
Modelling Gene Regulatory Networks:

Systems Biology to Complex Systems

ACCS Draft Technical Report

Nicholas Geard

May 6, 2004

Note to the reader...

Please note that this is a draft version, but one on which I would particularly
appreciate feedback (nic@itee.uq.edu.au). Almost all sections are as complete
as time will allow, however the document is still subject to revision. The one
section remaining to be written is the conclusion, which will summarize major
themes, general principles and current research directions.

A PDF version of this document may be downloaded from:

http://www.itee.uq.edu.au/˜nic/ accs-grn/modelling-grns.pdf

Overview

This document provides an overview of approaches to the modelling of genetic
regulatory networks, with an emphasis on techniques from complex systems.

Section 2 provides a basic introduction to the biological processes that are
involved in gene regulation. When a gene is expressed, information stored in
an organism’s genome is transcribed and translated into proteins. Some of
these proteins are transcription factors that regulate the expression of other
genes. These proteins are themselves under regulatory control, resulting in
complex networks of interacting genes. These gene regulatory networks control a
number of important cellular processes including responding to the environment,
regulating the cell cycle and guiding the development of an organism.

Regulatory systems are generally too complex to allow abstract reasoning
about their dynamics. Mathematical and computational formalisms therefore
allow the creation of models in which all assumptions about a system are made
explicit. Section 3 introduces some modelling concepts and motivations. Sys-
tems biology entails a cooperative cycle between model construction and exper-
imental validation to study the emergent properties of biological systems. The
various approaches to modelling may be broken down on their representation
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of system state, their use of spatial and temporal dimensions and the questions
that the model is being used to investigate.

The next sections of the document describe some of the major approaches
to modelling regulatory networks. Section 4 reviews logical activation models,
in which state variables take one of a number of discrete values. The most
common approach is to allow two possible values (on and off) and represent
system transitions using Boolean functions. There is a long history of using
Boolean networks to model both the dynamics of abstract classes of regulatory
networks as well as the behaviour of specific systems. A number of models have
also been proposed that allow multivariate logic and more detailed updating
functions. While these models are frequently restricted to systems of a limited
size, they do allow a higher level of biological fidelity.

Section 5 describes continuous activation models, in which state variables
take the form of continuous concentrations and systems are modelled using or-
dinary differential equations. While this theoretically allows a greater level of
biological accuracy, the size and non-linear nature of biological systems renders
many models analytically intractable and computationally expensive. One ad-
vantage to these formalisms however is the large body of dynamical systems
theory that may be applied to such models. Hybrid approaches that incorpo-
rate elements of both logical and continuous formalisms have been proposed in
an effort to allow the implementation of larger networks.

Many models of regulatory systems make the simplifying assumption that
genes are expressed at a continuous rate. However, the biological processes in-
volved are inherently noisy, and a number of formalisms have been developed
to allow this aspect of regulation to be incorporated into models. Section 6 out-
lines some of the implications of stochasticity and noise and outlines some of the
approaches to dealing with these issues. Again, while allowing a greater level of
biological fidelity, stochastic models are frequently difficult to solve analytically
and expensive to compute numerically.

A complementary body of work derived from the theory of random graphs
has been produced analysing the statistical properties of the structure of reg-
ulatory networks. One of the key findings from the field of network theory is
that real networks in many different domains, including biology, have certain
structural properties that may have implications for their behavioural charac-
teristics, such as system robustness. Results from this field of modelling are
reviewed in Section 7.

1 Introduction

One of the most exciting challenges in biology today is the task of deciphering
how the genome controls the development of complex organisms. This endeav-
our is utilising the skills and techniques of a wide range of academic disciplines.
Researchers in molecular biology have access to sophisticated experimental tech-
nologies capable of gathering large amounts of data on genetic processes. The
quantity of information obtained is too vast to be manipulated and processed
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manually, leading to an increased usage of pattern detection, machine learning
and data mining techniques from computer science. In addition, theory and
formalisms from mathematics are being used to build models of systems. These
models can help to clarify intuitions, manage data and assist in the development
of a theoretical understanding of biological organisms.

