinct situations.

[Figure 1 about here.]

First, it may be the case that influencing the behaviour of the second animal

is not the proper function of the first animal’s action, and nor is the second ani-

mal’s response fulfilling its proper function. We refer to these cases as examples

of “accidental influence” (the lowest labelled arrow in figure 1). For example,

the vibration and noise caused by a pig rooting for truffles might prompt a mole

to flee because it believed that a predator was approaching. The proper function

of the pig’s behaviour is to uncover truffles; the proper function of the mole’s

behaviour is to help it evade predators. The fact that the pig has influenced the

mole in this way is in line with neither of these two functions.

Second, it is possible that the first animal’s action is fulfilling its proper

function, but the second animal’s response is not. For instance, when the lure

of an angler fish attracts a smaller fish, causing it to approach and be eaten, the

lure display is fulfilling its proper function. The smaller fish’s approach response

is not: its proper function is to guide it towards its own prey. Krebs & Dawkins

(1984) call this “manipulation” and we will adopt the same terminology here.

Specifically, the first animal is manipulating a response of the second that has
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evolved for some other purpose.

The third possibility is that it is not the proper function of the first animal’s

action to influence the behaviour of the second, but that the second animal’s

response is in line with its proper function. In Krebs & Dawkins’s (1984) terms

this is “mind-reading”. However, an example suggests that “exploitation” is a

more general term: if the wind changes when a cheetah is stalking a herd of

antelope, and they catch her smell and flee, then the antelope have exploited

natural information about the cheetah. It is not the proper function of the

cheetah’s body to produce smells that will scare off antelope, but the proper

function of such a response in the antelope is surely to keep them out of danger.

Figure 1 shows both manipulation and exploitation as arrows in the centre of

the diagram.

Finally, the behaviour of each animal in an influence interaction may be

fulfilling its proper function. This is most easily seen in cases where the outcome

is mutually beneficial: the dance of a returning bee and the subsequent directed

foraging behaviour of its hive-mates are both fulfilling their proper functions.

When both the action and the response are performed in accordance with their

proper functions, the aspect of the first animal’s behaviour that influences the

second qualifies as being genuinely representational in the sense discussed by

Harvey (1996) — i.e., that it matches the sense in which representation is a

four-place predicate with P using Q to represent R to S). We refer to this class

of interactions as “proper signalling” (uppermost labelled arrow in figure 1).

This definition is not entirely original: Bullock (1997) defines “full-blooded

signalling” in a similar fashion, and Oliphant (1997) is getting at much the same

idea when he says that true signalling is what happens when an interaction is

simultaneously exploitative and manipulative.

We present this typology because it emphasizes the explanatory template for
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successful models of the evolutionary history of a behaviour like alarm calling or

language use. The ethologists original point about “derived activities” means

that all signalling systems must begin as cases of accidental influence: for no

particular reason it happens that one animal’s behaviour influences another.

The next development will be towards either exploitation or manipulation (or

just possibly both simultaneously) depending on which party gains a selective

advantage from the interaction. For example, the origins of the bee dance may

lie in exploitation, whereby a novel strategy of following other bees when they

left the hive was successful. Or it may lie in manipulation, in which mutant

dancers managed to affect the take-off directions of other bees. The final step in

explaining the emergence of proper signalling is to show how what was previously

an exploitative or manipulative relationship comes to be in the interests of both

parties. (Note that an immediate jump from accidental influence to proper

signalling is inherently unlikely as it requires two fortuitous mutations to occur

simultaneously.) The task for simulation modellers interested in a behaviour

like monkey alarm calls or human language is to demonstrate an evolutionary

trajectory along these lines.

