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Abstract— This paper introduces the Global Interlinked Data
Store (GIDS), a technique to support the easy creation and retrie-
val of interlinked semantic data within a web-scale distributed
network environment such as the World Wide Web (WWW). By
using the GIDS a web application developer can treat the network
as a data store without worrying about files, databases or other
traditional data storage concerns. The data that is created on the
network can be subsequently accessed and navigated by end users
and software agents alike. The GIDS proposes a novel three-stage
data storage process which enables the data to be stored in up
to three contextually relevant locations to enhance subsequent
retrieval opportunities. We propose that the GIDS can provide a
highly-scalable distributed capability to store and retrieve data
directly on a network. We believe that the capability offered by
the GIDS will be of significant use to rapidly formed diverse
coalitions who wish to communicate and exchange semantic data
in a large network environment such as the WWW. Based on
commonly used Web standards, we have implemented the GIDS
in a prototype which can be invoked via simple web service
requests to read and write data as prescribed by the GIDS.

I. INTRODUCTION

Research sponsored by the International Technology
Alliance[1] (ITA) into Semantic Web technologies has recently
yielded a new approach to the distributed network storage of
interlinked semantic data which we describe in this paper.
We believe that this represents a significant improvement in
usability and accessibility of semantic data when compared
to existing Semantic Web best practices and builds upon the
recent successes in publishing large volumes of interlinked
data made in the context of Linked Data Web[2]. This paper
provides details of this concept, which we call the Global
Interlinked Data Store (GIDS), along with the outline of an
exemplary prototype implementation.

The GIDS proposes a technique for directly storing semantic
data “on the surface” of a network and enabling the subsequent
navigation of that data. This is achieved through the use of
network resolvable addresses in the definition of the data,
removing the need for separate indexes defining the location
of these data. The GIDS also enables data to be distributed
over referenced locations; allowing a contextually relevant
distribution of data across the network, and provides a basis
for multiple paths of access to the data for subsequent onward
navigation. The GIDS is intended to be a supporting platform
for the Semantic Web, providing a simple set of interfaces
within which data can be written, read and navigated by soft-
ware agents, applications, or human users. The GIDS does not
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in itself provide any of the higher level capabilities associated
with the Semantic Web (such as inference/entailment, complex
queries, etc) but it is designed to support these capabilities in
the agents and applications which use the GIDS.

This paper is organised as follows: Section II outlines the
various related current technologies within whose context the
GIDS resides. We then provide a conceptual overview for the
GIDS in Section III, along with a discussion of capabilities, ad-
vantages, disadvantages and assumptions. Section IV contains
the technical details for a prototype implementation. Section V
provides an outline of the perceived military relevance along
with some examples of usage. We briefly describe some related
work in Section VI before summarising with our conclusions
and planned future work in Section VII.

II. CURRENT TECHNOLOGIES

This section provides contextualising information for those
key areas which are directly relevant to the GIDS.

A. The Semantic Web and the Linked Data Web

The Semantic Web is anticipated to be the next major
iteration of the current World Wide Web (WWW)[3][4], with
an increased emphasis on the representation of the “meaning”
of information. This is a significant change from the current
document-centric approach of the WWW where information is
frequently stated with little-or-no explicit semantics, and the-
refore no readily machine-processable “meaning”. The current
WWW is fundamentally designed to be understood by humans
rather than machines, and as such the meaning of the data
that is currently expressed is implicit in the natural language
used, implied in the page layout, or is even missing altogether
because it is considered contextual and commonly known.

The semantics of data on the Semantic Web take the form
of ontologies which formally define relevant concepts and
their relationships and are designed for the purpose of en-
abling subsequent machine-processing. These ontologies can
be constructed using an appropriate ontology language (such
as OWL[5], the Web Ontology Language) such that they
rigorously define the conceptual model for a particular domain,
enabling software agents and human readers to process the
ontology to gain insight and understanding of the model and
any associated data which is represented in relation to that
model.