For the past 50 years, the research program in molecular biology has been
directed towards understanding biological systems at the level of their most
fundamental components, such as genes, proteins and cells. In the last decade,
the new field of systems biology has established a program aiming to reverse
this reductionist trend. One of the primary aims of systems biology is to use
a computational models to integrate diverse sources of experimental data back
into a systems level description of biological organisms.

Another development of the last few decades is the field of complex systems,
which is interested in the description and analysis of the systems consisting of
large numbers of interacting parts. Such systems exist in many domains from
ecology and biology to communication networks and engineering, leading to a
strong emphasis on interdisciplinary studies.

Both complex biology and systems biology have much to gain from the other:
systems biology can benefit from the tools and theoretical insights generated by
studies of complex systems in other domains, while complex systems in turn has
much to learn from the progress made in undestanding biological systems.

This document reviews some of the motivations for modelling biological sys-
tems and provides an overview of some of the the major formalisms that have
been used to model genetic regulatory networks. In each section, sources for
further reading are recommended, including pointers to further theoretical re-
sults and technical details, reviews of specific areas, as well as studies that are
of particular historical interest.

2 Biological background

Biological systems are incredibly complex. One of the major challenges in mod-
elling is deciding on an appropriate level of detail to include in a model. Too
much detail results in a complicated model with reduced explanatory power.
Too little detail risks omitting critical processes and mechanisms. What consti-
tutes the “right” level of detail will vary depending on what question the model
is being used to address. This section aims to present a sufficient level of detail
about the biological processes involved in gene regulation to allow an appreci-
ation of what is included and omitted by different formalisms. By necessity,
it presents a simplified view of current biological knowledge; pointers to more
detailed reviews are therefore provided.

2.1 The basics of gene expression

Information in a biological organism is stored in its genome. The genome of
all complex organisms consists of long molecules of DNA made up of chains of
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Figure 1: The Central Dogma. The creation of a protein molecule from a
DNA double helix occurs in two stages, transcription and translation. In the
transcription stage, the two strands of DNA are separated at the site of the
gene, and the RNA polymerase enzyme copies the noncoding strand of DNA
into a complementary mRNA strand. The mRNA is then transported from the
nucleus to the cytoplasm where it is translated by ribosomes into an amino acid
chain.

nucleotides in a double-helix structure. The basic functional unit of the genome
is a gene. The central dogma of molecular biology states that information stored
in the DNA of a given gene is transcribed into RNA, which is then translated
into proteins (see Figure 1).

Proteins are the fundamental structural and functional units in cells. Each
one is specialised to carry fill one of a variety of important roles, such as a
structural element, enzyme catalyst or antibody. A large subset of proteins
known as transcription factors (TFs) also play a regulatory role, determining
when, where and how much a particular gene is expressed into proteins. Because
regulatory proteins are themselves the products of expressed genes, they too are
under regulatory control, giving rise to complex networks of interacting genes.

This section describes the processes of transcription and translation that me-
diate the path from DNA to protein in prokaryotic and eukaryotic cells. While
the gene expression mechanism in both types of cells is generally very similar,
there are several significant differences [121]. In eukaryotic cells, DNA is stored
in the nucleus, whereas prokaryotic cells have no nucleus. All complex, mul-
ticellular organisms are eukaryotic, and their cells tend to have a considerably
higher level of regulatory complexity than single-celled prokaryotic organisms
such as bacteria.
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2.1.1 Transcription

A gene consists of a regulatory region, which controls when the gene will be
activated, and a coding region, which specifies the shape of the protein that
will be produced when the gene is activated (see Figure 2). In prokaryotes, the
regulatory region is generally located directly upstream of the coding region,
whereas in eukaryotes elements of the regulatory region may be located at a
considerable distance both upstream and downstream from the coding region.
A regulatory region contains binding sites for a number of transcription factors
(TFs). Individual TFs may exert either positive or negative control on the
activation of a gene, increasing or decreasing its rate of transcription. When
the activation conditions for a given gene are fulfilled, a large molecule called
RNA Polymerase binds to the TF complex and the DNA in the gene’s coding
region is unwound. The sequence of nucleotides on the coding strand of the
DNA is then used as a template to create a single-stranded messenger RNA
(mRNA) molecule [92].