4 Using simulations to make inferences about

cognitive complexity

When we see an animal or a robot that exhibits complex behaviour, we tend

to suppose that there are complex mechanisms behind it — but we can be

wrong. Braitenberg’s (1984) book Vehicles begins with this point, and shows

that surprisingly complicated behaviour can be the result of very simple internal

mechanisms. Braitenberg is ostensibly talking about robots but his book is re-

ally a parable about the evolution of nervous systems. Simon (1981) uses a story
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about an ant travelling across a rocky beach to make a similar point: apparent

complexity in the ant’s trajectory need not come from any complex cognitive

mechanisms in the ant’s head, but from the interaction between potentially

very simple mechanisms (e.g., “turn left forty-five degrees when encountering

an obstacle, otherwise go straight”) and a complex environment.

We know from these kinds of thought experiments and from practical results

in fields such as artificial life and evolutionary robotics that simple mechanisms

can produce complex behaviour. We also know that evolution is in general a

gradual process and, to a first approximation, can construct complex mecha-

nisms only by the slow accumulation of successive adaptations. We therefore

have good reason to model the evolution of cognition “from the bottom up”,

i.e., by starting with theories that propose the minimum possible complexity

in the cognitive mechanisms behind a given behaviour. Braitenberg makes an

additional point in favour of starting with simple models with his “law of up-

hill analysis and downhill invention”: it is easier to reproduce a behaviour by

starting with a simple mechanism and tinkering than it is to do so by analyzing

behaviour and constructing inferences about what must have caused it.

What kinds of cognitive mechanisms are we talking about? What are the

important differences in the cognitive faculties of real organisms, and how could

they be captured in computational models? Dennett’s (1996) book Kinds of

Minds provides a hierarchical classification scheme that we can use to get

started.

Darwinian creatures: simple automatons whose behaviour is governed by

hard-wired sensorimotor connections. They are not capable of individual

learning although the whole species may adapt over evolutionary time.

An example: bacteria.

Skinnerian creatures: inherit the hard-wired responses of their Darwinian
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ancestors but are also capable of individual learning. Positive and nega-

tive reinforcement will shape their behaviour accordingly. Named for the

psychologist B. F. Skinner. An example: insects.

Popperian creatures: can learn by trial-and-error as Skinnerian creatures do,

but also possess some kind of model or representation of their external

environment such that they can test their plans before carrying them out

in the real world. Named for the philosopher of science Karl Popper who

suggested that this sort of mental modelling “allows our hypotheses to die

in our stead.” An example: most mammals and birds.

Gregorian creatures: are Popperian creatures that have transformed their

environment through the use of tools, technology, and culture. Dennett re-

gards language as a tool in this sense. Named for the psychologist Richard

Gregory. An example: human beings.

Dennett intended this classification as a general description of the different types

of cognition in the natural world, but we note that it is specific enough to suggest

implementable algorithms for different types of agents in a simulation model.

It is clear from years of empirical research (e.g., Cheney & Seyfarth, 1990)

that mammals such as putty-nosed monkeys are capable of reinforcement learn-

ing, and moreover that they have at least basic kinds of internal models of the

world, which puts them at the Popperian level. (Some non-human primates

may even be at the Gregorian level, but this is contentious and exactly the kind

of issue we hope to shed light on with computational modelling.) We there-

fore need to expand the potentially overcrowded Popperian level somewhat, by

focusing on the degree of sophistication of the animals’ internal models of the

world. Some of the simplest world models might be along the lines of a basic

map, enabling navigation between a home base and distant feeding sites. More
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complex models start to include representations of other animals, and even of

the content of the world models of those animals.

This connects directly with a long-standing debate in primatology on theory

of mind Premack & Woodruff (1978). Experiments with chimpanzees — in-

volving food-sharing, hidden food, begging, and experimental confederates who

may or may not be aware of food locations — have provided a fascinating win-

dow onto how the chimpanzee mind works when reasoning about other agents,

but there remain very different intepretations of the results. On one side are

sceptical researchers like Povinelli & Vonk (2003) who grant that chimpanzee

world models include other chimpanzees, but not their cognitive states. Other

researchers such as Tomasello & Call (1997) insist that the world models of

chimpanzees include beliefs about the beliefs of other chimpanzees. The contro-

versy is a perfect example of the under-determination of theory by currently

available data (as Povinelli & Vonk, 2004, now recognize).

