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ARTICLE INFO ABSTRACT

Photovoltaics is already a billion dollar industry. It is experiencing rapid growth as concerns over fuel
supplies and carbon emissions mean that governments and individuals are increasingly prepared to
ignore its current high costs. It will become truly mainstream when its costs are comparable to other
energy sources. At the moment, it is around four times too expensive for competitive commercial
production. Three generations of photovoltaics have been envisaged that will take solar power into the
mainstream. Currently, photovoltaic production is 90% first-generation and is based on silicon wafers.
These devices are reliable and durable, but half of the cost is the silicon wafer and efficiencies are
limited to around 20%. A second generation of solar cells would use cheap semiconductor thin films
deposited on low-cost substrates to produce devices of slightly lower efficiency. A number of thin-film
device technologies account for around 5-6% of the current market. As second-generation technology
reduces the cost of active material, the substrate will eventually be the cost limit and higher efficiency
will be needed to maintain the cost-reduction trend. Third-generation devices will use new
technologies to produce high-efficiency devices. Advances in nanotechnology, photonics, optical
metamaterials, plasmonics and semiconducting polymer sciences offer the prospect of cost-competitive
photovoltaics. It is reasonable to expect that cost reductions, a move to second-generation technologies
and the implementation of new technologies and third-generation concepts can lead to fully cost-
competitive solar energy in 10-15 years.
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1. Introduction Cost, in terms of $/W, remains the greatest barrier to further
expansion of PV-generated power and cost reduction is the prime
Why photovoltaics? There was a time when this was a difficult ~ goal of the PV sector.
question to answer. Fossil fuel was plentiful and apparently
without end, and the Earth’s environment appeared resilient. The
photovoltaic (PV) industry was based on the niche applications of
powering satellites and remote locations. However, the tide has
changed dramatically, with growing recognition of the environ-

mental impact of non-renewable energy sources and the econom-

2. Current status of photovoltaic technology

The current PV market consists of a range of technologies
including wafer-based silicon and a variety of thin-film technol-

ic volatility that comes from reliance on oil and gas.

Subsidy-based market strategies, particularly in Japan and
Germany in the late 1990s, pump-primed a PV-industry that is
increasing in economic importance and is now a billion dollar
industry undergoing staggering growth (Fig. 1).

As well as providing an energy source that is acceptable to
environmentalists, photovoltaics has the interest of a financial
sector that now sees a business case for investment. It seems
possible that it will be economic arguments rather than environ-
mental arguments that will push PV energy into the mainstream.

* While the Government Office for Science commissioned this review, the views
are those of the author(s), are independent of Government, and do not constitute
Government policy.

* Corresponding author. Tel.: +44 023 8059 7609; fax: +44 023 8059 3029.

E-mail address: dmb@ecs.soton.ac.uk (D.M. Bagnall).

ogies. The range of current technologies and possible future
options have been grouped from current first-generation to future
third-generation technologies (Green, 2006).

2.1. First-generation PV

Current PV production is dominated by single-junction solar
cells based on silicon wafers including single crystal (c-Si) and
multi-crystalline silicon (mc-Si). These types of single-junction,
silicon-wafer devices are now commonly referred to as the first-
generation (1G) technology, the majority of which is based on a
screen printing-based device similar to that shown in Fig. 2.

Originally built using single-crystal wafer silicon (c-Si) and
processing technology from the integrated circuit (IC) industry, it
is clear that 1G silicon PV benefited greatly from its symbiosis
with the IC industry which provided the materials, processing
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Fig. 1. Yearly worldwide production in photovoltaics in MWp (EurObserv’ER, 2008).
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Fig. 2. Schematic of a single-crystal solar cell.

know-how, and manufacturing tools necessary to allow a rapid
move to large-scale production.

New device technologies including BP Solar (‘Saturn cells’; see,
for example, Bruton et al., 2003), Sanyo (‘HIT cells’) and Sunpower
are pushing commercial single-crystal wafer silicon efficiencies to
the 18-21% range offering the potential for lower $/W as a result
of increased efficiencies (see company websites, e.g. Sharp;
Q-Cells; Kyocera; Sanyo; Sunpower) for the most up-to-date
information). However, multi-crystalline silicon (mc-Si) currently
accounts for 63% of the world market, including manufacturers
with cell efficiencies around 13-14% but at overall lower $/W cost.