Since the original proposal by Tim Berners-Lee in 1999[6]
this approach to building a Semantic Web has had some
successes within specific domains[7][8] but has not gained
widespread adoption on the WWW, potentially due to the
complexity of the languages involved, the skills required to
build accurate domain ontologies, and the effort required by
content producers to conform to those ontologies[9]. There
are also perhaps underlying philosophical considerations as to
whether a single unambiguous definition of a domain can ever
be universally accepted[10], which again act as a disincentive
to the widespread adoption of ontologies and therefore the
Semantic Web itself in its current form.

A more recent, emergent, approach to providing semantic
content for the WWW has been that of the Linked Data
Web[2], which builds upon the principles and technologies of
the Semantic Web but has taken a more pragmatic approach,
starting with the data rather than the ontologies or models
which define that data. The Linked Data Web advocates the
semantic markup of data on the WWW using RDF[11] (Re-
source Description Framework) as the data markup language'.
The marked-up data of the Linked Data Web should conform
to relevant models (or ontologies) but by taking this data-
centric approach these models tend to be far simpler than the
traditional domain ontologies prescribed by the Semantic Web.
In fact the existing WWW community had already started
to take steps in this direction through the loose definition
of terms such as “Semantic HTML” and the more rigorous
definition of Microformats[12] to describe types of data that
are already frequently expressed in existing web pages. The
Linked Data Web initiative represents a concerted effort to
coordinate action in this area and create a vast interlinked
collection of datasets[2] which conform to a set of emerging
standard models in the various domains of interest. The
specific interlinking of datasets is a fundamentally important
aspect of the Linked Data Web initiative, with these links
serving as joining points between sets of information from
different sources with different focus areas. These interlinked
knowledge networks represent epistemically potent contingen-
cies and are of particular interest to the ITA research in terms
of their analysis, engineering and management, using the tools
and insights gleaned from a mature network science discipline.

B. URIs and URLs

Another key difference between the Semantic Web and
the more recent Linked Data Web initiative is the different
approach to the use of unique identifiers that unambiguously
define various entities. The Semantic Web advocates the use of
URIs (Uniform Resource Identifiers), simply mandating that
they must be unique, but not requiring them to be processable
in any way. The Linked Data Web advocates that the URIs that
are used should be dereferencable[2], i.e. in addition to their
uniqueness they should also be able to be requested from the
network, with a meaningful response being returned, although
the Linked Data Web does not explicitly specify the detailed

'OWL, the Web Ontology Language, is defined using RDF.
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form of the response. This difference means that the Linked
Data Web disallows blank or anonymous nodes[13] which are
capable of modelling some useful knowledge structures, e.g.,
existential quantifications and class restrictions.

URLs (Uniform Resource Locators) are URIs that uniquely
identify a dereferenceable resource and can therefore be consi-
dered equivalent to dereferenceable URIs as outlined above.
However, in this paper we use the term “deferenceable URI”
when discussing the conceptual aspects of the GIDS and
reserve usage of URL for our GIDS prototype implementation
since it has a specific parameterised URL composition which
extends the core dereferenceable URI that defines the entity.
This URL enables a user of the prototype to specifically
request sets of information related to the underlying deferen-
ceable URI. Section IV provides examples to highlight this.

C. Triples and Triple Stores

The Semantic Web makes use of existing data representation
languages that express data in the form of triples. RDF is
the most commonly used data representation language for
expressing such triples, generally in the form of RDF/XML
which is a serialisation syntax in XML for RDF. At the
conceptual level a triple is comprised of three components
which are known as subject, predicate and object. Each of
these components can contain a value which is a URI (a
reference) or a literal value (an absolute value such as a string
or a number, e.g., “John” or 42). Example triples are shown in
Figures 1 and 2. In both of these examples the triple is read
from left to right. The subject is “Personl” (a URI?) and the
predicates are “firstName” and ‘“knows” respectively, both of
which are also URIs. The object values are “John” (a literal)
and “Person2” (a URI). Conceptually a triple can be read as
an entity (the subject) having a relationship (the predicate) to
a value (the object).

Triples are fundamental building blocks for the extensible
representation and reference of data®, and are the representa-
tional basis for the Semantic Web[14].