There is also a connection with studies of language. Grice (1969) put forward

the case (later developed by Bennett, 1976) that considering different levels of

sophistication of world-models allows us to pick out a special kind of communi-

cation. Grice and Bennett rely on the intuition that there is a difference worth

marking between a situation in which causal automatons exchange signals (note

that there is nothing preventing the simplest Darwinian creatures from having

a hard-wired communication system) and a communication system in which

participants really mean what they say. Their argument is that “real” commu-

nication can be roughly equated with human speech acts, and must involve, at

a minimum, third-order intentionality.

To have first-order intentionality is to be a basic intentional system, i.e.,

to have beliefs and desires concerning the world, such as “I believe there is a

predator nearby”, or “I want to mate with this animal”, but not to have any
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beliefs or desires that are themselves about beliefs or desires. In other words,

this is the simplest kind of Popperian creature. Second-order intentionality is to

have beliefs (or desires) that can be about beliefs (or desires), such as “I want

this animal to believe that there is a predator nearby.” Finally, third-order

intentionality means being able to hold beliefs about beliefs about beliefs (and

desires about desires about desires, etc.). Thus, we come to Grice’s formulation

for a true speech act: that the speaker intends the hearer to recognize that

the speaker wants the hearer to produce a particular response. For instance,

if one person asks another to “please pass the salt”, then although the speaker

wants the salt, she does not intend to exploit some salt-passing reflex in the

listener, but rather that the listener should come to believe that the speaker

wants the salt and therefore pass it to her. Grice and Bennett claim that this

sophisticated form of communication is what distinguishes true language from

simple signalling systems.

De Ruiter & Levinson (2008) (see also Levinson, 2006) argue for the idea

that the evolution of communicative skills, i.e., the ability to map signals onto

communicative intentions and vice versa, which underlies the Gricean process,

necessarily precedes the evolution of language. There is indeed some evidence

that these skills are “implemented” in humans in the form of an internal simu-

lation model of the intentions of others (De Ruiter et al., 2007). Dennett (1988)

also believes that only third-order intentional systems (or better) can “really”

communicate. He gives an example (p. 188) of second-order intentionality that

fails to qualify: “I want you to believe I am not in my office; so I sit very quietly

and don’t answer your knock. That is not communicating.”

In his earlier work, Dennett (1987) proposed that we take an “intentional

stance” towards cognitive agents that we are studying. This means assuming

that the agents of interest (e.g., animals) are rational, and trying to predict
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their behaviour from that assumption combined with educated guesses as to

their beliefs and desires. Dennett contrasted this approach with an insistence

on studying only low-level mechanisms, as neuroscientists or ultra-reductionist

philosophers would do. There was no empirical claim that the animal was ratio-

nal, only a pragmatic suggestion that we could achieve good predictive success

by treating it as if it were. Dennett argues that this approach would allow us to

test hypotheses about the order of intentionality involved in a communication

system. For example, there may be some debate as to whether monkey alarm

calls exhibit first- or second-order intentionality. If the former, then a calling

monkey wants its hearers to run to safety, for example. If second-order inten-

tionality is involved, then the caller may want its hearers to believe that there is

a leopard approaching. Dennett suggests that careful experimental work could

distinguish between these two hypotheses. Note that the second-order hypoth-

esis, for instance, implies that the monkeys have some conception that other

agents in their environment can have beliefs. If the monkeys never exhibit this

ability — perhaps their occasional attempts at “deception” are always com-

pletely unsophisticated, indicating a failure to appreciate that other monkeys

can see for themselves that things are not as the would-be deceiver would have

them — then we must fall back on the first-order hypothesis to explain their

behaviour.

Standing beneath even this, argues Dennett, is the “killjoy” null hypothesis

of zero-order intentionality. This is the prospect that the monkeys do not even

have first-order beliefs, but behave in accordance with simple tropisms. In

Dennett’s later terminology (1996) this means being a Darwinian or at best a

Skinnerian creature. In the presence of leopards, a monkey would experience

an instinctive or learned “leopard anxiety” and automatically make a certain

sound; those who hear the sound experience an equally blind reflex compelling
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them to flee.