Half of the cost of first-generation photovoltaics is the cost of
the 200-250-pum-thick silicon wafer—a cost incurred for largely
mechanical reasons since the majority of solar absorption occurs
in the top few tens of microns. So reduction of wafer thickness
offers cost-reduction potential. Production costs will also be
reduced over the next decade by the continued up-scaling of
production, by increased production concentration, smarter
processing and shorter manufacturing learning curves. Devices
that use alternative silicon sources such as Scott’s edge-defined
film-fed growth (www.schott.com/photovoltaic/english/products/)
and EverQ’s string-ribbon technologies (www.sitrus.net/en/
index.php; also Evergreen Solar: www.evergreensolar.com/app/
en/home) are also offering cheaper wafer-like silicon grown
directly from the silicon-melt, eliminating the wastage inherent
in the traditional wafering of c-Si/mc-Si ingots.

In spite of much progress, 1G PV costs around US$4/W, and this
is still around four times too expensive for truly competitive
commercial production. It is likely that the cost-reduction trend
will reach its limit before 1G PV reaches full cost-competitiveness,
though it should be noted that relative cost reductions (for both
1G and 2G) are resulting from spiralling energy costs.

2.2. Second-generation PV

The obvious next step in the evolution of PV and reduced $/W
is to remove the unnecessary material from the cost equation by
using thin-film devices. Second-generation (2G) technologies are
single-junction devices that aim to use less material while
maintaining the efficiencies of 1G PV. 2G solar cells use
amorphous-Si (a-Si), Culn(Ga)Se, (CIGS), CdTe/CdS (CdTe) or
polycrystalline-Si (p-Si) deposited on low-cost substrates such
as glass (Fig. 3). These technologies work because CdTe, CIGS and
a-Si absorb the solar spectrum much more efficiently than c-Si or
mc-Si and use only 1-10 pum of active material. Meanwhile, in very
promising work of the last few years, p-Si has been demonstrated
to produce ~10% efficient devices using light-trapping schemes to
increase the effective thickness of the silicon layer (Fig. 4) (Green
et al., 2004; Yamamoto, 1999).

2G PV offers the potential to slash costs and financial pay-back
and energy pay-back times compared to 1G, just as long as
efficiency and fabrication costs per unit area remain comparable
to 1G technology. Research results from leading laboratories have
provided ample evidence of the potential of thin-film PV, 16.5%
(CdTe), 18.4% (CIGS) (Green et al., 2006). However, PV based on
CdTe and CIGS has been slow to scale up. This is partly due to the
gap between lab efficiencies (above) and the best module
efficiencies of 10.7% for CdTe (Green et al., 2006) and 13.4% for
CIGS (Green et al., 2004) that are low as a result of unresolved
issues relating to poor material reproducibility and uniformity
over large areas (see, for example, Compaan et al., 1999; Noufi and
Zweibel, 2006). Though perhaps the fundamental issue for both
CdTe and CIGS technologies is the historical absence of symbiosis
with a highly profitable IC industry. In comparison with silicon-
wafer processes, thin-film process tools and production lines are
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Fig. 3. Schematic diagrams of thin-film CdTe, CIGS and a-Si thin-film PV devices.
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Fig. 4. Key features of the crystalline silicon on glass (CSG) technology (Green et al., 2004).

almost exclusively bespoke tools based on in-house and proprie-
tary know-how, with correspondingly steep and expensive
manufacturing learning curves. To some extent, this is changing
for a-Si and p-Si technologies as there is now a cross-over from the
flat-panel displays sector.

While 2G expansion is slower than expected, its potential
remains to bring significant $/W cost reduction to PV in large-
scale production via reduced materials usage. Given the impress-
ive progress by thin-film silicon over the last few years, it seems
that the full potential of 2G is most likely to be realised by silicon-
based thin-film devices.

2.3. Third-generation PV

As 2G technology progressively reduces the active material
cost with thinner films, eventually even the low-cost substrate
will become the cost limit and higher efficiency will be needed to
maintain the $/W cost-reduction trend. The possible future is for
third-generation (3G) devices, which exceed the limits of single-
junction devices and lead to ultra-high efficiency for the same
production costs of 1G/2G PV, driving down the $/W (Green,
2006). 3G concepts can be applied to thin films on low-cost
substrates to retain material cost savings, but there is also benefit
in applying 3G concepts using thin films on c-Si as active
substrates. This is an attractive proposition as this may allow
current 1G PV manufacturing plants to access the step-change
efficiencies of 3G without necessarily undertaking a step-change
in retooling and thereby minimising the type of uptake barrier to
investment that is seen for 2G PV.