Triples as described above tend to be manifest in two major
forms: as RDF statements located within a file or page, or
as records inside a triple store. Triple stores are conceptually

2For simplicity the URIs used in these examples are not dereferenceable.
3Section VII includes some discussion of quadruples and named graphs,
however the GIDS in its current form is fundamentally triple based.



similar to relational database systems, except that they do not
encode a particular custom schema within which the data is
stored. At a conceptual level a triple store can be considered
to be the equivalent of a single table with three columns
(subject, predicate and object) and a row for every unique
triple that is stored*. The GIDS replaces the need for such a
triple store since the data is accessed directly from the network
via dereferenceable URIs.

This extant approach to storing triples in web pages, files
or triples stores entails a knowledge of the location within
which the triples are currently stored such that they can be
accessed. When the triples are stored in a web page or file
with a URL which does not correspond to the URIs in the
triples themselves, the web page or file must be separately
located. Alternatively, if the triples are known to be stored in
a triple store then some kind of interface (possibly a SPARQL
endpoint® or a standard database access mechanism such as
ODBC?) must be accessed with the correct parameters in order
to locate and return the required triples. In both of these cases
the steps required to access the triples are non-trivial and often
require additional information.

Having now contextualised the domain within which the
GIDS is positioned, the remainder of this paper discusses the
GIDS in detail, starting with the conceptual overview in Sec-
tion III, then providing details of a prototype implementation
in Section IV before concluding with a discussion of military
relevance, related work and planned future work in Sections
V, VI and VII respectively.

III. CONCEPTUAL OVERVIEW

The GIDS aims to promote direct and easy access to
semantic data in a network environment such as the WWW,
through network resource requests based on the embedded
URIs, avoiding concerns about indexes, specific file formats,
file locations or access to triple stores.

Returning to our earlier description of a triple, we now
introduce the concept of an entity which is core to the GIDS
and common to the Semantic Web. Whilst a triple contains
three elements (subject, predicate, object), any of those three
elements can refer to an entity through the use of a dereferen-
ceable URI. An entity can be comprised of one or more triples,
and such multi-triple composition occurs when a number of
triples exist, all with the same URI in the subject position.
Figure 3 gives an example of a simple entity with the URI
“Personl” which is composed from a number of individual
triples, all of which have the same URI (“Personl”) as the
subject. This entity can be considered as being comprised of
the attributes shown (the predicates) with the corresponding
values (the objects) in Figure 3.

4In practice triple stores are more complex than this with numerous
capabilities for efficiently storing and retrieving triples, but for the purpose
of this contextual introduction this simplistic definition will suffice.

SSPARQL is a popular Semantic Web Query Language. A SPARQL
endpoint allows semantic queries to be executed against a specific triple store,
yielding a set of triple data as a response.

5The Open Database Connectivity software API
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Figure 3. An example entity, comprised of numerous triples

The overall aim for the GIDS is to ensure that every
entity (and every triple) is directly accessible’ via the cor-
responding dereferenceable URI. This means that a simple
network request to a dereferenceable URI will yield a response
containing triples which in turn contain dereferenceable URIs,
the details of which can be requested through subsequent
network requests in a recursive manner.

Within the GIDS entities are identified using dereferen-
ceable URIs as described previously. The act of dereferencing
the URI yields all known triples which are related to that entity.

A. Core capabilities

The GIDS proposes three important additional capabilities
which build upon the basis of the Semantic and Linked Data
Web, specifically:

A defined response format: When dereferencing a URI the
format and structure of the expected response is known and
takes the form of triples which are related to the entity
that corresponds to the requested URI. This is a significant
extension to current best practice on the Linked Data Web, and
enables subsequent automated processing of the data which is
returned in the response. The GIDS does not specify what
the format and structure of the response should be; it simply
asserts that there should be a known structure and format
which will be defined in any concrete implementation.

Direct triple access interface: The ability to directly read
and write semantic data triples to/from the network through
simple network resource requests (e.g., a HTTP GET request
to a particular URL in the same way that a browser requests
a web page). The GIDS does not specify the details of these
requests since the GIDS could potentially be used in a number
of different networks, however the prototype described in
Section IV does provide details of these requests for this
implementation.

Multiple storage locations: The GIDS proposes the ability

"Triples are accessible via their own dereferenceable URI through reifica-
tion, described later in this paper.