There is a problem, however, to do with the assumption of rationality in

Dennett’s intentional stance. Allen & Bekoff (1997) compare Dennett’s and

Millikan’s notions of intentionality or meaning in natural systems, and remind

us that Dennett’s intentional stance is supposed to be effective to the degree

that the organism being studied conforms to an idealized notion of rationality.

The animal under investigation is supposed to have certain beliefs and desires,

and is predicted to behave in a manner consistent with the logical pursuit of

those desires given those beliefs. For example, if a monkey wants food currently

in the possession of another, and believes that the other would abandon the

food if it thought there was imminent danger, we could predict that the first

animal might try a false alarm call.

On the other hand, Millikan’s ideas on intentionality appeal entirely to evolu-

tionary history and make no assumptions about rationality. Millikan’s position,

according to Allen & Bekoff, allows us to recognize that animals can be highly

specialized in their ability to infer intentional states, and that the ability to do

so in a particular context does not imply a general ability. Thus it is entirely

possible that an animal might behave in Machiavellian third-order ways but

only in specific contexts. For example, a monkey might be capable of pretend-

ing not to notice that it was being observed by another, in the context of a

deceptive food-hiding scheme. Millikan sees no reason why this could not occur

despite a complete failure on the part of the same monkey to exhibit third-order

intentionality in other situations: she argues that natural selection tends to pro-

duce cognitive capacities that match specific ecologically relevant tasks, rather

than an all-encompassing reasoning ability. Therefore a definition of “real com-

munication” in terms of higher-order intentionality would be founded on the

dubious premise that animals either unambiguously did or unambiguously did
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not possess such intentional capabilities.

Millikan’s position appears to have been borne out by developments in pri-

matology. The recent consensus in the literature (Seyfarth & Cheney, 2003;

Maynard Smith & Harper, 2003) is that although receivers put together in-

formation from signallers in such a way as to suggest complex world-models,

and possibly higher-order representations, the behaviour of signallers can usu-

ally be accounted for by more straightforward (i.e., Darwinian or Skinnerian)

mechanisms. The same animal can at different times be both a signaller and a

receiver, of course, and so Millikan’s point that a cognitive system can be more

sophisticated in one aspect and less sophisticated in another is demonstrated.

We need to make a brief cautionary comment here: we have used terms such

as “meaning” and “intentionality” but always with a view to remaining good

materialists, which is why we have spent time explaining Millikan’s position on

evolved function. We use the term “intentional” in approximately Brentano’s

(1874) sense of “aboutness” and do not mean to license in any way the al-

ternative sense meaning roughly “on purpose” or “deliberately”, as it is often

used in both folk and academic psychology. Authors who use this term seem

to be gesturing towards an implicit two-level theory of cognition, associating

the good stuff with voluntary control and conscious deliberation. In studying

animal behaviour this is completely unhelpful given that non-linguistic animals

are not going to be able to tell us which of their decisions were voluntary. We

feel that the reasons for steering clear of consciousness-talk were neatly summed

up nearly 100 years ago by Watson (1913) and remain true today: “One can

assume the presence or absence of consciousness anywhere in the phylogenetic

scale without affecting the problems of behavior by one jot or tittle and without

influencing in any way the mode of experimental attack upon them.”

At this point we have a recognition that simple cognitive mechanisms can
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achieve complex behaviour, a rough hierarchy of the kinds of cognitive architec-

tures animals may employ, and a focus on the degree of sophistication of internal

world models as being key to differentiating between language-like communica-

tion and simpler forms. What is the way forward for computational models

of cognition? The most basic role for models in this field is to stand as exis-

tence proofs that a simple mechanism can enable a particular behaviour, just

as Braitenberg’s (1984) “Vehicle 2B” shows that phototaxis is possible with-

out any internal world model at all. Of course, these sorts of demonstrations

do not establish that real animals use that particular mechanism to enable the

behaviour in question, but they do serve to put a useful lower bound on the

complexity required to produce it.

