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It is generally assumed that the propagation of light through a dielectric medium is always reciprocal under
reversal of the propagation direction. We show that in an all-dielectric diffractive system nonreciprocal polar-
ization changes are possible for individual diffracted beams when the diffractive medium possesses two-
dimensional chirality. This nonreciprocity is characterized by different eigenstates for the system for the
forward and reverse directions respectively, yet it is also entirely consistent with the predictions of the Lorentz
reciprocity lemma.
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I. INTRODUCTION

Nonreciprocal behavior is a much sought property in op-
tics because it would facilitate the implementation of new
forms of unidirectional optical devices. To date the only
known example of nonreciprocal behavior is that arising
from the Faraday effect and the associated light-matter inter-
action with magnetic materials.

The Faraday effect arises from the application of a dc
magnetic field to an optically transparent material to generate
optical birefringence within the material for the two opposite
forms of circularly polarized light. The net effect of this bi-
refringence is to produce a rotation of the plane of polariza-
tion of linearly polarized light as it propagates through the
material in the direction of the dc magnetic field. This rota-
tion of the polarization azimuth direction � is similar to that
experienced by an identical linearly polarized beam when it
propagates through a material with three-dimensional �3D�
chirality, such as a quartz crystal or a sugar solution. The
principal difference between the two situations is that while
the 3D chiral medium is reciprocal �the direction of the po-
larization rotation is the same for beams traveling in opposite
directions�, the Faraday effect is nonreciprocal.

Light beams traveling in opposite directions through a
Faraday device see the dc magnetic field as acting in oppo-
site directions. Consequently, they also experience a reversal
of the circular birefringence in the optically transparent ma-
terial upon which the magnetic field acts due to an inter-
changing of the refractive indices for the two opposite circu-
larly polarized eigenstates. This results in a reversal of the
rotation direction for the azimuth of linearly polarized light.
The Faraday device is therefore equivalent to a chiral mate-
rial in which the sense of chirality is reversed when viewed
from opposite directions. Such a reversal of chiral handed-
ness is also a characteristic of the geometric property of 2D
chirality �1�. This has therefore led to speculation over
whether materials or structures that exhibit 2D chirality at a
given length-scale could exhibit optical activity or dichroism
in some form �2�.

Until recently it was assumed that materials that possess
2D chirality in either their surface topology or their molecu-

lar arrangement were incapable of exhibiting optical activity.
However, we recently demonstrated that some thin-film
structures patterned with periodic square arrays of diffracting
elements can strongly affect the polarization state of optical
beams diffracted from their surface, provided those chiral
elements exhibit 2D chirality in their surface topology, and
their periodicity is larger in scale than the wavelength of the
incident electromagnetic radiation. These structures we have
collectively termed planar chiral materials �PCMs�. As the
periodicity of the surface patterning in these structures is
greater than the wavelength of the incident radiation we use
to characterize their optical properties, and the structures
therefore generate well defined rectangular diffraction pat-
terns, we will refer to these structures as diffractive PCMs.

Initially our research on diffractive PCMs concentrated on
the study of chirally patterned metallic films �3,4�. These
structures were the first to demonstrate the capability to ro-
tate and elliptize the polarization state of light diffracted
from their surface in a manner sensitive to both the handed-
ness and the magnitude of the surface chirality �3,4�, and the
chirality-dependent polarization changes were even seen
when the input polarization state was parallel to the axes of
the diffraction gratings, thereby distinguishing the behavior
of these structures from that seen previously for achiral grat-
ings �5,6�. However, most of our metallic chiral films were
fabricated on substrates of high resistivity silicon that are
only transparent for wavelengths above 1.2 �m �i.e., in the
infrared�. Consequently all investigations of their chiral
properties in the visible region of the electromagnetic spec-
trum had to be carried out in reflection. This, though, negates
the primary advantage that planar chiral structures have with
regard to their more familiar three-dimensional variants: the
reversal of their sense of chirality for opposite directions of
electromagnetic wave propagation. It is this latter feature that
makes these structures so intriguing as it offers the possibil-
ity of designing materials with optical properties that may be
nonreciprocal or nonreversible under certain circumstances
or for individual diffracted beams. It was therefore crucial
that this area of research was extended to include optically
transparent structures so that evidence of nonreciprocity
could be sought.

Subsequent to our work on diffractive metallic PCMs,
Kuwata-Gonokami et al. �7� reported on the gyrotropy of
light transmitted through arrays of gold gammadions on op-
tically transparent quartz substrates. Their results indicated*ap@ecs.soton.ac.uk
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that the directly transmitted beam could exhibit a polariza-
tion change, but that this optical activity was reciprocal �i.e.,
the same for opposite directions of light propagation�. They
therefore concluded that the polarization change from their
structures was induced by 3D chirality that arose from the
interaction of the 2D chiral surface patterning of the metallic
surface layer in the xy plane with an asymmetry in the order
in which the different material layers of the sample were
arranged in the perpendicular z direction. However, while
they omitted to investigate the optical properties of nonzero
order diffracted beams, their results for the zero-order beam
raised concerns over whether the polarization changes we
observed for diffractive PCMs in reflection �3,4� could also
be a consequence of 3D chirality.

In order to determine the dimensionality of the chirality
responsible for the polarization effects seen for PCMs, we
extended our investigations to include 2D chiral structures
constructed entirely from dielectric materials such as silicon
nitride and silicon dioxide �8�. These all-dielectric PCMs are
also seen to exhibit a chirality-specific optical activity that is
similar in form to that previously reported for metallic PCM
gratings �3,4�, and this occurs despite these all-dielectric
PCMs containing none of the induced currents and surface
plasmons that have been proposed as potential mechanisms
for the optical activity in metallic PCMs. This suggests that
another mechanism may be applicable in this case. One pos-
sibility is interference effects �8�.

In this paper we report the results of a series of polariza-
tion experiments performed at 632.8 nm in transmission on
these dielectric PCMs. These experiments clearly demon-
strate that the polarization changes manifested by light dif-
fracted through these structures are nonreciprocal. Replacing
a PCM sample with its enantiomer results in a reversal of the
optical activity, but so too does reversing the direction of
light propagation through the same sample. As both of these
processes result in a reversal of the 2D chirality of the struc-
ture �as seen by the incident beam�, this clearly demonstrates
that the chiral effect is 2D in character and not 3D. We also
show that the different polarization changes for structures of
different 2D chirality are also characterized by differing
eigenstates in each case and different polarization-dependent
transmission coefficients. By considering the electromag-
netic field distribution for two opposing propagation direc-
tions in detail we show that this optical activity, while being
nonreciprocal in character, is entirely consistent with the
Lorentz reciprocity lemma �9,10�. Although the small polar-
ization changes reported by Kuwata-Gonokami et al. �7� for
the zero-order transmitted beams are probably due to 3D
chirality, our experiments indicate that the much larger po-
larization changes seen for higher order diffracted beams are
almost entirely the result of 2D chirality and, consequently,
are nonreciprocal in behavior.

II. EXPERIMENTAL DETAILS

The planar chiral material �PCM� samples studied in this
paper all consisted of planar chiral patterns that were etched
through Si3N4 layers of various thicknesses that were sup-
ported on 1-mm-thick fused silica �quartz� wafers. Fused

silica was chosen because it is transparent at 632.8 nm while
the fused structure ensured that the substrates were neither
optically active nor birefringent, unlike single-crystal quartz,
which can be both.