Figure 4. An example of triples distributed using the GIDS

to store semantic data triples in up to three logical locations®
on the network. This builds upon the notion that every element
of information is composed of a triple which is composed
of three dereferenceable URIs (or literals). Each of the three
components in the triple can be notified of the triple’ when it
is asserted through the execution of the triple access interface
against the URI for the involved entity. Each of these three
URIs can then optionally store the details of that triple for
subsequent processing. This enables entities to store data
which relates directly to them (i.e. that URI is used in the
predicate or object position) rather than simply the data which
is part of their definition (i.e. that URI is used in the subject
position). This storage of data in multiple relevant locations
supports the ability to initiate queries back across the network
rather than always being forced to follow the links forward'?.
The GIDS proposes that each entity can choose whether or
not to store each triple that it is notified of, and the decision
to do so or not may either be universal or potentially based
on contextual information such as the specific URIs involved,
or the permissions of the requesting agent, etc. The GIDS
does not prohibit the storage of triples in additional locations
(e.g., for separate indexing or caching considerations), but such
additional storage would be carried out specifically by the
application using the GIDS rather than being a core GIDS
capability and is therefore not discussed here.

The combination of the above three core capabilities yields
this new approach which enables data to be easily stored
directly on the network through simple network requests, to
be retrieved in the same way with a known response format to
facilitate subsequent automated processing, and enables each
entity referenced by a triple to store a separate copy of that
triple to facilitate improved navigation.

8The distinction between logical and physical location is important: each
GIDS installation may serve part of a domain, a single domain or many
domains and the physical location of the actual triple(s) is not of concern to
the exercising application as long as the logical location can be dereferenced.

9Unless it is a literal, in which case it is not dereferenceable.

10¢ g . requesting triples from a URI which refer to it as a predicate or
an object rather than just the subject. Such queries are straightforward in
centralised triple stores, but not in distributed environments.

Figure 4 shows a simple example of the GIDS being used to
store data about a number of entities across a number of nodes
within a distributed network environment. In this diagram a
node is discriminated based on the hostname component of
each URI, and it is anticipated that each node will run a
separate GIDS implementation. Node 1 defines and stores
information related to three entities (A, B, C) and Node 2
defines and stores information related to three entities (D, E,
F). The information is stored in the form of triples, with s,
p, and o being the subject, predicate and object respectively.
In this example the dereferenceable URI of an entity can be
calculated by concatenating the node and the entity id, e.g.,
http://Nodel/A

The triple of particular interest (A, B, D) is actually sto-
red against two separate nodes (Nodel and Node2). This
is because Nodel defines entities A and B, whereas Node2
defines entity D. Using the GIDS each entity involved in
a triple will be notified when the triple is asserted, and in
this example both nodes therefore have stored a copy of the
triple. The diagram also shows other nodes and other entities,
and indicates various agents (software or human) who are
interacting with the entities and triples via standard GIDS
network requests.

The GIDS also provides capability for the triples themselves
to be referred to as entities, providing the basis for an
important capability known as “reification”!!.

When each triple is created it is assigned an unique identi-
fier'?, with this identifier being returned in the response after
the triple has been successfully asserted against one or more
of the dereferenceable URIs which it contains. This triple
identifier is also returned in the responses to all subsequent
queries. This triple identifier is itself a dereferenceable URI
and therefore is considered an entity in its own right, and
when that URI is requested the details of its represented
triple will be returned. This reification capability enables
subsequent statements to be made about the original statement,
for example: If the triple “Personl knows Person2” has the
URI “Triplel” then a subsequent triple can be created such as
“Person3 believes Triplel” or “Persond created Triplel” and
so on. Using this simple reification technique in conjunction
with dereferenceable URIs enables unlimited chains of reified
information to be stated. This reification technique within the
GIDS is designed to closely match the de-facto rdf:Statement
approach to reification within RDF, although we acknowledge
that the topic of reification in RDF and in the Semantic Web
in general is still subject to extensive debate.

Whilst the GIDS works best in environments where all
nodes and entities are able to respond to GIDS requests it is
also designed to work with existing network accessible seman-
tic data. For example GIDS can tolerate cases where a triple
contains URI references that are either not dereferenceable,
or are dereferenceable but do not return the expected data

! Additional techniques for identifying triples may also be implemented at
the application level, e.g., through use of quadruples or HTML anchor tags.