In a sense, though, simple models like Braitenberg’s have succeeded too well.

Researchers such as Brooks (1991) and Cliff et al. (1993) have demonstrated that

robots can be either hand-designed or evolved to perform moderately sophisti-

cated tasks, all without the use of internal representations. (This is quite similar

to the argument used in artificial intelligence and philosophy of mind that any

given behavioural strategy could in theory be represented by a look-up table.)

In Dennett’s terminology, this is a demonstration that much can be achieved

by Darwinian and Skinnerian creatures. One conclusion that could be drawn

from this work is that animals are mere automatons and that the Popperian

and Gregorian categories are empty. However, this does not do justice to evolu-

tionary continuity: we know that in the human case we are capable of scheming,

planning and even gossiping in ways that require third- or higher-order inten-

tionality, and that we use spoken and written language as tools to gain access to

concepts that we could not arrive at alone. It is entirely reasonable to suppose

that these abilities did not spring forth in a single mutational leap, and that

therefore we should expect to find transitional forms amongst the primates, the
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mammals in general, and possibly further afield. (Indeed, we see it as a key

long-term question for modelling to ask what small set of genetic changes in the

line leading to Homo sapiens sparked our Gregorian revolution and has led to

such obvious differences between our behaviour and that of other primates.)

Rather than just demonstrating that animal communication systems could

be implemented using simple Darwinian architectures, we believe that a more

constructive and exciting use of computational modelling is to look simulta-

neously at cognitive complexity and at plausible evolutionary trajectories (as

discussed in section 3). We can then ask how strong the evolutionary advantage

of a more complex architecture might be over a simpler one. In other words,

given the environmental problem it faces, what metabolic costs should an ani-

mal be prepared to pay for more cognitive horsepower? In cases like an alarm

call system, modelling could show that a simple hard-wired Darwinian scheme

would get the job done fairly well (assume a reflex for signalling in response to

danger and a reflex for responding to that signal by fleeing). And yet there are

features of the observed behaviour that lead some observers to suspect some-

thing more Popperian. The question for the model builder becomes: how much

of a selective advantage would it be to have the more sophisticated system? Is

there a plausible evolutionary route leading from inevitably Darwinian origins

to a modern Popperian or Gregorian strategy? Godfrey-Smith (1998) demon-

strates that these kinds of increases in cognitive complexity are not inevitable

(i.e., much can be done with Darwinian / Skinnerian architectures) but he notes

that the main evolutionary driver for more sophisticated cognitive equipment

is an increase in environmental complexity. Godfrey-Smith also points out that

the most challenging feature of the environment will eventually be the behaviour

of other animals, and so we need to model the co-evolutionary relationship be-

tween (in the alarm-call case) the strategies of signallers, receivers, and their
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predators.

Noble et al. (2001) is an example of the approach we advocate. This model

deals with social learning in rats: the animals implicitly communicate about

which food types are safe to eat by smelling each other’s breath. Some cogni-

tive faculties, such as an ability to remember a range of foods, are built into

the model. Others are left open to an evolutionary process: whether the rats

take the risk of trying totally novel food types, whether they smell the breath

of other rats, and whether they’re capable of discriminating between sick and

healthy rats when doing so. These genetic options spell out increasingly complex

behavioural strategies: some rats may simply try out new food for themselves

and eschew social learning, others may eat novel food at a low rate and exhibit

a “dumb” social learning strategy that is not sensitive to the condition of other

rats, and finally some may have a sophisticated social learning strategy and

avoid novel food almost entirely. Through the use of very small energetic costs

for each cognitive ability Noble et al. ensured that more complex strategies

would not evolve through genetic drift when the fitness of a simple and a com-

plex strategy was equal. The logic here was that although it’s very difficult to

put a number (in joules or in units of predicted offspring) on the cost of some ex-

tra cognitive ability, it’s clear that more cognitive power costs something and so

a minimal cost in the simulation is justified. The somewhat surprising result of

the study was to show that the dumb social learning strategy (i.e., not the most

complex of the available strategies) was evolutionarily stable given some realistic

assumptions about the frequency of toxic substances in the environment.