The samples were manufactured using standard microfab-
rication techniques as described previously �8�. The first step
was the deposition of a layer of Si3N4 onto one surface of a
fused silica wafer by plasma-enhanced chemical vapor depo-
sition �PECVD�. This was then patterned with the different
planar chiral designs using a combination of electron beam
lithography and reactive ion etching �8,11�. Each chiral de-
sign consisted of a square array of gammadions in a planar
tiling arrangement �of type 442 in the Orbifold notation of
wallpaper group symmetries or p4 in the International Union
of Crystallography notation� with an identical pitch ��
=5.0 �m� in both the vertical and horizontal directions of
the array. The area of each array was approximately 1 mm2.
Each individual gammadion consisted of four identical arms
with the angle between each pair of adjacent arms being 90°,
while each gammadion arm was comprised of two distinct
line segments of equal length ��=1.8 �m� with the angle
between the two segments being �135° �see Fig. 1, inset�.
This corresponds to an arm bending angle ��� of �45°. Each
gammadion therefore possesses fourfold rotational symmetry
about its center, but no line of mirror symmetry, while the
gammadion arrays also possess fourfold rotational symmetry,
as well as translational symmetry in both lattice directions.
Consequently they also possess no birefringence in the plane
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FIG. 1. A schematic illustration of the experimental setup used
to optically characterize the planar chiral structures. The polariza-
tion state of the output diffracted beam is defined by its polarization
azimuth ��1� and ellipticity ��1�, with �1 being measured in an
anticlockwise direction from the vertical as viewed by an observer
looking directly into the beam. �0 and �0 are the equivalent terms
for the incident beam. The angle of incidence �	� and the diffrac-
tion angle �
� are measured with respect to the sample normal as
indicated. The large black cross on the sample surface is depicted to
represent the fourfold symmetry of the sample surface and its sense
of chirality as viewed from this direction of observation. It is not a
real feature of the sample. Also shown �inset� is a high-resolution
micrograph of an actual sample showing part of the array of gam-
madions. In this sample each of the four arms of the gammadion
has a bending angle �=−45°.
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of the sample, but do exhibit 2D chirality. A more compre-
hensive account of the fabrication process and of the gam-
madion design parameters ��, �, and �� has been reported
previously �8,11�.

Optical experiments were then performed to determine
the polarization altering properties of the PCMs. This in-
volved measuring the output polarization state for light dif-
fracted from the various chiral gammadion arrays for differ-
ent input polarization states, and calculating the polarization
change in each case �see Fig. 1 for a schematic diagram of
the experimental arrangement�. The polarization states of
these beams were measured by the rotating wave plate pola-
rimetric method using a commercial polarimeter system
�Thorlabs model #PA510-EC� with a wavelength range of
450 to 700 nm. The light source used was a HeNe laser
operating at 632.8 nm that first passes through a linear po-
larizer and then through a Fresnel rhomb prism in order to
generate a circularly polarized beam. A second linear polar-
izer is then used to convert the beam back into a linearly
polarized state, the azimuthal angle of which ��0� can be
rotated radially about the beam direction by rotating the sec-
ond polarizer. This experimental arrangement therefore al-
lows the direction of linear polarization of the incident beam
to be rotated about the propagation direction without chang-
ing the beam’s intensity. Finally, the beam is focused onto a
single gammadion array using a long focal length planocon-
vex lens.

After the incident beam hits the array of chiral gammadi-
ons, diffracted waves propagate at various angles, creating a
well-defined rectangular diffraction pattern. The sample itself
is then rotated about its normal until the two perpendicular
axes of the square array of chiral elements are parallel to, and
perpendicular to, the plane of the optical bench, respectively.
The horizontal plane that includes the zero-order beam we
then define to be the plane of incidence as it is the plane that
includes both the input and directly reflected beams, as well
as the normal to the sample. The two first-order beams that
lie either side of the zero-order beam in this plane we denote
as the �+1,0� and �−1,0� orders, respectively.

In order to determine the presence of any non-reciprocal
effects in the optical properties of these PCM structures we
have studied various pairs of enantiomeric samples that are
related by mirror �or parity� inversion. Each sample con-
sisted of a square array of gammadions with an arm bending
angle of either �=−45° �left-handed gammadions� or �=
+45° �right-handed gammadions�. The pitch ��=5.0 �m�
and arm segment length ��=1.8 �m� were the same for all
samples. However, the thickness �t� of the Si3N4 film into
which each array of gammadion-shaped holes was etched
was varied from sample to sample, with t ranging from 80
nm for samples W5BA42 and W5BA45 to 320 nm for
samples W3BA42 and W3BA45.

In order to investigate the principle of reciprocity in these
nonmagnetic diffractive planar chiral media, we have re-
stricted ourselves to the study of the polarization parameters
of the two first-order diffracted beams in the plane of inci-
dence only. These beams were chosen partly because of their
relatively large luminous intensities and their proximity to
the zero-order beam �the angle of diffraction being less than
8°�. The zero-order beam itself was not investigated thor-

oughly because it, uniquely among all the diffracted beams,
consistently failed to exhibit any polarization change relative
to the incident beam. This result is somewhat different from
that reported by Kuwata-Gonokami et al. �7�, but not neces-
sarily contradictory.

The polarization changes reported by Kuwata-Gonokami
et al. for transmission of the zero-order beam through PCMs
of gold gammadions on quartz �7� were more than an order
of magnitude smaller than those we have reported for the
first-order beams diffracted from various PCM structures
�4,8,12�. They were also reciprocal, and were therefore at-
tributed to 3D chiral effects arising from an interaction of the
2D chirality of the surface topology and the asymmetric
layer structure �7�. In the next section we will show using the
Lorentz reciprocity lemma that 2D chirality on its own can-
not give rise to optical activity in the zero-order beam at
normal incidence. Thus any polarization changes that are de-
tected in the zero-order beam for systems with rotational
symmetry but no birefringence must be due to 3D chirality.

The reason for the absence of any optical activity in our
dielectric PCM samples due to 3D chiral effects of the type
reported by Kuwata-Gonokami et al. �7� is still unclear. It
may be that such effects are indeed present, but that they are
even smaller in magnitude than those reported by Kuwata-
Gonokami et al. �7� and, consequently, cannot be detected
with our experimental arrangement. Alternatively, the physi-
cal mechanism responsible for such effects may be depen-
dent on the material composition of the sample, and may
require metallic components in order to become evident.

The first-order diffracted beams on the other hand have
already been shown to be capable of exhibiting strong
chirality-dependent polarization changes �8�. In Sec. IV the
nonreciprocal properties of these diffractive dielectric PCM
samples will be demonstrated by examining the polarization
changes of the first-order transmitted beams when the chiral-
ity of the sample, its orientation and the beam propagation
direction are all reversed independently. Nevertheless, these
results do not violate the Lorentz reciprocity lemma that is
discussed in the next section.

III. THEORY OF RECIPROCITY

In the fields of optics and electromagnetism the concept
of reciprocity refers to a variety of related theorems that
describe the behavior of linear optical systems under the in-
terchange of sources and detectors, or the spatial inversion of
the system. One such example is that of the Helmholtz reci-
procity theorem. This is often applied to simple optical sys-
tems in which the light from an object is either, reflected,
refracted or diffracted by a mirror, a lens, an aperture or a
diffraction grating �see Fig. 2�a��. The amplitude of the light
wave at any given point in such systems can be determined
via the Fresnel-Kirchhoff diffraction formula �13�

U�Q� = −
iA

2�
�

S

ei·k�r+s�

rs
I�R��n · r

r
−

n · s

s
�dS . �1�

This relates the relative amplitude and phase U�Q� of an
optical disturbance at a point Q �the image� to that of the
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original disturbance at the point P that created it �the source
object�. The integral is performed over a closed surface S,
defined by a vector function R, for which n is the surface
normal and I�R� is the transparency of the surface �or aper-
ture function�. As Eq. �1� is symmetric under an interchange
of the source and detection points �P and Q�, the system is
said to be reciprocal. Thus, if Q represents the image of a
source at P, then P can also be considered to be the image of
Q. Helmholtz reciprocity is, however, a scalar theorem and
therefore cannot adequately describe electromagnetic �EM�
systems where the polarization states of the various EM
waves are important. For those particular situations, a second
and more powerful reciprocity theorem is required: Lorentz
reciprocity.

Lorentz reciprocity is a more powerful reciprocity theo-
rem when considering polarized waves as it describes the
interaction of the actual electric E�r� and magnetic H�r�
field vectors for two distinct sources in a given system
�9,10�. The theorem states that for a system with two current
source distributions j1�r� and j2�r�, their associated field dis-
tributions �E1�r� ,H1�r�� and �E2�r� ,H2�r�� will be related
by the integral equation

�
V

�j1 · E2 − j2 · E1�dV = �
S

�E1 � H2 − E2 � H1� · dS ,

�2�

where S is any arbitrary closed surface of volume V. The
general form of the reciprocity relation in Eq. �2� can be
simplified for a number of special cases.