12Each logical triple may have up to three separate physical triples stored.
See Section IV for further details.



format or structure (because they are not running on a GIDS
infrastructure).

B. Advantages

We have discussed the abstract GIDS concept in some
detail, and some advantages of the approach are specifically
enumerated here:

Data Visibility: As discussed previously, one of the pro-
blems associated with the Semantic Web is that of data visi-
bility. As data in the GIDS is represented by dereferenceable
URIs, all data can be accessed, modified and deleted through
the interaction with these URIs. This enables easier data
sharing, re-use and integration. It is also a significant extension
to the current Linked Data Web approach mainly due to the
known format and structure of the response and the ability to
directly modify or delete data via this interface (as discussed
previously). Data visibility also enables direct interaction with
data via network level requests. Multiple implementations
of the GIDS can therefore inter-operate within the same
environment through exchange of data and network requests
regardless of configuration or software components used.

Data Access: The availability of data from all entities asso-
ciated with a data element (a triple) allows data access from
any of these entities. This provides entry points to users of the
data from either the subject, predicate, or object entity. In the
“Personl knows Person2” example, this triple may be retrieved
by asking ‘“Personl” who they “knows”, by asking “Person2”
who they believe “knows” them, or by asking “knows” which
entities are related via the “knows” predicate. This does raise
the prospect of privacy and trust concerns which are discussed
in the Section III-C.

Data Ownership: Data in the GIDS is stored and owned by
the entities associated with the data. In the example “Personl
knows Person2”, both “Personl”, “knows” and “Person2” are
owners of their own data and therefore can store a copy
of this triple when they are notified of the assertion of
the triple. It is likely that popular predicates will generate
potentially large volumes of related triples. So, if the “knows”
predicate was managed by an organisation concerned with
social connections, that organisation can choose to manage the
scalability issues associated with recording all triples referring
to the “knows” predicate if they see that data as valuable.
Alternatively they can totally, or selectively, ignore these
asserted triples as required. This approach enables automated
capture of predicate related information to occur in addition
to the more localised ownership of data relating to the subject
and object entities.

A natural extension of this predicate-based data storage
is to consider the various core modelling predicates them-
selves (such as rdf:type, rdfs:subClassOf and owl:sameAs for
example). Clearly in their current locations and implementa-
tions these URIs will not be able to respond to GIDS requests
and store the appropriate data, nor may they wish to since the
volumes of data involved will be very large. It is possible in
certain domains that GIDS requests to these URIs may wish
to be intercepted with the intention of storing the resulting

triples in a proxy location. This would then support use of
GIDS techniques against these common predicates if suitable
resources are provided to handle the large volumes of requests.

Data Redundancy: In GIDS, a triple can be replicated at
the subject, predicate and object entities thus providing some
data redundancy. If data is lost, was never stored, or is
temporarily unavailable at one of the associated entities (as
is the nature of an Internet-based infrastructure), data can
be retrieved from other entities associated with the required
triple. This consideration of data redundancy also applies to
inferred triples, although inference and entailment capabilities
are beyond the scope of the GIDS (See Section III-D).

C. Disadvantages

The GIDS architecture also has a few disadvantages that are
discussed here:

Efficiency: Every request to create or delete a triple can
be made to all three URIs that make up that triple, i.e. to
the subject, predicate and object URIs. This means that every
logical request may result in up to three physical requests
across the network. This disadvantage is the corollary of the
data access, ownership and redundancy advantages described
previously. Existing WWW infrastructure components which
provide proxy or caching capabilities may be useful in this
context.

Reliability and trust: The nature of the WWW is that it is
potentially unreliable and we specifically acknowledge that
the ITA research context assumes a MANET (Mobile Ad-
hoc Network) environment which will likely be significantly
less reliable than the traditional WWW environment. Servers
may become unavailable or resource-constrained, they may
be unreliable, data may be inconsistent between different
sources or may be untrustworthy, etc. Storing up to three
copies of every triple does provide some mitigation, but it
also introduces the problem of potential inconsistency. Another
common reliability factor related to the WWW is that of
changing URIs; these are entirely under control of the owner
and hence can be changed at any time. There are several
potential solutions to mitigate against such changes: existing
network redirecting solutions; use of an appropriate sameAs
predicate to relate relevant URIs; and data migration from one
URI to another (whilst updating information known by related
entities). This is the nature of the WWW today, and there is
plenty of encouragement for people to choose stable URIs[15].
As the WWW has been proven largely successful in meeting
a similar reliability challenge we are optimistic that this issue
will not be prohibitively restrictive for the GIDS.