In prokaryotes, the coding region is contiguous. In eukaryotes however, the
coding region is broken up into a series of coding exons and non-coding introns,
which must be spliced out of the initial RNA transcript. A number of other
processing mechanisms are also possible at this stage. In many cases, a single
eukaryotic gene can be spliced and edited in multiple ways to produce a variety
of different protein products [110] (see Figure 3). As the next step of gene
expression, translation, occurs in the cytoplasm of the cell, mRNA molecules in
eukaryotes must also be transported outside of the cell nucleus.

2.1.2 Translation

Once in the cytoplasm, mRNA molecules bind to another large molecule called
a ribosome. A ribosome reads an mRNA molecule in triplet known as codons.
Each codon maps to one of twenty possible amino acids, that are chained to-
gether in the order specified by the mRNA. The newly created amino acid chain
then folds into a complex three-dimensional protein structure.

Whereas DNA is a stable molecule, mRNA and proteins have only lim-
ited lifespan before they are broken down and their constituent nucleotides and
amino acids are reused. Both mRNA and proteins may be degraded at differ-
ent rates depending on their conformation and the presence or absence of other
chemicals in the cell. While the most well understood form of regulation occurs
at the transcriptional level, control of gene expression may be exercised at the at
almost any stage of protein synthesis. Regulation is also known to occur at the
level of RNA processing, mRNA transport and translation, protein modification
and mRNA and protein degradation.

2.2 The control tasks of the genome

The genome is responsible for controlling cellular tasks such as response to
environmental conditions, the cell division cycle and cell differentiation. Each
of these require the regulation of gene expression in both space and time.
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Figure 2: Regulation of transcription initiation (the operon model). In the
operon model, the operator region of a gene may be bound by a regulator
protein, preventing the transcription of structural genes by RNA Polymerase
(top). When an inducer molecule is present, it binds to the regulator protein,
releasing the operator and allowing RNA polymerase access to transcribe the
structural genes (bottom).
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Figure 3: Alternative splicing. In eukaryotes, the DNA coding for a protein is
not stored continuously, but as multiple coding sequences (exons) interspersed
with noncoding introns. A variety of proteins may be generated from the same
base sequence by selectively including or omitting exons or introns.

Throughout its lifetime, a cell must respond to many different types of en-
vironmental signals. Single-celled bacteria are able to detect and move towards
nutrient sources, they also react to changes in temperature and acidity. Mul-
ticellular cells must also respond to chemical signals emitted by neighbouring
cells in the organism. These external signals are transmitted to the genome via
a series of chemical reactions known as signal transduction pathways [50].

As well as responding to external signals, the genome is also subject to
internal control. The cell cycle plays the role of a cell’s internal clock [88]. In
order for an organism to develop, each embryogenic cell goes through a process
of growth, replication and division. During cell growth, a cell increases in size.
Its entire genome is then replicated to produce two identical copies. When the
cell divides, each of its daughter cells contains one complete copy of the genome.
The signals that tell a cell when to switch from growth to replication and from
replication to division are controlled by a subset of genes that regulate timing.

Each cell of a multicellular organism contains identical genetic information
(with some rare exceptions). The feature that distinguishes cells of different
types is the set of genes that are active in a particular cell. This pattern activa-
tion determines which proteins are produced, and hence the functional proper-
ties of the cell. When an egg cell is initially fertilised, it is fully undifferentiated
and has the potential to become any type of cell. As an organisms developmen-
tal program unfolds, its cells divide and undergo physical and chemical changes
that result in their final fates (for example, as blood or skin cells) becoming
more specified [142]. The role of the gene regulatory network in this process

7



is to integrate the internal dynamics of the cell and external signals from the
environment and other cells to control the differentiation process.