For example, if the system is an isolated one in which the
surface S encloses all the current sources j1�r� and j2�r� and
all the fields within S are a product only of those current

sources and are not the result of externally applied fields,
then it can be shown by the application of symmetry argu-
ments that the following identity must hold:

j1 · E2 − j2 · E1 = 0. �3�

This can be seen most clearly by considering two current
elements j1 and j2 at positions r1 and r2, respectively, and
resolving both into their respective Cartesian components
�j1x , j1y , j1z� and �j2x , j2y , j2z�, where the Z direction is defined
so that the Z components of the two current elements are
coaxial and their X components are parallel, as shown in Fig.
2�b�. Each of these six current elements will have its own
field distribution �E1x�r�, etc.�, and there will then be nine
different interactions of the type defined in Eq. �3�. However,
all interactions between orthogonal current elements will re-
sult in zero contributions to Eq. �3� because each current
element effectively acts like an electric dipole. Thus, for the
interaction between j1x and j2y

0 = j1x · E2y�r1� = j2y · E1x�r2� . �4�

Identical relations will hold for the other five orthogonal in-
teractions. Only the three parallel interactions will result in
nonzero scalar products, however, symmetry considerations
necessitate that these contributions should cancel. For ex-
ample, if the interaction between j1x and j2x has the value
j1x ·E2x�r1�− j2x ·E1x�r2�=c, then interchanging the positions
of j1x and j2x will yield j2x ·E1x�r1�− j1x ·E2x�r2�=−c, yet the
two scenarios are identical; only the coordinate frame has
been rotated. Therefore c must be zero and j1x ·E2x�r1�
= j2x ·E1x�r2�. Similar arguments can be applied to the inter-
action of j1y and j2y, and j1z and j2z. Hence Eq. �3� is proven.
This result is generally known as the Rayleigh-Carson reci-
procity theorem and has important applications in radiative
dipole scattering and antennae systems.

One consequence of Eq. �3� is that the following relation
should also hold for any isolated system

�
S

�E1 � H2 − E2 � H1� · dS = 0. �5�

This will also be true if the closed surface S does not enclose
any of the radiation sources, and the fields in S all arise from
external sources. It is this particular variant of the reciprocity
theorem that is relevant to our particular experimental ar-
rangement, and which we therefore need to consider in de-
tail. This is particularly true given that the validity of Eq. �2�
�and hence also of Eq. �5�� is not universal and is dependent
on the material properties of the system. For example, a prin-
cipal exception to the Lorentz reciprocity theorem is that of a
system composed of magneto-optic materials that exhibits
the Faraday effect. In such systems a violation of Lorentz
reciprocity results because the application of a magnetic field
to the system results in the dielectric tensor becoming asym-
metric under spatial inversion. Thus, it is clear that if we are
to test our planar chiral structures for nonreciprocal effects,
we need to identify how such violations of reciprocity may
arise and be clear about the origins of and constraints on Eq.
�2�.
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FIG. 2. �a� An illustration of the vectors used to define the
Fresnel-Kirchhoff diffraction formula. �b� A schematic illustration
of a pair of current sources used to verify Eq. �3�.
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The starting point for the Lorentz reciprocity theorem is
the vector identity

�
V

��� � F� · G − �� � G� · F�dV = �
S

�F � G� · dS �6�

which relates any two vector fields F�r� and G�r� over any
closed surface S of volume V. This is used as the basis for
two further equations by first making the substitutions F
=E1 and G=H2, and then the substitutions F=E2 and G
=H1. After invoking Maxwell’s equations to replace the �
�E and ��H terms, the two equations are subtracted to
yield

�
V

�j1 · E2 − j2 · E1�dV + W = �
S

�E1 � H2 − E2 � H1� · dS ,

�7�

where the term W is given by

W = �
V
	H1 ·

�B2

�t
+ E2 ·

�D1

�t
− H2 ·

�B1

�t
− E1 ·

�D2

�t

dV .

�8�

It is only if W=0 that Eq. �7� reduces to the familiar form for
the Lorentz reciprocity theorem given in Eq. �2�. However,
this can only be true if the material constants 
 �permitivity�
and � �permeability�, are the same for the two field distribu-
tions at any given point within the surface S. As the PCM
structures that we are considering herein are composed en-
tirely of quartz and Si3N4, then the constraint W=0 should
hold true. However, the experimental arrangement we will
use to investigate nonreciprocal effects in dielectric PCM
structures does not include any current sources within the
local environment of the PCM and involves illuminating the
system with an external source of monochromatic plane-
wave radiation �i.e., a HeNe laser operating at 632.8 nm�.
This situation is therefore more accurately described by Eq.
�5�. In order to understand the implications of Eq. �5� for the
optical activity of such a system, it is instructive to consider
the following simplified scenario.

Suppose we define a system that comprises a continuous
closed surface S that completely encloses a single point scat-
terer at a point P1. Now consider two beams that follow
different trajectories through this system but are both inci-
dent on the point scatterer from their different directions �see
Fig. 3�. For simplicity we assume that each beam is com-
prised of a uniform plane wave, and that beam 1 enters the
closed surface S at the point A and exits at point B, while
beam 2 enters at point C and exits at point D. If both beams
interact with the point scatterer en route through the system,
some of the light from each beam will be scattered in all
possible directions. We can therefore envisage a situation
where light from both beams will be scattered to the same
arbitrary point Q on the surface S. If we then define a vector
product Lab=Ea�Hb, it can be shown that L12=L21 if the
Poynting vectors L11 and L22 are parallel. As the two beams
arriving at Q from the scatterer P1 will indeed be parallel,
then the contribution of L12−L21 at Q to the integral in Eq.
�5� will be zero for all possible points for Q. This will be true

even if both of the scattered beams arriving at Q are of a
different amplitude, frequency and phase. Only if the two
waves at the surface S are incident on S from different angles
�or from different point scatterers P1 and P2� can their con-
tributions to the integral in Eq. �5� be nonzero. For a system
enclosing a single point scatterer this can only occur at point
A and point C. If there are multiple point scatterers within S
then Eq. �5� still holds because Eq. �2� and Eq. �3� both hold
true. As any point scatterer will generate a field equivalent in
form to that of a current element �or electric dipole� in Eq.
�3�, the fields on S from any two point scatterers will also
satisfy Eq. �5�. Therefore, the only remaining fields for
which Eq. �5� needs to be evaluated are those at the points on
S where the scattered field from one beam interacts with the
input of the other beam. This only occurs at the points A and
C. At these points the two field contributions will be propa-
gating in opposite directions and so L12=−L21.

Suppose that the linearly polarized input beam at A �beam
1� has an electric field amplitude E0 and a polarization azi-
muth �1, while the output of beam 1 at C has amplitude EC
and a polarization azimuth �1=�1+��1 �see Fig. 4�. For the
reverse propagation scenario �beam 2�, let the input at C also
have amplitude E0 but a polarization azimuth �2, while its
output at A has amplitude EA and a polarization azimuth �2
=�2+��2. It should be noted that in general EC and ��1
will be functions of the input polarization azimuth �1, while
EA and ��2 will be functions of �2. Then, at A

�L12� = − �L21� = E0HA cos��1 + �2� �9�

while at C

�L12� = − �L21� = − E0HC cos��2 + �1� . �10�

From Eqs. �5�, �9�, and �10� it follows that
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FIG. 3. The two field distributions used to evaluate reciprocity
using Eq. �5� for a system S that encloses multiple point scatterers
�P1, P2, etc.� but no current sources. In �a� beam 1 enters S at A and
scatters off P1 and P2 before exiting at B. In �b� beam 2 enters S at
C and also scatters off P1 and P2 before exiting at D.
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HA cos��1 + �2 + ��2�cos�	1�

= HC cos��2 + �1 + ��1�cos�	2� , �11�

where 	1 and 	2 are the angles of incidence of beam 1 and
beam 2, respectively �as defined in Fig. 1�. For the case of
our PCM structures, if both beams are incident on the struc-
ture at normal incidence, but from opposite sides, then 	1
=	2=0. The requirements of parity invariance demand that
HA=HC, while the fourfold rotational symmetry of the struc-
ture means that ��1 must be independent of �1 �and there-
fore the same for all values of �1� and ��2 must equally be
independent of �2. Equation �11� can then only be satisfied
for all possible inputs �1 and �2 if ��1=��2. Therefore the
polarization change induced by the system must be recipro-
cal. This will be true for almost any 2D structure at normal
incidence with Cn symmetry �n�3� or rotational invariance
�such as 3D chiral crystals or solutions�. The principal ex-
ception is that of the Faraday effect which is clearly nonre-
ciprocal despite the system generally possessing an axis of
rotational symmetry. This violation occurs because the con-
dition W=0 in Eq. �8� is not satisfied. In the case of our PCM
structures however, while Eq. �11� dictates that the zero-
order beam should be reciprocal at normal incidence, parity
invariance, and the 2D chiral structure of our samples dictate
that ��1=−��2. These two requirements are clearly mutu-
ally antagonistic, and can only be satisfied if the zero-order
beam experiences no polarization change due to the 2D
chirality. Experiments have shown that this is indeed the
case. However, Eq. �11� does not preclude nonreciprocal po-
larization rotations under more general circumstances.

