
Reconstructing phylogeny from RNA secondary structure

via simulated evolution

Will Fischer
Section of Integrative Biology
University of Texas at Austin

Austin, TX 78712 USA
wfischer@uts.cc.utexas.edu

Nicholas Geard
School of Information Technology

and Electrical Engineering
The University of Queensland
St Lucia, Q 4072, Australia

nic@itee.uq.edu.au

August 16, 2002

Abstract

DNA sequences of genes encoding functional RNA molecules (e.g., ribosomal RNAs) are com-
monly used in phylogenetics (i.e. to infer evolutionary history). Trees derived from ribosomal
RNA (rRNA) sequences, however, are inconsistent with other molecular data in investigations
of deep branches in the tree of life. Since much of te functional constraints on the gene products
(i.e. RNA molecules) relate to three-dimensional structure, rather than their actual sequences,
accumulated mutations in the gene sequences may obscure phylogenetic signal over very large
evolutionary time-scales. Variation in structure, however, may be suitable for phylogenetic in-
ference even under extreme sequence divergence. To evaluate qualitatively the manner in which
structural evolution relates to sequence change, we simulated the evolution of RNA sequences
under various constraints on structural change.

Introduction

Phylogenetics

In the last several decades, vast technical advances in molecular biology, computer hardware, and in
analytical methods have enabled the rise of molecular phylogenetics. This discipline allows reliable
inference of the historical evolutionary relationships of different organisms, and has brought within
the realm of possibility the taxonomists’ dream of a unified genealogy of the living world.

Phylogenetic methods are well-established for morphological data, but the most widely used and
spectacular applications have used data from biological macromolecules, i.e. DNA or protein se-
quences. Sequences from many different genes have been used to build phylogenies: different genes
evolve at various rates, corresponding in large part to varying degrees of functional constraint (i.e.
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Figure 1: A sequence-based ”Universal Tree”
inferred from small-subunit ribosomal RNA
genes (from Barns et al.3), that includes the
three “domains.”

Figure 2: The eukaryotic portion of the tree in
Fig. 1. Note the long branch (decorated with iso-
lated long branches) between the “crown group” and
the divergence of the three domains.

the strength of natural selection against deleterious mutations), and are therefore useful at different
levels of divergence (which correspond very roughly to the time since the separation of the lineages
being investigated).

The DNA sequences most commonly used for phylogenetics are the genes that encode ribosomal
RNA. There are several reasons for this popularity: these genes (which encode the core of the
protein synthesis machinery) are found in all living organisms, include a mix of quickly and slowly
evolving domains, and are fairly simple to isolate. Consequently, a huge data set of rRNA sequences,
spanning a large proportion of the diversity of life, has been generated by the research community.
These sequences are available in public databases (e.g. GenBank), and represent a significant
scientific resource.

Unfortunately, although ribosomal data have been of great utility in resolving many relationships,
it has proven less useful (and even actively misleading15,30) for very distantly related organisms,
particularly for the deepest branches in the tree of life10,20–22,28. In the most divergent lineages,
phylogenetic signal has been nearly obliterated by the large number of nucleotide changes that have
occurred15,20,28. The canonical small-subunit ribosomal RNA “Tree of Life” (e.g., Fig. 1), shows
a similar structure for each of three “domains”32: a cluster of not-too-distantly related organisms
(the “crown” group) separated from the base by a much longer branch from which a handful of
isolated long branches sequentially diverge. Although the crown-group relationships shown on these
trees are likely to be correct, the long basal and near-basal branches are probably misplaced.
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RNA Structure

Despite the multiple sources of potential error afflicting the sequence-based analysis of rRNA data,
the sheer volume of amassed data is a tempting target for analysis, and, hidden within the base
sequence is additional information that is inaccessible to standard methods of phylogenetic infer-
ence. Ribosomes, like other large cellular RNAs, are mechanical devices26,27, and their functional
activity depends upon their specific three-dimensional structures6,11,23; these structures, in turn,
are primarily determined by pairings between bases in different parts of the sequence. Since the
base sequence determines the set of possible pairings, the three-dimensional structure could in
principle be determined from the sequence data alone, and considerable effort has been devoted to
this endeavor7,16–18,33. In practice, however, structures for large RNAs are generally determined
by a combination of X-ray crystallography2,8,24,31 and comparative sequence analysis14,19. A large
number of reliable structures have been determined and are available12,13, but, although there have
been some attempts4,5,9, there is as yet no well-accepted method for determining phylogeny from
RNA structure.