2.3 Further reading

Molecular Biology of the Cell [6] and Genes [77] are two well known textbooks
in the area of molecular biology and genetics. Both are comprehensive, clearly
presented and regularly revised. For a lighter, more general introduction to
genes and gene regulation, Enrico Coen’s The Art of Genes [27] and Evelyn
Fox Keller’s The Century of the Gene [72] are recommended. In A Genetic
Switch [95], Mark Ptashne provides a short, highly readable overview of the
simple, yet remarkably powerful, genetic circuit that controls the developmental
pathway of phage-λ. Genomic Regulatory Systems [28] by Eric Davidson and
From DNA to Diversity [26] by Sean Carroll are thorough overviews of gene
regulation that assume a little more background knowledge.

3 A diversity of models

A wide variety of formalisms for modelling genetic regulatory networks (GRNs)
have been proposed. Before reviewing several important models in detail, this
section provides a high level introduction to the field. It is important to note
that the choice of an appropriate modelling formalism is very dependant on the
aim of a study. This section begins describes the main ways in which modelling
formalisms differ, the dynamic system concepts used to frame models, and some
of the different goals that motivate GRN modelling.

3.1 Why build models?

Modelling a system involves building a formal description of the system on the
basis of current knowledge and understanding. Traditionally, models are con-
tructed to allow a system to be conceptualised and communicated and to assist
in determining the course of further research. Over the last fifty years, there has
been an increasing trend towards the use of mathematical and computational
formalisms to frame models of regulatory systems in biology. The structure of
such systems is frequently complex, consisting of multiple intertwined feedback
loops and non-linear interactions. This structural complexity, combined with
the varying timescales on which different biological processes act, makes it par-
ticularly difficult to develop intuitions about how regulatory systems operate.
Building a formal model of such a system requires all assumptions about the
timing and connectivity of regulatory elements to be made explicit. Modelling
can therefore provide a valuable check on intuitions during the development of
hypotheses [82].

In addition, formal models are frequently complemented with computer sim-
ulation, in which a model is built and then used to make some form of prediction
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about system behaviour. Running simulations using models based on known sys-
tems can provide validation of a particular modelling approach. Furthermore,
such simulations can also provide valuable guidance to target future studies by
enabling experiments to be carried out in silico that would be expensive, time
consuming or otherwise infeasible to perform in vitro.

3.2 Complex systems and systems biology

The field of complex systems is interested in the complicated systems consisting
of many interacting components that occur in many different fields. Economic
markets, ant colonies, the Internet and metabolic networks are all examples
of complex systems. A fundamental characteristic shared by all these systems
is that they can be described as a network in which nodes are components
and edges between nodes are interactions between components. Each individ-
ual compononent in the system may be relatively system, however complex be-
haviour frequently emerges as a result of the interactions between large numbers
of such simple components.

Within a context of a genetic regulatory network, the system parts are genes
and proteins while the emergent properties of interest include oscillatory be-
haviour, pattern formation, robustness and a number of other complex control
phenomena. The field of complex systems is highly interdisciplinary and much
of the literature is focussed on systems in a particular domain, such as biology,
ecology or economics, and the extrapolation of insights between domains. There
is also a growing emphasis on general techniques, theories and insights that may
be applied across domains [108].

Recently, the cooperative efforts of theoreticians and experimentalists have
been embodied in the new field of systems biology [74]. The tools of systems
biology are the large quantities of data generated by high-throughput exper-
imental techniques and the increasingly sophisticated range of mathematical
modelling techniques. The aim of systems biology is to integrate models at
multiple biological scales and investigate systems-level properties of biological
organisms. This aim includes understanding at four levels: (a) the structure
of biological interaction networks; (b) their dynamics, how states change over
time in different conditions; (c) the methods biological systems use to control
the state of a cell; and (d) the design of systems, including both how they have
evolved and how they may potentially be artificially constructed [73].