If the symmetry requirements of the system are relaxed,
then nonreciprocal behavior may be possible. For example, if
the trajectory and polarization state of beam 2 are also the
parity inverted form of beam 1, then 	1=−	2, HA=HC, �1
=−�2, and ��1=−��2. As a result Eq. �11� is still satisfied.
If such a scenario occurs when �1=�2=0 and the resulting
polarization change is nonzero, then the polarization change
will be nonreciprocal while still being compatible with the
Lorentz reciprocity lemma.

It therefore appears that Lorentz reciprocity may permit
nonreciprocal polarization changes �or gyrotropy� under cer-
tain circumstances. In order to test for these reciprocal ef-

fects in the optical activity of our PCM samples, we have
measured their gyrotropy for a number of different beam
configurations illustrated in Fig. 5. These correspond to ex-
perimental arrangements where either the sample is reversed,
the beam trajectory is reversed, or only the chirality of the
sample is reversed. The results of our investigations are dis-
cussed in the next section.

IV. NONRECIPROCAL GYROTROPY

In order to test the reciprocal properties of our planar
chiral materials �PCMs� we have studied their gyrotropy for
eight different experimental configurations �see Fig. 5�. In
the first configuration, the input beam is incident normal to
the back face of the sample �i.e., on the unpatterned fused
silica substrate� and the output polarization state of the
�+1,0� diffracted beam is measured in transmission for each
of the different polarization states of the input beam. This
configuration �which we will designate as path A� corre-
sponds to a variation of the experimental setup illustrated in
Fig. 1 where the angle of incidence 	=0°, and the angle of
diffraction 
= +
1. The second configuration �path B� we
have considered is similar to path A with the only difference
being that the opposite diffraction order �−1,0� is chosen for
the output beam. In this case the angle of diffraction

=−
1. For the samples that we consider in this paper, 
1 is
set by the ratio of the gammadion pitch ��=5.0 �m� and the
optical wavelength ��=632.8 nm�, and therefore 
1=7.3°.
These two configurations, path A and path B, represent the
two principal experimental arrangements used most fre-
quently to investigate the optical activity of dielectric PCM
structures in our previous papers �8,12�.

In Fig. 6 we have illustrated the typical polarization
changes that are detected for both a left-handed PCM and its
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FIG. 4. �a� The electric and magnetic field vectors of the input
beam �beam 1� and the scattered component of beam 2 as seen by
an observer looking into the surface S at point A. �b� The electric
and magnetic field vectors of the input beam �beam 2� and the
scattered component of beam 1 as seen by an observer looking into
the surface S at point C. These vector fields are then used to define
the relevant terms in Eq. �11�.
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FIG. 5. An illustration of the eight different experimental con-
figurations used to demonstrate nonreciprocity in the optical re-
sponse of planar chiral materials. The appropriate angles of inci-
dence and diffraction are indicated, as is the diffraction order in
each case. For paths A, B, and G the beam is incident on the sub-
strate side of the sample. For the other five configurations the inci-
dent beam strikes the Si3N4 layer �shown in dark gray� first. The
thicknesses of the substrate and the Si3N4 layer are not shown to
scale.
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right-handed enantiomer when each is illuminated with lin-
early polarized light at normal incidence using both path A
and path B as the experimental configuration. It can be seen
that the polarization changes for path A and path B for the
left-handed PCM �sample W5BA42� are virtually identical,
yet the equivalent polarization response for path A through
the right-handed gammadion array �sample W5BA45� is
very different. In each case the sample consisted of an array
of gammadion-shaped holes of pitch �=5.0 �m and
gammadion arm-segment length �=1.8 �m etched into an
80-nm-thick film of Si3N4 on a fused silica substrate. For the
left-handed array �sample W5BA42� the bending angle
�=−45° while for sample W5BA45 �the right-handed array�
�= +45°. The input beam in each case was linearly polarized
with the input polarization state J0=J��0 ,�0� being defined

by the azimuthal angle ��0� only, the input ellipticity �0
being zero. The measured output polarization state J1
=J��1 ,�1� was generally elliptical with an azimuthal angle
of �1 and an ellipticity of �1. The azimuth rotation in Fig.
6�a� is defined by ��=�1−�0, while the ellipticity in Fig.
6�b� is �1.

The two sets of results for path A and path B through
sample W5BA42 illustrated in Fig. 6 are consistent with
those reported previously for other structures �8�. We have
already demonstrated how the gyrotropy exhibited by oppo-
site diffraction orders from the same sample should be iden-
tical, provided that the sample surface has twofold rotational
symmetry and the incident beam is aligned perpendicular to
the sample surface �8�. The same effect is clearly evident in
the gyrotropy of the �+1,0� and �−1,0� diffraction orders
�path A and path B, respectively� for sample W5BA42 in Fig.
6 and is a consequence of the twofold rotational symmetry of
the system. The data in Fig. 6 also shows how the gyrotropy
effects for opposite enantiomers are related by parity. The
application of parity inversion to path B through sample
W5BA42 should yield an experimental configuration equiva-
lent to path A through sample W5BA45. If the light-matter
interaction for these dielectric structures is invariant under
parity inversion, then the application of parity inversion to
the data for path B through sample W5BA42 �as denoted by
the black triangles in Fig. 6� should yield the negative polar-
ization changes for both the ellipticity and azimuth for the
negative input azimuth �see the white triangles in Fig. 6�. By
comparing the expected parity inverted data of path B
through sample W5BA42 �white triangles� with the actual
experimental data �black squares� for path A through sample
W5BA45 �the parity inverted experimental arrangement�, we
see that there is no discernable difference in the two data
sets. These results indicate that there are no significant manu-
facturing errors in our samples, and that the light-matter in-
teraction for these dielectric structures is indeed invariant
under parity inversion as has been shown previously �8�. We
can also conclude that both samples must therefore possess
almost perfect twofold rotational symmetry and must also be
near perfect enantiomers of each other.

The data in Fig. 6 clearly demonstrate that the polariza-
tion changes exhibited by our dielectric PCMs are unques-
tionably a consequence of the chiral patterning of the sample
surface as this is the only significant difference between the
two samples. This is consistent with our previous work �4,8�
which has shown a strong correlation between the measured
polarization change and the sense and magnitude of the sur-
face chirality as quantified by a mathematical coefficient for
the 2D chirality based on overlap integrals �1�. However, this
does not prove that the polarization changes are necessarily
the result of pure 2D chirality. They may also be the result of
3D chirality, or a complex mixture of the two types. A 3D
chiral effect of this type arising from a combination of the
2D surface patterning and its spatial relationship to the sub-
strate has been reported by Kuwata-Gonokami et al. �7� for
metallic gammadion arrays. In this instance the gyrotropy
was reciprocal, i.e., reversing the beam direction through the
same sample had no effect on the resulting polarization
change. As a consequence, there remained an element of
doubt over whether the results we have reported previously

FIG. 6. �Color online� The azimuth rotation �a� and induced
ellipticity �b� measured for the transmitted �+1,0� and �−1,0�
beams diffracted from a left-handed PCM �sample W5BA42� and a
right-handed PCM �sample W5BA45� when each is illuminated at
normal incidence with linearly polarized light of wavelength �
=632.8 nm. The experimental data shown correspond to that of
path A ��� and path B ��� for sample W5BA42 �left-handed gam-
madion array� and path A ��� for sample W5BA45 �right-handed
gammadion array�. Also shown is the predicted effect of parity in-
version on the data for path B for sample W5BA42 ���. Each
sample consists of an array of gammadion-shaped holes of pitch
�=5.0 �m and gammadion arm-segment length �=1.8 �m etched
into an 80-nm-thick film of Si3N4 on a fused silica substrate. For
sample W5BA42 �left-handed array� the bending angle �=−45°
while for sample W5BA45 �right-handed array� �= +45°.
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for diffractive PCMs �3,4,8,12� could also be due to 3D chi-
ral effects rather than 2D chirality. In order to resolve this
issue, we need to perform a number of experiments in which
the input beam is incident on the opposite face of the sample
from that employed for the data in Fig. 6.