The emergence of 3G approaches are already showing up
commercially in 32% efficient, thin-film GalnP/GaAs/Ge triple-
junction space-PV for satellites (Karam et al., 1999), these are too
expensive for terrestrial applications, but nevertheless demonstrate
the viability of the 3G approach. Lower-cost 3G PV is also appearing,
such as Kaneka's 11.7% micromorph a-Si/jic-Si heterostructures

(Yoshimi et al., 2003), and 10.4% triple-junction a-Si/a-SiGe devices
(Yang et al., 1994).

3. Future advances to 2050 and beyond

As we have discussed, progress in PV technology should be
measured in $/W, and many scientific advances, as fascinating
though they may be, will only be relevant to the industry if they
can be implemented at affordable costs. In this sense, we can
envisage two routes to cheaper photovoltaic energy that will be
brought about by new science and 3G concepts. The first is based
on the pragmatic use of new technology to improve the
performance or decrease the cost of current devices. The second,
more revolutionary, possibility might involve new whole-device
concepts. Indeed, in recent years we have seen the emergence of
dye-sensitised (Gratzel, 2001) and polymer-based solar cells
(including organic/inorganic hybrids) (see Brabec and Sariciftci,
2001; Kanicki, 1986) as fundamentally new types of device, and
although none of these have come close to outperforming wafer-
based silicon devices in cost or efficiency, there is every chance
that these devices could demonstrate step-change improvements
or that new types of device may yet emerge.

3.1. New science for enhanced efficiency (or reduced cost)

Solar cells lose energy in a number of ways. Optical losses
include reflection from interfaces at the surface of a module and
carrier losses include recombination losses as a result of poor
interface or material quality. By far the biggest losses are due to
the nature of the photovoltaic effect itself. Significant optical
power is lost because of the large volume of infra-red light that
has insufficient energy to raise an electron into the conduction
band (sub-bandgap losses) and because high-energy photons can
only raise one electron to the conduction band and wasting excess
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energy by heating the solar cell (hot-electron or thermalisation
losses). These fundamental losses directly lead to an efficiency
limit of ~40% for all commonly used semiconductors and 43.9%
for single-junction silicon solar cells (Shockley and Queisser,
1961). 3G concepts aim to harness some of this wasted energy
(Green, 2006).

Some of the most interesting 3G concepts discussed over the
last 30 years include multi-junction systems such as tandem cells
(Henry, 1980), the use of quantum wells and quantum dots to
enhance absorption (Barnham and Duggan, 1990), the use of
fluorescent collectors (Goetzberger and Greubel, 1977; Weber and
Lambe, 1976), impact ionisation to utilise the kinetic energy of
carriers (Kolodinski et al., 1993; Landsberg et al., 1993), the use of
impurity levels (Corkish and Green, 1993) and hot-electron effects
(Ross and Nozik, 1982). While many of these exciting ideas have
fired the imagination and provided interesting debate, most have
proven very difficult to demonstrate in principle and have often
only ever served to manage to decrease the overall efficiencies of
devices they hoped to improve.

In a similar way, dye-sensitised cells (Gratzel, 2001) still face
difficult issues related to poor charge mobility and device stability
and we cannot confidently predict that these devices will have a
significant impact on large-scale energy generation. In the
remainder of this paper we focus on new concepts that we
believe can have significant practical impact.

3.2. Materials developments

Photovoltaic performance is heavily dependent on the proper-
ties of materials. In particular, the active layers of solar cells
require long carrier diffusion lengths and bulk material must be
defect-free, surfaces and grain boundaries must be passivated.
Fundamental materials research, of materials, grain boundaries,
surfaces and passivating materials can always be justified in this
context. Although it seems unlikely that any future developments
of known materials can produce a step-change in headline
efficiencies, improvements in production yield or stability can
be expected and research emphasis needs to be on materials
produced by large-volume tools.