Privacy: The notification of data to each of the three
associated URIs does raise concerns about privacy, since it
may not always be appropriate to notify a URI that a related
statement has been made. The GIDS does not enforce the
notification to all associated URIs, so the application or user
can decide which of the three to send. Also, the GIDS does
not mandate that a URI which receives a request to assert
a triple must act on that request. In both of these cases the
application making or receiving the request can take into




account contextually-relevant information (such as whether the
request is authenticated) and use existing WWW conventions
to aid the decision. Further investigation into the privacy
aspects of the GIDS are planned in our future work.

D. Assumptions

The GIDS makes some assumptions, some of which are key
enablers for the desired capabilities, whilst others are inherited
from the Semantic and Linked Data Web context:

Dereferenceable URIs: As with the Linked Data Web, and
as discussed earlier, a restriction is imposed on the use of
dereferenceable URIs for all entities. Although it is possible
for some entities to be stored that do not fit these requirements,
they cause limitations in processing, but not failures. Consider
the previous example triple “Personl knows Person2”. If “Per-
sonl” is identified by a non-dereferenceable URI or the URI is
dereferenceable but does not conform to the GIDS interface,
users of the data can no longer retrieve (or write) any data
directly from “Personl” and hence cannot ask the question
“Who has some kind of relationship with Person1?”!3. We also
acknowledge that many applications may operate above the
GIDS infrastructure, for example potentially providing search
engine or general registry/index capabilities in the same way
as happens on the WWW today.

Anonymous/Blank Nodes: As mentioned previously the
GIDS does not readily support blank or anonymous nodes
since they do not have a globally guaranteed unique identifier
to act as the dereferenceable URI. Since the GIDS is aimed at
the storage of triple data we therefore delegate the problem of
dealing with blank nodes to the application or agent which is
using the GIDS and place the requirement on that application
to generate appropriate URIs for any blank nodes it may wish
to deal with.

Inference/Entailment Support: The GIDS itself does not
offer any inferential or entailment capability since it is concer-
ned purely with the storage and retrieval of triple data in
a distributed network environment. Applications and agents
using the GIDS may wish to provide such capabilities and
these will be supported by the GIDS through the retrieval
of the underlying data and the ability to assert new data via
the same network level interface. The application must define
appropriate algorithms to implement such inference on a GIDS
infrastructure, for example considering the notification method
for the assertion (or deletion) of inferred triples and whether
such events will be notified to all URI entities involved in the
inferred triple. It is possible that certain applications using the
GIDS may wish to manage their own centralised triple store in
a more traditional manner to afford more efficient and reliable
inferences, but this should be constructed as a “cache” of the
actual underlying triples retrieved from the GIDS.

IV. IMPLEMENTATION

This section provides outline details of a prototype GIDS
implementation. URL construction rules, expected data for-
mats and structures are given below, and these details are all

13“knows” may still be asked “Who does Personl know?”.

provided in the context of the earlier conceptual overview of
the abstract GIDS concept which underlies this implemen-
tation. The use of existing WWW standards enables us to
reduce development cost, and provides other key capabilities
such as scalability and caching (if required), authentication
and security support, etc.

A. A RESTful architecture

The GIDS prototype uses HTTP based requests and is built
on REST[16] (Representational State Transfer), a well known
and acclaimed software architecture based on a simple set of
principles. This software architecture was chosen as it fits well
with the intentions of the GIDS, and it is tightly coupled
with the fundamentals of the WWW itself, bringing many
advantages.

The core principle of a RESTful architecture (particularly
when associated with the WWW) is that the interaction with
resources through the use of dereferenceable URIs. Interaction
with resources is achieved using a stateless protocol such that
state is managed and represented by the resources themselves,
not as part of the client-server communications. With the
WWW, REST implies use of HTTP as it was originally
designed, with appropriate use of HTTP verbs, status codes
and content negotiation.