We remain very much aware that the “why?” and the “how?” of any

observed animal behaviour are ultimately empirical questions, and we do not

believe for a moment that computational modelling can be a substitute for field

and laboratory work. The job of a model is to show which of several compet-
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ing theories is the most plausible and conceptually economical. In doing this,

model builders must rely on empirical data, but one of their outputs can often

be productive suggestions for future empirical work. We also believe that is

very important that a model does not have hoped-for conclusions built into it.

A good model must cover a space of possible evolutionary outcomes such that

a phenomenon of interest, such as higher-order intentionality, either might or

might not emerge depending on the selective pressures imposed by the environ-

ment and by the co-evolution of the relevant strategies. If a model somehow

takes it for granted that, for instance, higher-order intentionality is involved in

monkey alarm calls, then it can shed no light on the evolutionary origins of the

phenomenon.

5 How should we model monkey alarm calling

behaviour?

Our plan for modelling the alarm-call system of putty-nosed monkeys follows

from our position on simulations as being most useful for modelling evolutionary

trajectories and for looking at the mechanisms underlying particular behaviours.

There is no argument that these monkeys are Popperian creatures, i.e., that they

are at least first-order intentional systems with respect to at least some of their

abilities. The questions we want to ask are about the extent to which first- or

higher-order intentionality is reflected in the monkey’s signalling behaviour in

response to predators, and in their responses to the signals of other monkeys.

As described in section 1, male monkeys have two distinct call types, pyows

and hacks. Hacks appear to be true alarm calls, probably reserved for the most

alarming events. They are given in response to eagles (real and experimenter-

simulated), in response to other males hacking in the vicinity, and to noisy
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disturbances such as tree falls, baboons fighting, etc. Pyows are elicited by

leopard stimuli, the same range of noisy events that elicit hacks although at

greater distances (quieter versions), other males hacking in the distance, other

males pyowing, and are sometimes given entirely spontaneously. These calls are

not reliably referential but there is a bias in favour of hacks being given to eagle

stimuli and pyows being given to terrestrial disturbances and predators. The

same stimuli can also elicit hacks if nearby and pyows if far away, e.g., trees

falling (Arnold & Zuberbühler, 2006; Arnold et al., 2008).

Listeners look up if they hear hacks and look toward the caller if they hear

pyows. However, if playbacks of hacks are preceded by a loud noise (thunder

or a tree falling) females look up briefly but then direct attention at the source

of the sound. Listeners can thus disambiguate meaning by taking into account

contextual, usually audible, information. If a male pyows after hearing another

male pyowing, then the cause of the pyows are the pyows of the neighbouring

male. If there is no audible information, listeners look for other forms of infor-

mation, e.g., if the male pyows because he has seen a terrestrial predator, his

body posture will direct the attention of females within visual contact toward

the predator. Pyows given entirely spontaneously are probably male advertise-

ments of presence or location and the sight of the relaxed male and no available

audible information indicates this.

All this suggests that calling strategies could be simple Darwinian or Skinner-

ian capacities (there is no evidence of callers taking their audience into account

for example) whereas signal reception strategies are more sophisticated, with

the possibility of higher-order intentionality if females are capable of something

like “Pyow? There might be a predator. . . no, I think he only intended for me

to see where he was.”

So how do we turn these observations into a productive model? The most
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basic strategic problem faced by the monkeys is how much time to spend feeding

and how much to spend looking out for predators. The core simulation should

thus be a model of anti-predator vigilance (see e.g., Bekoff, 1995) coupled with

a signalling model. That is, individuals have some sort of strategy for balancing

foraging with looking out for predators. This could be extremely simple, such

as a proportion of time spent checking for predators and a probability, when

checking, of spotting a nearby predator per unit of time. Individuals would also

have a signalling strategy (what call to make, if any, in what circumstance) and

a receiving strategy (how to respond to different calls). The interesting part of

the model happens when we set up the signalling and reception strategies as

being modulated by different levels of intentional sophistication: in a zero-order

system, the signalling strategy is based only on directly perceived events. In

a first-order system, the signalling strategy is instead based on some kind of

represented state of the world. In a second-order system, the signalling strategy

is based on a representation that includes the beliefs of others, and so we have

possibilities such as “calling because you believe the others have not yet seen

the predator”, etc.