An exceptional case for materials developments can be made
for semiconducting polymers, where the vast parameter space
and inherent simplicity of device fabrication allows for consider-
able optimisation and optimism (McConnell and Matson, 2004).
More complex ‘materials’ developments might also include the
development of optical metamaterials, plasmonic materials,
quantum dots and bandgap-engineering materials. These are all
considered in context below.

3.3. Optical metamaterials

Photovoltaic arrays can either track the sun as it moves across
the sky (at some expense) or remain fixed and have to accept a
loss of efficiency as increasingly acute angles of incidence reduce
the area of the device and significantly increase reflection. For
fixed systems, around 20% of available photons are lost over a day
as a result of reflection (Boden and Bagnall, 2006), now, the
emergence of nanotechnologies and optical metamaterials are
beginning to offer solutions to this issue. Currently, some
commercial manufacturers use self-organised nanostructured
glass surfaces to improve system efficiencies by around 10%
(Wohlgemuth et al., 2005). More carefully constructed silicon
nanostructures (Boden and Bagnall, 2006) that mimic the eyes of
species of moth (Vukusic and Sambles, 2003) promise further
improvements but are currently too expensive to implement.
However, nano-embossing and nano-imprinting technologies are

rapidly developing and it is now possible to envisage regular
commercial use of nanostructured broad-band antireflective
surfaces within the near future, enhancing system efficiencies
by more than 10% (Fig. 5).

Over the next 10 years, similar optical technologies might also
allow for improved light-trapping in thin-film solar cells and
concentrator cells (see below). As we have seen, thin-film silicon
devices in particular require multiple reflections within the silicon
layer to ensure the absorption of photons. Optical constructs are
required to ensure that light is coupled into a waveguiding mode
of the thin film (Heine et al., 1996). At present, thin-film silicon
devices rely on diffuse reflectors produced by relatively simple
etching regimes that are cheap to realise over large areas (for
example, Chuangsuwanich et al,, 2004; Yamamoto, 1999). De-
signed nanostructured surfaces are likely to offer routes that are
optically more efficient and which might also be applicable to
ultra-thin CdTe and CIGS-based thin-film devices. Increases in
efficiency here are less important than the reduction in the
thickness of absorbing material that is required and the
commensurate reduction in cost.

A final prospect for enhanced light collection has recently
arisen as plasmonics has emerged as a significant technology
(Bohren and Huffman, 1983; Maier and Atwater, 2005; Mulvaney,
2001). Metal surface structures can support the formation of
resonant charge oscillations (plasmons) with finite lifetimes and
diffusion lengths that can be considered as a quasi-particle.
Plasmonics can enhance absorption as a result of the prolonged
photon interaction at a device surface or may be used to enhance
scattering and direct photons into thin absorbing layers. By tuning
the size of metallic nanostructures, it is possible to modify the
wavelength response to cover a broad spectral range (Mulvaney,
2001). Meanwhile, the non-locality of photons allows only a
relatively sparse density of features and therefore the possibility
of inhomogeneous broadening. It seems likely that surface
plasmonics might offer 5-10% improvements in system efficien-
cies (though probably as an alternative to the nanostructured
surface approach outlined above). Implications for material or
process reduction are just as important. This type of plasmonics
application for solar cells might reach maturity over the next
10-15 years, with chemical self-organising mechanisms providing
a route to cheap implementation. More complex plasmonic
possibilities that will take tens of years to implement might
involve the used of coupled plasmonic structures that might guide
photons to specific absorption sites within complex devices.

\

AccY  Magn WD |—| 2 im
7.00 kV 48478x 10.1 k4003¢c2 b Cl bscem

Fig. 5. SEM micrograph of a silicon ‘moth-eye’ antireflective surface (Boden and
Bagnall, 2006).
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3.4. Multi-junction devices

The only proven 3G technology is that based on the use of
multiple junctions (Green, 2006; Yang et al., 1994; Yoshimi et al.,
2003). Single-junction devices perform optimally at the wave-
length equal to the bandgap, inherently losing efficiency at all
other wavelengths across the solar spectrum. Multi-junction
devices stack different solar cells with multiple bandgaps tuned
to utilise the entire spectrum. Light is first incident on a wide
bandgap device that can produce a relatively high voltage and
thereby make better use of high-energy photons, then lower-
energy photons pass through to narrow bandgap sub-devices that
can absorb the transmitted IR-photons. Maximum efficiencies of
55.9%, 63.8% and 68.8% are predicted for two- (tandem), three-
and four-junction devices (Green, 2006). However, costs escalate
as fabrication becomes increasingly problematic with the increas-
ing number of interfaces and cells. Material systems based on
GaAs, InP or GaN can use different compositions of aluminium or
indium alloys to modify bandgaps while maintaining lattice
constants (bandgap engineering) and can produce monolithic
multi-junction devices in a single growth run (with tunnel
junctions between each device). In more pragmatic devices,
multi-junction cells are mechanically stacked, with devices
bonded together at the end of the process.