Since the output beam for path A is not parallel to the
incident beam, it is possible to define a reverse experimental
configuration in one of two ways. Either the sample can be
reversed by rotating it by 180° about an axis perpendicular to
the plane of incidence �path C�, or the beam trajectory can be
reversed �path E�. For path C the input beam is now incident
normal �	=0°� to the front face of the sample �i.e., on the
patterned Si3N4 layer� and the polarization state of the
�+1,0� diffracted beam is again measured in transmission.
For path E, the input beam is also incident on the front pat-
terned face of the sample, but this time at an angle of inci-
dence 	=−
1, and the �−1,0� diffraction order now emerges
from the substrate side of the sample in a direction normal to
the sample surface. We can also reverse path B in a similar
manner, either by reversing the sample orientation �path D�,
or by reversing the beam trajectory �path F�. For path F the
angle of incidence 	= +
1, and it is the �+1,0� diffraction
order that now emerges normal to the sample surface on the
substrate side of the sample. It is also worth noting that, if
the sample possesses twofold rotational symmetry, path C
and path D will generate identical polarization changes and
can therefore be considered to be spatially equivalent, and
path E and path F will also be equivalent and generate iden-
tical polarization changes, just as in path A and path B have
previously been shown to be equivalent under spatial rota-
tion �8�.

In addition to the above configurations we can also define
a beam trajectory for which a reversal of the sample orien-
tation and a reversal of the beam propagation direction are
identical. Such a situation will arise if the angles of incidence
and diffraction are equal �i.e., 	=
= �
2�, as illustrated by
path G in Fig. 5. The reverse configuration is then defined by
path H. It should be appreciated that the equivalence of the
two reversal processes in this case is also dependent on the
sample surface topology exhibiting twofold rotational sym-
metry.

In order to investigate the possibility of non-reciprocal
polarization properties for dielectric PCM enantiomers, we
have measured the polarization change for a left-handed
PCM for four of the eight configurations �A–H� illustrated in
Fig. 5. In each case, the incident beam was linearly polarized
with the input polarization state J0=J��0 ,�0� being defined
by the azimuthal angle ��0� only, the input ellipticity �0
being zero. Each separate experiment involved measuring
the polarization state of the output beam J1=J��1 ,�1�. The
sample used for these experiments was almost identical to
sample W5BA42 reported in Fig. 6, except that this time the
thickness of the chirally patterned Si3N4 film was 320 nm.
This sample �denoted by the name W3BA42� was a left-
handed gammadion array with a gammadion bending angle
�=−45°. The results of these experiments are illustrated in
Fig. 7.

The polarization change of a light beam of wavelength
632.8 nm diffracting through sample W3BA42 was mea-
sured for configurations B, D, E, and H. It can be seen that

the results for path B �white squares� are very different from
the results for path D �black squares�. Thus reversing the
sample direction dramatically alters the form of the polariza-
tion response to a form that is more indicative of that which
one might expect to see for the opposite enantiomer. This
suggests that the polarization changes may indeed be nonre-
ciprocal, and the chirality that is responsible for these
changes may be 2D in character. To verify this we have
parity inverted the data for path D in Fig. 7. The resulting
data set �represented by the black triangles� is almost identi-
cal to the data for path B �white squares�. This demonstrates
two facts. First, that the polarization response for path D
through sample W3BA42 is almost identical to that which
would be expected for both path A and path B through the
opposite enantiomer �sample W3BA45�. Thus the incident
light diffracted along path D through the left-handed PCM
�W3BA42� experiences a gyrotropic effect that is consistent
with that of a right-handed PCM. Therefore, the chirality

FIG. 7. �Color online� The polarization changes measured for
light diffracted through a left-handed PCM �sample W3BA42� that
is illuminated with linearly polarized light of wavelength �
=632.8 nm showing evidence of nonreciprocity. The experimental
data shown correspond to that for path B ���, path D ���, path E
���, and path H ��� as defined in Fig. 5. Also shown is the pre-
dicted effect of parity inversion on the data for path D for sample
W3BA42 ���. Sample W3BA42 consists of an array of
gammadion-shaped holes of pitch �=5.0 �m, gammadion arm-
segment length �=1.8 �m, and gammadion bending angle �=
−45° etched into an 320-nm-thick film of Si3N4 on a fused silica
substrate.
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induced gyrotropy is indeed largely 2D in character. The sec-
ond conclusion we can draw is that any 3D chiral effect is
negligible, otherwise there would be a greater discrepancy
between the path B data �white squares� and the parity-
inverted path D data �black triangles� in Fig. 7 than is actu-
ally observed. This suggests that the role of the substrate in
influencing the gyrotropic effect is negligible, at least when
the input beam is at normal incidence.

The results for path B and path D through sample
W3BA42 are clearly suggestive of a form of nonreciprocal
optical activity arising from the 2D chirality of the sample. It
is a common misconception that such effects are forbidden in
nonmagnetic systems such as the purely dielectric PCMs we
are considering here due to the constraints of the Lorentz
reciprocity lemma. However, we have already shown in the
previous section that nonreciprocal optical activity does not
necessarily violate the Lorentz reciprocity lemma �see Eq.
�11��. To verify that nonreciprocal optical activity is a possi-
bility for these structures we have compared the polarization
response of sample W3BA42 for path B in Fig. 5 with that
for path E. In this case, which more closely conforms to the
geometry required for the testing of Lorentz reciprocity, path
E represents the reverse beam trajectory of path A. However,
as we have already shown in Fig. 6 and our earlier work �8�,
the polarization responses for paths A and B should always
be equal for samples with twofold rotational symmetry.
Therefore a comparison of the gyrotropy of path E with that
for path B should be equivalent to a comparison of path E
with path A, and therefore represent a direct test of the non-
reciprocal gyrotropy within a framework that is consistent
with the Lorentz reciprocity lemma. These results are also
shown in Fig. 7.

A comparison of the results shown in Fig. 7 for path B
�white squares� and path E �white triangles� again indicates
that the optical responses for the two paths differ signifi-
cantly, and are therefore indicative of nonreciprocity. In fact
the response for path E is similar to, but not identical to that
from path D �black squares�. This is perhaps not surprising
given that the only difference between the two experimental
configurations is a rather modest �
1=7.3°� tilt in the sample
orientation. A close examination of the data for paths B and
E indicates that for no linearly polarized input state J0
=J��0 ,0� is the polarization state of the output beam �J1� the
same for both paths B and E. Thus we can say that the
polarization response is nonreciprocal. Moreover, if we com-
pare the polarization changes at �0=0 and �0= �90° where
one would normally expect there to be no polarization
change �these being the eigenstates of an achiral grating�, we
see that the polarization changes for paths B and E are al-
most exactly opposite, as predicted by Eq. �11�. The small
discrepancy can be accounted for by the small difference in
the angles of incidence for the two paths.

Finally, if we consider the case of equal angles of inci-
dence and diffraction �path H in Fig. 5� we see that the
polarization response �as illustrated by the white circles in
Fig. 7� is similar to that of path D �black squares� and path E
�white triangles�. This again is unsurprising given that the
angle of tilt of the sample in this case �
2=3.6°� is interme-
diate between that for path D �0°� and that for path E �
1
=7.3°�.