There are many benefits associated with REST, a primary
one being the support for caching data which can enable faster
response times and reduced server load. The stateless nature
of REST allows for better server scalability by reducing the
need for session state maintenance and allows swapping of
servers during sessions. As REST with the WWW is based
on the basic protocols of HTTP, no extra client libraries are
required, making development and client application support
much simpler.

B. API

All actions related to a single triple require up to three
separate requests to all non-literal URIs that represent the
entities in that triple.

Actions
The following actions against entities or reified triples are
supported through the use of specific HTTP verbs!* executed
against dereferenceable URIs: GET (to Retrieve), POST (to
Create), DELETE (to Delete), PUT (to Replace).

URL parameters
The basic HTTP GET request to a dereferenceable URI
will return the set of triples which are known by that URI
where the URI is featured in either the subject, predicate
or object position. Additional parameters can be specified
when constructing the URL to filter the set of triples that are
returned:

o ?s=(value) Return only where subject matches (value).

o ?’p=(value) Return only where predicate matches (value).
e ?0=(value) Return only where object matches (value).

14Unknown HTTP verbs return “501 Not Implemented”, and unsupported
HTTP verbs return “405 Method Not Allowed”.



In cases where multiple parameters are specified, the filter
values are combined using the Boolean AND operator.

These parameterised URLs facilitate the expression of “ato-
mic queries”, i.e. a simple triple-pattern-matching query for a
specific URI. Such queries can be composed (by the executing
application) into larger and more complex queries to yield a
SPARQL-like query capability using GIDS network requests.

Content Negotiation
When retrieving data from an entity, the GIDS prototype API
allows the requester to specify the format of the data. This
works by using the standard HTTP process of specifying
an ordered list of preferred response formats in the HTTP
Accept header. Responses are then returned with the HTTP
Content-Type header specifying the chosen format of the data
using MIME types. Currently supported formats in the GIDS
prototype API are shown in the table below:

Name MIME Type Notes

XHTML application/xhtml+xml | HTML table with RDFa
JSON application/json Talis proposal>
RDF/XML | application/rdf+xml W3C specification'
Turtle application/turtle Turtle specification!”
N-Triples text/plain W3C recommendation'

The embedded RDFa[17] within the XHTML response ensures
the machine-processable semantic content is explicitly stated
within the human-readable page that is returned.

C. Reification

As mentioned previously, each explicitly stated triple is
assigned a unique id in the form of a dereferenceable URI
so that it can be subsequently referred to as an entity. This is
known as reification. Since the GIDS can send notifications to
all entities involved in a triple this means that the network
could contain three separate physical copies of the same
logical triple!® at three potentially separate network locations
with different reified URIs. In the current GIDS implemen-
tation the only way to establish the logical equivalence of
separate physical triples is to evaluate them to detect identical
Subject, Predicate and Object composition. It is possible that
specific specialised predicates could be used to record triple
equivalence (e.g., similar to sameAs), although the unreliable
nature of the network environment in which the GIDS is
operating could not assure that all such relationships would
be recorded consistently. With this limitation in mind we
have currently chosen to leave these triples unrelated and
specifically seek logical equivalence directly in the rare cases
where reification needs to be used in this way. Alternatives
that we have considered to support logical reification include
the use of quadruples (as outlined in Section VII), the potential
for a specific reification server/service or the delegation of this
responsibility to the application layer. The resolution of this
issue is a key focus for our future work.

5Specification at http://n2.talis.com/wiki/RDF_JSON_Specification
16Specification at http://www.w3.org/TR/rdf-syntax-grammar/
17Specification at http://www.dajobe.org/2004/01/turtle/
18Specification at http://www.w3.org/TR/rdf-testcases/#ntriples
19ie. the triple with identical Subject, Predicate and Object values.

D. Software

This prototype implementation of the GIDS is built using
the ARC? framework which runs in PHP and uses MySQL as
a basic triple store. This choice of software stack was largely
based on the good fit between our need for a lightweight and
quick-to-use environment, along with built-in support for RDF
and triples, multiple serialisation formats, and the desire for a
RESTH(ul interface as described earlier.