Tandem devices are naturally the most advanced multi-junc-
tion technology and there are many examples of combinations
of 1G and 2G devices to produce 3G devices. The highest-
performing devices are, however, expensive devices that can only
be reasonably contemplated for concentrator or space applications
(Karam et al., 1999). More cost-effective terrestrial multi-junct-
ion devices combine the polysilicon and amorphous thin-film
silicon technologies (Yang et al., 1994; Yoshimi et al., 2003). These
devices are relatively inexpensive for their efficiency but do not
realise the full potential of multi-junction efficiency improvements
(Fig. 6).

Multi-junction cells no longer require proof of principle, but
they do require technological advances aimed at cost reduction.
These cost reductions can come about by the capacity to produce
much cheaper devices or by using concentrator systems. A key
issue with concentrator systems is the need for mechanical
tracking and associated higher costs and maintenance costs. At
the device level, key requirements are in material growth, bonding
and insulation, and the application of nanotechnology and the
principles of self-alignment and self-organisation may well help
solve some of these difficulties over the next 20 years. We are
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confident that some large-volume high-efficiency multi-junction
devices will be well positioned in the terrestrial market place
within 20 years.

Perhaps the most promising futuristic prospect for multi-
junction approaches will be based on polymer semiconductors, or
combinations of polymer semiconductors with crystalline semi-
conductors. The intrinsic ability to tune polymer bandgaps and
the forgiving low-cost, low-temperature, versatile deposition
capability make polymers a natural choice, although the contact-
ing issues generic to multi-junction cells and the long-term
stability issues that affect polymer solar cells will remain
problematic. By 2050, it is possible to imagine that self-organised
semiconducting polymer structures in multi-junction arrange-
ments could be the mainstream 50%-efficient photovoltaic
technology.

3.5. Spectral conversion

A number of 3G concepts would make use of surface layers and
structures to convert the solar spectrum to a spectral distribution
that is more useful to the underlying device. Classically, one
would like to use non-linear optics (NLO) concepts to produce
bandgap energy photons from low-energy photons (up conver-
sion). The reverse of this type of process could produce bandgap
photons of short-wavelength, high-energy photons (down con-
version). These schemes have been explored theoretically and
predicted to produce device efficiencies of 63% for up conversion
and 40% for down conversion (Trupke et al., 2002). NLO crystals
are routinely used to efficiently perform these types of conversion.
However, even the most efficient NLO materials can only operate
at specific wavelengths and angles of incidence, and with
relatively high and often coherent optical densities. At the
moment, NLO materials seem unlikely to be able to help
mainstream photovoltaics.

More likely systems for spectral conversion are based around
quantum dots (van Sark et al., 2004), rare-earth doping (Matsura,
2002) and luminescent dyes (Richards and McIntosh, 2006). In
each case, an ‘optical’ layer above a device is designed to absorb
one set of photons and then emit a set of more appropriate
photons. The generic difficulties associated with these processes
are associated with the need for broad-band absorption across
the wavelength ranges of interest (most of these systems
have very sharp spectral features) and the need for 100% efficiency
(or transparency) in spectral regions close to the band edge.
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Fig. 6. Schematic cross-section of the Spectrolab triple-junction cell (Karam et al., 1999).
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Broad-band absorption can be achieved by the use of
inhomogeneous broadening mechanisms. In the case of quantum
dots, this would be readily achieved by changing the size
distribution of the dots. For rare-earth doping systems, broad-
ening requires variation in the material supporting the atoms and
this is more problematic. Meanwhile, mixtures of dyes are needed
to broaden absorption. In each case, broadening the absorption
leads to broadening of the emission and this will normally
decrease the optical conversion efficiency.