It has been shown by other workers �7� that the polariza-
tion changes observed for zero-order beams transmitted
through metallic films patterned with arrays of 2D chiral
gammadions are reciprocal due to 3D chiral effects. This 3D
chirality is conjectured to arise from the combination of the
2D surface chirality and the asymmetric material film ar-
rangement along the direction normal to the patterned sur-
face. However, we have seen that the polarization response
of sample W3BA42 for path D �black squares� more closely
resembles that predicted for the enantiomeric sample for path
B despite the order in which the light beam propagates
through the substrate and the Si3N4 film being reversed. The
two data sets for paths D and B then appear to be related by
parity inversion, just as path A through W5BA42 and path B
through W5BA45 are related by parity inversion. As the in-
cident beam sees the 2D chirality of the patterned Si3N4 film
as having the same handedness for path D through W3BA42
as it would for both paths A and B through its enantiomer,
this appears to confirm that it is the 2D chirality that is the
dominant factor in defining the polarization change of these
higher order diffracted beams, and not 3D chiral effects
found by Kuwata-Gonokami et al. �7� for the zero-order
case. While such a 3D chiral contribution may indeed be
present in our samples, it is clearly dwarfed in magnitude by
the more dominant 2D chiral contribution.

So far we have only shown that the polarization response
of these dielectric PCM structures is nonreciprocal for lin-
early polarized input states. In the next section we will show
that the polarization eigenstates of these PCM structures are
also nonreciprocal. In order to demonstrate this, we will need
to calculate the transfer �Jones� matrices for each path. These
matrices relate the polarization state of the output beam �J1�
for a particular diffraction path or channel to the polarization
state of the input beam J0, where J0 and J1 are the Jones
vectors for each state. In the next section we will show how
the transfer matrices can be calculated from the experimental
data, and how the transfer matrix can be used to determine
the eigenstates for a particular diffraction channel or path.

V. POLARIZATION EIGENSTATES

The polarization state of any monochromatic coherent
beam can be characterized by two parameters: the polariza-
tion azimuth � and the ellipticity �. It is also possible to
describe the polarization state of any beam by the use of a
Jones vector J such that

J��,�� = �p

q
� = p� 1

rei�� = p�1

Z
� , �12�

where

p = cos���cos��� + i sin���sin��� , �13�

q = − sin���cos��� + i cos���sin��� , �14�

r2 =
tan2��� + tan2���

1 + tan2���tan2���
, �15�

and
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tan��� =
tan����1 + tan2����
tan����tan2��� − 1�

. �16�

If J0 is the Jones vector representing the input state for a
system, then the output state can be similarly described by a
Jones vector J1. Each of the Jones vectors J0 and J1 can be
characterized uniquely by an associated Z parameter �Z0 and
Z1, respectively� as indicated in Eq. �12�. If the optical sys-
tem under consideration is also linear, then the input and
output Jones vectors can be related by a 2�2 transfer matrix
A such that

�10J1 = AJ0, �17�

where �10 is a complex parameter representing the relative
amplitudes and phases of the input and output states. The
transfer matrix A can then be written in the form

A = �� 1 − ZcZb

Za Zc
� , �18�

where the term �−2=Zc�1+ZaZb�. The three complex compo-
nents of the transfer matrix A each represent the relative
amplitudes and phases of the vertical �Ey� and horizontal
�Ex� electric field components of the output wave Jn for dif-
ferent inputs. The term Za represents the relative amplitude
and phase of Ex to Ey when the input �J0� is linearly polar-
ized in the vertical direction. Likewise, Zb represents the
relative amplitude and phase of −Ey to Ex when the input is
linearly polarized in the horizontal direction. The third term
Zc represents the relative amplitude and phase of Ey in the
first case to Ex in the second.

For any linear optical system, the three complex compo-
nents of its transfer matrix �Za, Zb, and Zc� can be determined
from polarization measurements of the type illustrated in Fig.
6 by measuring the polarization state of the output beam J1
=J��1 ,�1� for three different linearly polarized input states.
For example, Za can be determined by measuring the output
polarization state J1 for a vertically polarized linear input
state �where �0=0° and �0=0°�. Then by substituting the
values of ��=�1−�0 and �1 for � and �, respectively, in
both Eqs. �15� and �16� the terms ra and �a can be deter-
mined, where Za=raei�a.

Similarly, the term Zb can be determined by measuring the
output polarization state of the system for a horizontally po-
larized linear input state corresponding to �0=−90° and �0
=0°, and again substituting the resulting ��=�1−�0 and �1
for � and �, respectively, in Eqs. �15� and �16� to in order to
determine the terms rb and �b, and thence Zb. The final term
Zc can be determined by measuring the polarization change
of the system for an input state that is a linear superposition
of the inputs used to determine Za and Zb. If this superposi-
tion input state is linearly polarized at an azimuth �0=�s,
and the resulting output polarization state of the system is
J��1 ,�1�, then after determining Zs by substituting ��=�1
−�0 and �1 for � and �, respectively, in Eqs. �15� and �16�,
the term Zc can be calculated using the equation

Zc =
Za + ZaZs tan �s + tan �s − Zs

Zs tan2 �s + ZbZs tan �s + tan �s − Zb tan2 �s
.

�19�

Once all the elements of the transfer matrix A have been
determined, it is a relatively trivial task to determine the two
polarization eigenstates of the system. These are the states
for which the input and output polarization states for the
diffraction channel are identical, and they can be represented
by a pair of Jones vectors J+ and J−, each with its character-
istic Z parameter, Z+ and Z− such that Z�=Z0=Z1. Substitut-
ing Z� for Z0 and Z1 in Eq. �17� and eliminating the term �10
yields the quadratic equation

ZcZbZ�
2 + �Zc − 1�Z� + Za = 0 �20�

the solutions to which are

Z� = r�ei�� =
1 − Zc � ��1 − Zc�2 − 4ZcZbZa�1/2

2ZcZb
. �21�

From the parameters r� and �� the ellipticity ���� and azi-
muthal angle ���� of each polarization eigenstate can be
determined using the relations

sin�2��� =
2r� sin����

r�
2 + 1

�22�

and

tan�2��� =
2r� cos����

r�
2 − 1

. �23�

We have calculated the two polarization eigenstates J+ and
J− of various PCM samples for most of the diffraction paths
outlined in Fig. 5. These eigenstates are listed in Table I in
terms of the ellipticity and azimuthal angle in each case. In
contrast to the case of a conventional 3D chiral system, it can
be seen that none of these eigenstates is circularly polarized.
In fact, a purely 2D chiral system with fourfold �C4� rota-
tional symmetry would also be expected to have circular
eigenstates, but unlike 3D chiral systems, the eigenvalues
should interchange for opposite propagation directions. In-
stead, all the eigenstates listed in Table I appear to be almost
linear but with small components of ellipticity. The amount
of ellipticity appears to be dependent �at least in part� on the
Si3N4 film thickness and is greatest for the PCMs with 80-
nm-thick Si3N4 films and smallest for those with 160-nm-
thick films. This behavior does however appear to correlate
with another finding that we reported previously �8�,
whereby 2D chiral features etched into quartz substrates
without the Si3N4 film failed to exhibit any chirality depen-
dent polarization changes at all. This suggests that the Si3N4
film plays an important role in generating the polarization
changes, possibly by acting as a Fabry-Perot resonant cavity
that induces different phase retardations on the vertical
�s-polarized� and horizontal �p-polarized� linear components
of the elliptical wave as it traverses the cavity. This would
then also explain how changing the Si3N4 film thickness af-
fects the ellipticity of the polarization eigenstates, but not the
azimuthal angle. The azimuthal angle is relatively insensitive
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to the Si3N4 film thickness, but does appear to be strongly
influenced by the 2D chirality of the surface patterning.

It is evident that for all the samples studied, the azimuthal
angle of each eigenstate in Table I is strongly rotated from
the s-polarized ��=0°� and p-polarized ��=90°� linear
states that represent the eigenstates across a uniform hetero-
geneous dielectric interface at a nonzero angle of incidence
�	�0°�. In addition, the two eigenstates for each path are
generally nonorthogonal with the degree of nonorthogonality
being strongly dependent on the ellipticity of the two eigen-
states. We have quantified this nonorthogonality using the
parameter ��=180°−�, where cos���=S+ ·S− and the
terms S+ and S− are three-dimensional Stokes vectors for the
two respective eigenstates J+ and J−. Each Stokes vector
S�� ,�� has three mutually orthogonal components S1
=cos�2��cos�2��, S2=cos�2��sin�2��, and S3=sin�2��. The
term � therefore represents the angle between the two
Stokes vectors S+ and S− in the Stokes parameter space.
Thus, the two eigenstates are defined to be orthogonal if their
respective Stokes vectors are antiparallel ��=180°�. The
data in Table I indicates that while �� is seen to vary for
different PCM samples and for different optical diffraction
paths, in no instance can we claim with any certainty that the
eigenstates for a particular path through a given sample are
orthogonal, and in general it appears that for most cases non-
orthogonality is the norm.