Goals of our investigation

The long-range goal of this work is to develop evolutionary models of RNA structure that are
generally applicable to phylogenetic inference. We begin this work here by investigating how some
established methods for encoding structures perform under a simple scenario with a known phy-
logeny. We investigated how well a structure-based method of phylogenetic inference performed
relative to purely sequence-based methods by simulation, “evolving” RNA sequences with varying
constraints on structural change. We then inferred phylogenies for each data set using structure,
and also using sequence data, and determined the accuracy of each method relative to the actual
(simulated) evolutionary history.

Methods

General Strategy

RNA sequence data sets were simulated for several “generations” as follows:

1. An “ancestral” base sequence was generated;

2. Two descendants were generated:

• provisional “descendants” were generated from the ancestral sequence by applying a
specific number (the mutation parameter) of random mutations.

• the secondary structure of each mutated sequence was determined
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– if the structure differed from that of the immediately ancestral sequence by less
than a specified amount (the structural constraint), the provisional descendant was
accepted;

– otherwise, a new set of mutations was generated and tested;

3. Each descendant was then used as an ancestor, until a specified number (n) of generations
was completed (for n2 final sequences).

This procedure gave rise to a set of sequences with actual ancestor-descendant relationships that
could be accurately represented by a bifurcating“tree” structure (Fig. 3). The terminal sequences
were then used as input for various phylogenetic algorithms (see below).

Simulation Details

All simulations were performed using custom software written in C by N.G. RNA secondary
structures and distances between structures were determined using computational routines in the
Vienna RNA package16.

For each replicate (i.e. the simulated evolution of a set of sequences), a random RNA sequence,
64 or 96 bases in length, was generated using equal probabilities for each base. Since real evolved
sequences are likely to be more thermodynamically stable than random sequences1, the initial se-
quences were then mutated for 100-1000 rounds; for each round, a specified number of mutations
were applied, and the minimum free energy (MFE) structure was calculated for the resulting se-
quence. If the new structure had a lower free energy (i.e. was more thermodynamically stable)
than the previous one, the mutations were accepted; otherwise, they were rejected and a new set
was proposed.

Once a stable starting sequence was obtained, descendants were evolved from it as described above,
using for each replicate a single mutation parameter (2, 8, 18, 32, or 50 mutations per tree bifur-
cation), and structural constraint (i.e., a maximum permitted RNA structure tree-edit distance16

of 0,2,4,6,8, 10, or ∞). Five rounds of tree bifurcation were performed, generating a final data set
of 32 sequences per replicate.

Control data sets were generated having either no structure constraint (allowing a random walk
through sequence-structure space) or complete structure constraint (no change in structure allowed,
forcing movement through a neutral network25). 120 simulations under various conditions (see
Results) were performed on an IBM RS6000 SP (with Power4+ “Regatta” processor) and limited
to 48 hours maximum run time.

Phylogenetic analysis

The sequence data sets evolved above were analyzed in PAUP*29 using four different distance
metrics and parsimony. To reduce running time, all distance analyses used neighbor-joining, and
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parsimony analyses employed a heuristic search strategy. Two nucleotide distances were used
(Jukes-Cantor- and P-distance) and two structure distances (HIT and “full” structure distance16;
these are both string-edit distances on different encodings fo the structure).