We also note Pubby?! which is available to act as a Linked
Data front end to existing SPARQL endpoints and may be a
useful component to use when considering integration of the
GIDS into the existing Semantic Web environment.

V. MILITARY RELEVANCE

Earlier work from the ITA research program has yielded
a scenario based around the fictional country of Holistan
[18], and within this overall scenario a specific vignette
has been constructed to facilitate exploration of the various
opportunities for potential knowledge-based capability advan-
cements in military coalition environments[19]. We envisage
the GIDS being used as the fundamental information backbone
within which any open data can be shared between military
coalition partners and non-government organisations (NGOs)
such as charitable or relief organisations, media companies,
or individuals, etc. The open and accessible approach to data
access and construction that is taken by the GIDS, coupled
with the lightweight network level API should provide a
compelling capability for agile organisations and individuals
to directly interact with and contribute to the relevant data
directly, without the need to purchase or construct complex
applications or systems to do so. This low-level and flexible
approach to data production and consumption means that the
organisations, individuals and systems will be able to respond
far more quickly to a diverse and changing set of requirements,
and also to more rapidly integrate new information sources as
they become available.

A specific example in the context of the Holistan vignette
would be to “support the rapid retrieval and integration of
multiple types of situation-relevant information”[19] in the
context of the mission planning phase, for example through
integration of available open meteorological information. Al-
ternatively, data relevant to the region, such as de-mining
information contributed by a humanitarian de-mining agency,
could be made available via the GIDS, linked to other re-
levant information and subsequently consumed in the form
of situation-relevant information during planning or execution
phases. Through reification it is also possible for various agen-
cies or individuals to comment on the available data, offering
opinion or qualification of specific facts which can again be
subsequently consumed to provide a broader, consensually
authored, information set. The benefit of the storage of data
at the three locations outlined earlier is especially beneficial
in this latter case since it may be a common requirement to

20http://arc.semsol.org/
2l http://www4.wiwiss.fu-berlin.de/pubby/



navigate to data from the predicate or the object entity rather
than the more traditional subject-oriented route.

The GIDS could also be used in more secure military
environments to achieve similar benefits for the appropriately
authorised users and systems, but the greater emphasis on
security, coupled with the increased prevalence and proprietary
nature of existing systems in this space yield a less obvious
case for immediate benefit.

VI. RELATED WORK

The Linked Data Web community continues to refine their
preferred approach to the efficient publishing of linked data
using dereferenceable URIs[13] and many of the implementa-
tion details of the GIDS follow the conventions and principles
they propose. RDFPeers[20] and PAGE[21] are examples
of recent work which has been undertaken to propose the
distributed storage of RDF data in multiple locations, similar
to the approach taken in the GIDS. These approaches however
do not use dereferenceable URIs to determine the network
locations to be used and instead use separate indexes and
hash algorithms to calculate the unique identifiers for the
network storage locations. Finally some recent work looking
at a similar Peer-to-peer distribution of RDF data[22] is
emerging from the University of Southampton, but again is
not specifically focused on the use of dereferenceable URIs
as the fundamental interaction and navigation mechanism.

VII. CONCLUSION AND FUTURE WORK

The Global Interlinked Data Store (GIDS) concept and
associated prototype provide a novel approach to support the
creation and navigation of semantic data triples in a distri-
buted network environment. The GIDS provides a number of
extensions to the current Linked Data Web approach, and is
designed to provide a lightweight and simple interface to se-
mantic data stored in a network environment such as the World
Wide Web. This paper describes a prototype implementation
built according to a RESTful architecture. We also discuss
the military relevance of this work in a web based coalition
context and provide details on how the GIDS is related to other
ongoing research and development activities in this area.

Further work will focus on the following areas: privacy
concerns, scalability and performance study and optimisation
techniques, additional support for complex queries, data im-
port/export support, better integration with existing Semantic
Web data sources and the development of tools to allow
GIDS integration with existing Semantic Web tools. Also, as
mentioned previously, we intend to investigate extant named
graph[23] (quadruple) techniques to potentially offer better
support for logical reification resolution, and the handling of
representation syntaxes that do not directly render triples.
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