It can be seen by comparing data set �a� with data set �b�
in Table I, and data set �c� with data set �d�, that the eigen-
states for opposite diffraction orders from the same sample
are virtually identical when the angle of incidence is zero
�i.e., 	=0°�. We have previously shown that the optical ac-
tivity of opposite diffraction orders should be identical if the
sample and experimental arrangement possess twofold rota-
tional symmetry �8�. They should therefore also share the
same transfer matrix and eigenstates. The data in Table I
suggests that this is indeed the case.

In addition, we can see from data sets �a�–�h� that the
eigenstates for a given diffraction path through one enanti-
omer are also related by parity to the eigenstates of the same
path through the opposite enantiomer. This is further evi-
dence to support the invariance of the light-matter interaction
in these structures under parity inversion. However, it is also
true that the eigenstates for similar beam trajectories but op-
posite sample orientations for the same enantiomer also ap-
pear to be related by parity. The eigenstates for path B
through sample W3BA42 �see data set �i�� are almost the
mirror image of those for path D through the same sample
�see data set �j��. This suggests that the transfer matrices for
these two paths are also related by parity inversion, and is
further evidence that the polarization changes are the conse-
quence of 2D chirality. It can also be seen that the eigenstates
for path E are also very similar to those for path D as would
be expected from inspection of the polarization data in Fig.
7. Thus reversing the propagation direction along the diffrac-
tion channel �such as from path A to path E� also appears to
almost completely reverse the eigenstates.

It has been predicted recently by Prosvirnin and Zheludev
�14� using numerical simulation techniques that the eigen-
states for opposite directions of propagation along the same
optical path through a metallic PCM structure formed from
arrays of gammadions or rosettes should be biorthogonal. It
should be noted that their definition of biorthogonality re-
lates to one eigenstate for the forward path �path B� being
orthogonal to one of the eigenstates of the reverse path �path
E�, but crucially also assumes that the azimuthal angle is
measured from the same viewpoint for both paths �while
curiously the ellipticity is not�. This is different from our
definition where both the ellipticity and the azimuthal angle
are always measured from the point of view of an observer
looking into the on-coming beam �see Fig. 1�. Taking into
account this change of basis, the eigenstates listed in Table I
do suggest that a biorthogonal relationship between these

TABLE I. Polarization eigenstates J+=J��+ ,�+� and J−=J��− ,�−� for the diffraction channels A, B, D, E, and H �as defined in Fig. 5�
transmitted through left-handed �L� and right-handed �R� arrays of gammadion-shaped holes in Si3N4 films of thickness t. Each diffraction
path is additionally characterized by its angle of incidence �	�, the diffraction angle �
�, the diffraction order and the direction of propagation
�substrate first or Si3N4 layer first�. The chirality of the gammadion array �L or R� is determined by the gammadion bending angle ���. For
each sample the gammadion arm-segment length �=1.8 �m and the pitch �=5.0 �m. The term �� represents the degree of nonorthogo-
nality between the two eigenstates.

Set Sample t /nm L/R � Path Direction Order 	 
 �+ �+ �− �− ��

�a� W5BA42 80 L −45° A Substrate �+1,0� 0° +7.3° +35.6° +6.49° −53.7° +7.34° 27.7°

�b� W5BA42 80 L −45° B Substrate �−1,0� 0° −7.3° +35.4° +6.60° −54.0° +7.05° 27.3°

�c� W5BA45 80 R +45° A Substrate �+1,0� 0° +7.3° −35.4° −5.59° +56.6° −9.11° 29.7°

�d� W5BA45 80 R +45° B Substrate �−1,0� 0° −7.3° −35.3° −5.15° +56.5° −8.69° 27.9°

�e� W2BA42 160 L −45° A Substrate �+1,0� 0° +7.3° +37.9° −0.42° −53.7° −0.69° 3.88°

�f� W2BA45 160 R +45° A Substrate �+1,0� 0° +7.3° −37.6° +0.33° +54.9° −0.70° 5.00°

�g� W6BA42 240 L −45° A Substrate �+1,0� 0° +7.3° +32.8° +3.40° −54.3° −0.38° 8.43°

�h� W6BA45 240 R +45° A Substrate �+1,0� 0° +7.3° −29.0° −2.11° +56.2° +0.08° 10.4°

�i� W3BA42 320 L −45° B Substrate �−1,0� 0° −7.3° +36.6° −1.55° −51.9° −1.69° 7.13°

�j� W3BA42 320 L −45° D Si3N4 �−1,0� 0° −7.3° −34.9° −0.16° +55.8° +0.71° 1.87°

�k� W3BA42 320 L −45° E Si3N4 �−1,0� −7.3° 0° −34.6° +0.45° +51.9° −2.50° 8.17°

�l� W3BA42 320 L −45° H Si3N4 �−1,0� −3.6° −3.6° −30.4° +1.71° +61.7° −3.36° 5.34°
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eigenstates, as defined by Prosvirnin and Zheludev, may also
exist for our dielectric PCMs. However, the relatively small
ellipticity seen for most of the eigenstates for our samples
coupled with the magnitude of our experimental error, means
that we cannot be definitive in our verification of this rela-
tionship.

So far we have shown that light diffracted through dielec-
tric PCM samples along a nonzero order diffraction channel
�such as path B� exhibits changes to its polarization state that
are nonreciprocal for all linearly polarized input states if ei-
ther the sample orientation is reversed �path D� or the direc-
tion of propagation is reversed �path E�. Now we have also
shown that the eigenstates for both reversal processes are
also nonreciprocal. It may be tempting to think that it can
therefore be assumed that the polarization changes for these
PCM structures are nonreciprocal for all input polarization
states. However, this is not the case. Just as it is possible to
find two eigenstates for any diffraction path, so too is it
possible to find two input states for which the polarization
change is completely reciprocal.

Suppose that the transfer matrix for a given path i through
a particular sample is given by

Ai = �i� 1 − ZciZbi

Zai Zci
� . �24�

It can then be shown that two paths m and n will be recip-
rocal for an input state characterized by a Z factor Z0 in its
Jones vector �see Eq. �12�� if Z0 is a solution to the equation

�Zcm�1 + ZbmZan� − Zcn�1 + ZbnZam��Z0 + ZcmZcn�Zbm − Zbn�Z0
2

+ Zam − Zan = 0. �25�

Moreover, if the two paths m and n are related by parity
inversion then Zam=−Zan, Zbm=−Zbn, and Zcm= +Zcn. The so-
lutions to Eq. �25� are then

Z1
2 = Zc

2Z0
2 = −

Za

Zb
, �26�

where Z1 is the Z factor of the output state J1=J��1 ,�1� in
each case.

We have calculated these reciprocal input and output
states for two scenarios. In the first of these the forward and
reverse paths are defined by paths B and E, respectively. In
the second they are defined by paths G and H. The input and
output states for each scenario are listed in Table II. In both
cases the input states required for reciprocity are almost lin-
ear and close to �but not identical to� the eigenstates in each
case. In addition it can be seen that the two reciprocal states
for paths G and H are related by parity inversion, just as the
paths themselves are related by parity.

It should be noted that for the second reciprocal state
scenario in Table II we have deduced the transfer matrix for
path G �AG� by first deriving the transfer matrix for path H
�AH� using the polarization data in Fig. 7 �represented by the
white circles� and applying parity inversion to it. The validity
of such a procedure is supported by the level of agreement of
the parity inverted path D data for sample W3BA42 in Fig. 7
�as represented by the black triangles� and the path B data
�white squares�. If we define a parity operator P such that

P = �1 0

0 − 1
� �27�

then AG will be related to AH by

AG = PAHP−1 = PAHP . �28�

As a result, the transfer matrix for path G will be

AG = �H� 1 ZcHZbH

− ZaH ZcH
� . �29�

It can be seen from Eq. �29� that the matrix AG is similar in
form to the inverse of matrix AH given by

AH
−1 = �H� ZcH + ZcHZbH

− ZaH 1
� . �30�

If ZcH=1, then AG=AH
−1. This suggests that, under certain

circumstances, the polarization changes due to a 2D chiral
structure could be reversible.