A key feature of systems biology is the integration of both theoretical mod-
elling and empirical investigation, in which current biological knowledge informs
the development of models and the analysis of these models produces a set of
predictions that may then be tested in the laboratory (see Figure 4).

3.3 Key features of dynamic systems

As a large numbers of different formalisms have been used to model GRNs, it is
useful to have an underlying conceptual framework that can be used to catego-
rize and compare particular models. A common view of a regulatory network is
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Figure 4: The modelling–experimentation cycle in systems biology. From [74].

as a dynamic system, consisting of a set of components (genes, gene products)
whose properties change in response to internal interactions and external sig-
nals. The two fundamental concepts in a dynamic systems description are state
and transition.

A state of a system is a description of the properties of each component at a
given point in time. In a GRN model, this may include levels of gene activation,
concentration of chemical species or even the number and location of individual
molecules, depending on the level of resolution of the model. A related concept
is a state space, the total set of possible states a system can be in. The state
space of a system will have a dimensionality equal to the number of components
in the system (see Figure 5).

States in a state space are linked together by transitions, which describe how
the state of a system is updated. The set of transitions that can be applied to
any given state will determine the possible state or states into which a system
can move. The path of a system through state space over time is often referred
to as its trajectory.

3.4 Logical, continuous and stochastic models

The four main model categories that will be considered in this review are: log-
ical models, in which the a state variable takes one of a number of discrete
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Figure 5: State spaces. Example representations of both a continuous (left) and
a discrete (right) state space.

values; continuous models, in which each state variable is a continuous value;
and stochastic models, in which each state is a probability distribution of pos-
sible configurations. The final category consists of network models, which are
primarily concerned with the structure of networks and their evolution, and
only secondarily with dynamics. Within these primary categories, models may
also be distinguished by their treatment of space and time.

Of the models that are concerned purely with intracellular dynamics (i.e.,
regulation within the cell), many omit any reference to regulation taking place
in a spatial domain, Other models acknowledge the fact that cells have complex
spatial structures by including time delays due to diffusion and molecular trans-
port. Some models, such as investigating pattern formation, model the spatial
arrangement of groups of cells. This spatial arrangement may be in either two
or three dimensions and may be represented either on a grid or in a continuous
space.

Similarly, the evolution of a system behaviour in the temporal dimension
may be modelled in a discrete or continuous fashion. When time is measured in
a discrete fashion, as it often must be if a model is being simulated, or solved
numerically, a further choice arises of whether state variables are updated all
at once (synchronously), or independently (asynchronously). Some models are
concerned purely with the static structural properties of interaction networks
and include no temporal dimension. A number of models have been designed to
investigate how regulatory networks have evolved. In these models, evolutionary
time may also be a factor.
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3.5 Different motivations for building models

Finally, models may be differentiated by the question that motivates their de-
velopment. This motivation may range from a desire to obtain quantifiable
values for some aspect of a system that can then be experimentally validated
through to exploring high-level principles of cellular control. While it can be
an oversimplification to categorise a model according to its purpose, as many
models will overlap across different categories, several broad approaches can be
discerned.

Crafted models of specific systems Many attempts at modelling regula-
tory interactions focus on small, well understood systems that can be modelled
by hand from available empirical knowledge. These models generally have a
high level of fidelity to the underlying biological system, with each component in
the model system corresponding to a particular element of the biological system.
Numerical and computer simulations are used to make predictions about systems
that are too complex to allow for analytical solution. This category includes
both continuous models, such as the various models of phage-λ [109, 102, 9], as
well as logical models, such as Bodnar’s Boolean characterisation of Drosophila
embryogenesis [18].

Phenomenological models of biological mechanisms Another approach,
at a slightly higher level of abstraction, is to use systems of generalised compo-
nents to reproduce observed biological behaviour, such as morphogenesis and
pattern formation. In these models, there is no longer a direct mapping between
components in the model and copmonents in the biological system, however the
high level behaviour of the system is preserved. An example of this category is
the gene circuit models developed by Mjolsness, Reinitz and Sharp for modelling
segmentation in Drosophila [87].