It is therefore likely that spectral conversion will always be a
difficult issue, and it seems unlikely that very-high-efficiency
devices could be created. We can, however, anticipate two
promising avenues for exploitation that might have an impact
on commercial production. First, it seems highly probable that
quantum dots embedded in dielectric layers directly above
traditional devices might readily add 3-5% to device efficiency
with little extra cost (van Sark et al., 2004). Second, spectral
conversion could be applied within fluorescent collectors
(Goetzberger and Greubel, 1977; Weber and Lambe, 1976), where
large-area waveguiding layers containing dye molecules, quantum
dots or nanocrystals could be used to concentrate light into the
sides of small-area pn junctions. Here the benefit is not high-
efficiency devices, instead it is in semiconductor volume reduc-
tion; two orders of magnitude less silicon might be needed to
produce 20% devices (Markvart, 2006).

3.6. Self-organised quantum devices and nanostructures

In addition to the possible use of quantum dots as spectral
converters, the use of quantum wells and quantum dots has also
been proposed to extend the bandgap (Barnham and Duggan,
1990) and as a means to provide multiple electrons from a single
photon through impact ionisation (Kolodinski et al., 1993; Ross
and Nozik, 1982).

Quantum wells, wires or dots can be used to engineer the
bandgap of materials. An example would be the growth of SiGe
quantum wells or Ge quantum dots by chemical vapour deposi-
tion on a silicon wafer. The SiGe would provide regions of
narrowed bandgap, allowing increased absorption in the infra-red.
Invariably, such enhancements might result in increased absorp-
tion, but the quantum features also introduce carrier traps and
more defective crystal growth, and this in turn leads to increased
carrier recombination. To overcome this, quantum dots could exist
in a layer separated by a thin insulator, which should in principle
reduce the loss mechanisms, but will also reduce carrier transfer
from dot to bulk semiconductor.

Impact ionisation is a process in which absorbed photons in
semiconductors of at least twice the bandgap can produce
multiple electron-hole pairs. Kolodinski et al. (1995) proposed
the use of Ge superlattices for this purpose. Alternatively, Si/Ge or
Si/SiO, superlattices could be used (Green, 2006), or certain
quantum dots (Ellinson et al., 2005) that can generate two or three
excitons (electron-hole pairs) per photon, which could tunnel or
transfer (via polariton modes) from surface layers into the
conduction band of 1G or 2G devices and thereby increase the
efficiency. The prospects for impact ionisation will be limited by
the finite flux of high-energy photons and the need for effects over
a broad spectral range. As with some of the other concepts already
discussed, the most likely practical implementation would be in
the simple addition of a cheap layer of self-organised structures
that might add 2% or 3% to device efficiency.

A truly futuristic and nanotechnological approach to photo-
voltaics might involve the use of self-organised structures. Most of
mainstream PV to date has been based on layered, large-area
devices. An alternative would be the use of arrays of high densities

of self-forming nanodevices. Many semiconductors have been
grown in nanowire or nanorod form (Kayes et al., 2005) via
vapour-liquid-solid (VLS) techniques. It is also possible to
imagine other seeded or selective growth techniques to provide
small high-quality crystallites that could also form the basis of
nanodevices. Advantages of such approaches would include the
reduction of material volume, uniformity of device behaviour,
good crystalline growth on amorphous substrates and prospects
for multi-junctions.

4. Conclusions

Over the next 20 years, we can foresee only small improve-
ments in the production efficiencies of 1G silicon technologies.
However, we can expect fabrication, installation and operational
cost reductions (up to 30%) that will continue to provide reduced
$/W and increasing completion. In the same period, we will
witness a change from predominantly 1G production to an era of
2G devices probably based on thin-film silicon (up to 30% cost
reduction). While these two mainstreams will dominate the
commercial PV sector, we expect that we will see increasing use of
new and 3G technologies that will enhance the performance
(or reduce the cost) of 1G and 2G solar cells. These technologies
are very likely to include some multi-junction concepts and
constructs based on the emerging fields of optical metamaterials,
plasmonics, quantum technology, nanotechnology and polymer
semiconductor science.

By 2020 and possibly much sooner, we fully expect photo-
voltaics to have become a truly cost-competitive energy supply,
though the timing of this will depend on levels of research
investment, the levels of national, international and multinational
co-operation and the rate of increase in the cost of non-renewable
energy supplies.
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