Results

The combination of five mutation levels and five maximum constraint levels generated 25 sets of
major parameter values. In addition, two minimum structure change levels (0 and 1; i.e. structures
were not or were required to change between generations), and two sequence lengths (64 and
96 bases) were used, for a total of 100 initial conditions. Of these 100 simulations, 42 failed to
finish within 48 hours: these were conditions with high mutation rates and stringent structure
constraints; the longer sequences were less likely to complete within the time limit. In the totally
constrained “neutral walk” analyses, similar problems occurred: at mutation rates of 18 or above,
mutated sequences with no structural change were not found quickly enough to allow the simulation
to complete in the allotted time. Simulations without structural constraints, in contrast, were
completed within minutes.

Structural change and phylogenetic performance

The imposition of structural constraints dramatically affected the diversity of structures seen in
the evolved data sets (Figures 3 and 4). The constraint levels appeared to be fairly conservative,
since most structures within a particular data set were superficially similar (e.g., Figure 4).

For all data sets, we inferred trees using structural distances (e.g. Figure 5), as well as sequence-
based methods. Of the two structure methods tested, the “Full” metric performed much better than
the “HIT” metric, but, for most of the tested parameter values, neither method performed as well
as most of the standard sequence-based methods (Figure 6). Under high mutation rates, however,
the performance of the “Full” metric was degraded less than that of the sequence-based metrics;
it clearly out-performed Jukes-Cantor distance, and, at the highest mutation level, it performed
equally as well or better than p-distances and parsimony. The accuracy of the structure-based
distance trees varied both with the mutation rate and with the degree of structural constraint
(Figure 8).

Discussion

Expectations

All methods of phylogenetic inference have optimal ranges of data variation. If the variation between
taxa (or sequences) is too low, there is an insufficient number of changes to resolve divergences;
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Figure 3: An example of sequence/structure evolution without structural constraints (“random walk”), and
a mutation parameter of 50. For clarity, the 3’ end of each sequence is marked with a black triangle. Only
four of the five generations are shown.

Figure 4: An example of sequence/structure evolution with structural constraints (mutation parameter, 2;
constraint parameter, 8).
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Figure 5: Example of tree inferred from structure, compared with the true tree according
to which the evolution of the sequences was simulated. To re-construct the true tree from
the inferred tree requires several re-arrangements (arrows).
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Figure 6: Accuracy of tree reconstruction when
RNA structure constrains sequence evolution. For
each value of the mutation parameter, the mean tree
error34 (percent of maximum Robinson-Foulds (RF)
distancefrom the true tree) of all applicable simula-
tions is shown for each analytical method.
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Figure 7: Accuracy of tree reconstruction on se-
quences evolved in the absence of structural con-
straints. For each value of the mutation parameter,
the mean tree error of all applicable simulations is
shown for each method (see Figure 6).
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based distance metrics, which increases steadily with both mutation and structure change (data
not shown), the structure error surface has a pronounced optimum (at m = 18 and constr = 4.)
but is nearly flat otherwise.
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in contrast, if the variation is too high, character states that define particular groupings are likely
to be overshadowed by random noise, or erased by subsequent changes. Therefore, it is common
to see a “U-shaped” curve showing poor performance at the extremes when the performance of
a phylogenetic algorithm is plotted against increasing divergence (it is a question of information,
signal and noise). The crucial question for any phylogenetic analysis (one which is frustratingly
difficult to answer a priori) is whether the data at hand have the appropriate level of divergence
for the problem being addressed.

There are three questions of interest for us here: “With regard to mutation rates and structural
constraints, what conditions are optimal for structure-based phylogenetic inference?”, “What is the
relation of that optimum (in position and extent) to the optima for standard methods of sequence-
based inference?”, and, finally, “Are there conditions under which structure-based methods are
likely to out-perform sequence-based methods, and do they apply to any real data?”

We are encouraged that, first, there appears to be an optimum for the structure metric we used,
and, second, that at some (limited) parameter values, our structure metric appears to out-perform
some of the sequence-based metrics (Figure 6); to answer any of these questions definitively, it
will be necessary to sample a broader range of evolutionary parameters, using far more replicates.
Future work would benefit from further exploration of methods to encode structure, and of ways
to infer phylogeny from structure; it will offer insight into the mechanisms of RNA evolution, and
is likely to contribute to our understanding of events in the deep history of life on Earth.
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