The ecological niche of the monkeys must be modelled as plausibly as pos-

sible, although this is not the same thing as modelling it in exhaustive detail.

Important aspects to get right (informed by field data) include the frequency of

predatory encounters, the typical success rate of an encounter from the preda-

tor’s point of view, the appropriate response to each type of predator, and the

difference that an appropriate response (e.g., hiding in the forest canopy) makes

to an individual’s chances of being taken by the predator. Modelling the phys-

ical structure of the environment could be done at an arbitrary level of detail,

but the important thing is to capture the notion that life in the rainforest means

short sight lines and the possibility of predators getting quite close before they
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are seen. Similarly the visual system of the monkeys could be modelled at

various levels of realism: from abstracting vision to a sphere centred on the

monkey’s position with a given probability of detecting any predators within

range, to an optically realistic model including occlusion by vegetation, foveal

and peripheral vision, and head movement. The responsible thing to do here is

to implement several different vision systems, starting with the simplest, and to

determine whether they have any effect on the conclusions. In initial versions of

the model the typical group size and group composition for the monkeys should

be an assumption, although in later iterations of the model this could be some-

thing that emerges from individual decision-making about whether to stay with

or leave a group, and would be based on both foraging success rates and life

history strategy with regard to mating.

The evolutionary structure of the model would involve leaving the major

variables (i.e., vigilance strategy, signalling and response strategies, intentional

system level) open to adaptation, and running a variety of simulations to get an

idea of where natural selection tends to go given different assumptions about the

environment. The initial population would have reasonable ancestral strategies,

such as no signalling and no specific reception policy, such that communication

had to build up from accidental influence (e.g., a random genetic tendency

to move in response to the noise made by other monkeys moving) through

manipulation and exploitation to proper signalling. Initial benchmark runs

would implement no special costs for different levels of intentional sophistication

(and so we might guess that second- or third-order systems would come about

if all that extra cognitive power was free) and then we could introduce modest

costs and look at whether higher-order intentional cleverness is worth having

when you don’t get it for nothing. Building on the idea of evolutionarily stable

strategies, invasion studies would also be useful, in which we set up signalling
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systems at each level of sophistication and look at whether they’re open to

invasion by either more or less sophisticated strategies. These techniques will

help to establish which picture of the monkeys’ world-modelling abilities is the

most plausible given their observed behaviour.

Early, simple versions of our model may be open to the criticism that we have

a sceptical bias about the intentional capabilities of putty-nosed monkeys as we

have built a simple simulated environment for them in which the only significant

event is the arrival of a predator, and therefore there is no need for sophistication

about the mental states of others as the only interesting message that anyone

will ever be trying to get across is “Look out, there’s a predator!”. The solution

to this is of course to enrich the lives of our simulated monkeys: to build a

more complex environment in which it makes sense to engage in food calls, con-

tact calls, sexual display, sexual dimorphism in signalling strategies (which the

real monkeys certainly have), intraspecific aggression, etc. As Godfrey-Smith

(1998) argues, there’s no need for cognitive sophistication in a simple world. In

an environment where there is more than one message that the speaker might

be trying to get across it makes more sense that a listener might want to try to

reconstruct the speaker’s intention. This would be a pragmatic question for our

model though. That is, we would start with a simple environment and gradually

add environmental features that could be communicated about, noting the point

at which selective pressure for higher-order intentionality emerges. An increas-

ingly rich model might also shed light on the evolutionary origins of syntactic

communication, as hinted at in the results of Arnold & Zuberbühler (2006), and

the type of intention-modelling cognitive module suggested by De Ruiter et al.

(2007).
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