VI. NONRECIPROCAL INTENSITY MODULATIONS

In the previous two sections we demonstrated that the
polarization response of a dielectric planar chiral material
�PCM� is nonreciprocal for all linearly polarized input states,
and also for all elliptical input states except for two unique
states defined by Eq. �25� and presented in Table II. In this
section we will also show that nonreciprocity is also mani-
fested in the intensity of the various diffracted beams.

It was shown in the previous section that the transfer ma-
trix for any given diffraction channel can be defined in a
form given by Eq. �18�. It can be seen that the general form
of this transfer matrix is nonunitary. One consequence of this
is that the amplitude, phase, and intensity of the output beam
should all depend on the polarization state of the input beam
J0=J��0 ,�0�. For the case of the output intensity �I1�, this
functional dependence can be shown to be of the form

I1 = I0	0�����0 + �1 cos�2�0�cos�2�0�

+ �2 cos�2�0�sin�2�0� + �3 sin�2�0�� , �31�

where the parameters �0−�3 are those given by

2�0 = 1 + xa
2 + ya

2 + �xc
2 + yc

2��1 + xb
2 + yb

2� , �32�

TABLE II. A summary of the two reciprocal input polarization
states �J0=J��0 ,�0�� for sample W3BA42 in the cases where �i�
the input path is path B and the reverse path is path E �or vice
versa� and �ii� when the input path is path H and the reverse path is
path G �or vice versa�, and their associated output states �J1

=J��1 ,�1�� in each case.

State Path �0 �0 �1 �1

1 B,E −39.8° +1.44° −46.0° −1.78°

2 B,E +41.6° −2.63° +47.4° −0.84°

1 G,H −39.5° +5.36° −52.7° +0.51°

2 G,H +39.5° −5.36° +52.7° −0.51°
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2�1 = 1 + xa
2 + ya

2 − �xc
2 + yc

2��1 + xb
2 + yb

2� , �33�

�2 = xc�xb − xa� − yc�ya + yb� , �34�

and

�3 = yc�xb − xa� + xc�ya + yb� �35�

while the term 	0 is a constant that represents a measure of
the diffraction efficiency for this particular diffraction chan-
nel. The terms xa, xb, and xc are the real parts of the terms Za,
Zb, and Zc in the transfer matrix A defined in Eq. �18�, while
ya, yb, and yc are the respective imaginary parts. I0 is the
intensity of the input beam.

We have measured the output intensity of a number of
PCM samples and their enantiomers for an experimental
configuration corresponding to path B in Fig. 5 and over a
range of linearly polarized input states J0=J��0 ,0�. In most
cases the relative intensity �I1 / I0� of the �−1,0� diffracted
beam was found to exhibit a strong modulation as a function
of �0 �see Fig. 8�. The amplitude of this modulation effect
was found to vary significantly from sample to sample de-
pending upon the thickness of the Si3N4 film, but was also
found to agree well with the predictions of the transfer ma-
trix �solid curves in Fig. 8�. In each case in Fig. 8 the only
fitting parameter used to scale the predicted data �solid
curves� to the experimental data �black and white squares�
was the term 	0 in Eq. �31�.

The data in Fig. 8 illustrates how the intensity modulation
is different for opposite enantiomers. Only at linearly polar-
ized input states corresponding to �0=0° and �0= �90° are
the output intensities the same for opposite enantiomers. This
should also be true for paths G and H through the same
samples.

Under parity inversion the terms �0 and �1 in Eq. �31�
remain unchanged while �2 and �3 change sign. Thus for a
pair of opposite beam trajectories that are related by parity
inversion such as paths G and H, the output intensity will be
reciprocal, not only for the linear states �0=0° and �0
= �90°, but also for all input states J0=J��0 ,�0� for which
the condition sin�2�0�=k0 tan�2�0� is satisfied with k0=
−�3 /�2. For path H through sample W3BA42 we found that
k0=0.0687 while the data in Table II indicate that the ratio
sin�2�0� / tan�2�0�=−5.18 for both reciprocal states. Thus the
criterion required for reciprocity of the polarization change
as set out in Eq. �26� is different from that required for the
transmitted intensity. Therefore, overall we can say that the
optical properties of nonzero order diffracted beams are non-
reciprocal for all input states and conditions as, in general,
our PCM samples will not be reciprocal for both changes in
polarization and changes in their transmitted intensity simul-
taneously.

VII. SUMMARY

Our aim in undertaking this work has been to investigate
possible manifestations of nonreciprocity in the optical activ-
ity of dielectric planar chiral materials �PCMs� arising from
the presence of 2D chirality in these structures. The PCM
samples that we have studied all consisted of Si3N4 films
patterned with regular square arrays of asymmetric elements
that were supported on transparent fused silica substrates. As
a result, the transmitted light formed a well-defined square
diffraction pattern due to the array pitch of these structures
being significantly greater than the optical wavelength used
for their characterization ��=632.8 nm�.

We have shown that when these structures are illuminated
with linearly polarized light, most of the transmitted dif-
fracted beams exhibit significant rotations in their polariza-
tion azimuth compared to the input beam, and also incorpo-
rate substantial amounts of ellipticity. We have shown that
the sense of these polarization changes for each PCM sample
is reversed if the direction of propagation of the beam
through the sample is reversed. As 2D chiral structures are
also seen to reverse their sense of chirality when viewed
from the opposite direction, this is incontrovertible evidence
that the polarization changes are directly correlated with the
sense of 2D �or planar� chirality of the structure as seen by
the incident beam. They therefore arise as a direct conse-
quence of the 2D chirality and not from 3D chirality as has
been reported previously by other workers for the case of the
zero-order beam transmitted through metallic PCMs �7�.
These two results are not necessarily contradictory as
Kuwata-Gonokami et al. �7� did not investigate the proper-
ties of higher order diffracted beams, while the zero-order
beams transmitted by our dielectric PCMs exhibited no dis-
cernable optical activity.

In this paper we have rigorously demonstrated that the
gyrotropy produced by the 2D chirality in our PCMs is com-
pletely nonreciprocal in character. Despite this, it does not
violate the Lorentz reciprocity lemma. For a 2D chiral struc-
ture with C4 symmetry, only the zero-order beam at normal
incidence is prevented by the Lorentz reciprocity condition

FIG. 8. �Color online� The observed variation in relative inten-
sity for the �−1,0� beam diffracted along path B through a left-
handed PCM �sample W5BA42, �� and the �+1,0� beam diffracted
along path A through a right-handed PCM �sample W5BA45, ��
when each is illuminated at normal incidence with linearly polar-
ized light of wavelength �=632.8 nm. Each sample consists of an
array of gammadion-shaped holes of pitch �=5.0 �m and gamma-
dion arm-segment length �=1.8 �m etched into an 80-nm-thick
film of Si3N4 on a fused silica substrate. For sample W5BA42 �left-
handed array� the bending angle �=−45° while for sample
W5BA45 �right-handed array� �= +45°. The solid curves represent
the predicted intensity in each case based on the respective transfer
matrices derived using the data in Fig. 6.
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from exhibiting any optical activity arising solely from the
2D chirality, and consequently any polarization changes seen
in the zero order beam must be due to residual 3D chiral
effects as demonstrated previously by Kuwata-Gonokami et
al. �7�. In our diffractive structures the diffraction process
permits nonreciprocal 2D chiral effects by breaking the C4
symmetry of the structure. This in turn results in a gyrotropy
that is a strong oscillatory function of the input polarization
azimuth, rather than the more usual rotationally invariant
form seen for conventional 3D chiral structures. It also re-
sults in large intensity modulations of the transmitted beams
that are strong functions of the input polarization state.

The work presented herein represents the first comprehen-
sive analysis of reciprocity, its causes and its limitations, in

asymmetric diffractive materials. The nonreciprocal effects
that we have identified also have implications for the revers-
ibility of the light-matter interaction in these structures. Such
effects will be considered in a subsequent publication.
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