General models of classes of networks Other researchers, rather than in-
vestigating individual systems, have taken the approach of characterising the
behaviour of classes of networks with particular structural and dynamic prop-
erties. These approaches frequently work with simplified descriptions of gene
activation that allow much larger and more complex networks to be simulated
than would otherwise be possible. A common technique is to generate a large
number of random networks (an ensemble) governed by a specified set of lo-
cal rules and observe the statistical properties of the global behaviour [69].
Another type of modelling that falls into this category is the exploration of net-
works whose structures share particular statistical properties, such as scale-free
connectivity distribution [12], or hierarchical patterns of modularity [98].

Network models inferred from experimental data The rapid increase in
available experimental data in recent years has shifted some of the focus towards
techniques that are able to automatically construct models of larger, less well-
understood regulatory systems. Advances here are divided between both the
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formalism that is used to model the system, and the learning algorithms that
are used to derive the model from the available data [134].

3.6 Further reading

There are a number of reviews of gene network models in the literature, many of
which either focus on a particular model system or modelling formalism, or are
targeted at an audience with knowledge in a particular background area. Two
recent overviews that provide a good coverage of the field have been published by
Hidde de Jong [31] and Paul Smolen [112]. In addition, Computational Modeling
of Genetic and Biochemical Networks [23] by James Bower and Hamid Bolouri
provides a good overview of modelling formalisms (chapter 2), as well as a more
in depth look at several particular techniques. A general description of the
complex systems approach to modelling (not specific to biological systems) can
be found in Emergence by John Holland [62].

4 Logical models

The defining characteristic of the models classified as “logical” is that their state
variables are measured discretely. While this frequently represents a high level
of abstraction from actual biology, the models described below have nevertheless
been responsible for providing a number of theoretical insights and have had a
significant influence on thinking about regulatory networks. In particular, the
Boolean network model was critical in defining the complex systems view of
biology.

4.1 Boolean networks

One of the earliest approaches to modelling large networks of interacting genes
was to view a genetic regulatory system as a network of logical elements [67, 68,
70].

4.1.1 Assumptions

The Boolean network approach makes a number of assumptions to simplify
analysis [119]. First, the activation of a single gene is represented as a Boolean
switch that can be either on or off. In effect, a gene can be either expressed
or not expressed and there is no possibility of intermediate levels of activation.
This assumption is reasonable when a gene spends most of its time either at
a floor value of zero or at some positive saturation level and the time required
for a gene to switch is negligible with respect to the time scale of the model.
The second assumption is that the regulatory control of a gene is described by
a combination of Boolean logic rules, such as AND, OR and NOT. The final
assumption is that timing is synchronous, that is, the states of all genes are
updated simultaneously at each time step.
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One of the immediate advantages of these assumptions was that the compu-
tational requirements of simulating regulatory systems were massively reduced,
allowing the exploration of much larger systems. On the other hand, the validity
of the above assumptions, and the value of the Boolean approach in general,
has been questioned by a number of people, particularly in the biological com-
munity, where there is a perceived lack of connection between simulation results
and empirically testable hypotheses [42].

As there was little knowledge of the connectivity patterns in real biological
networks, Kauffman used an ensemble approach, generating large numbers of
randomly connected networks with randomly chosen Boolean updating func-
tions [69]. His goal was to measure the generic properties of certain classes of
networks and observe how their global dynamics resulted from local interactions.

4.1.2 Model description

Kauffman’s model of Boolean networks have two primary parameters: network
size, N , the number of elements in the network and network connectivity, K,
the number of inputs regulating the activity of each element. Each of the N

elements is associated with a rule table specifying outputs for each of the 2K

possible input combinations. As each element in the network is updated si-
multaneously, the system is deterministic and the state at time t + 1 can be
determined on the basis of the state at time t (see Figure 6). The rule tables
for each element can be defined in a number of different ways [7]: They may
be fixed over time (the quenched model), as is usually the case when a single
network is being simulated. Alternatively, a new set of rule tables may be gen-
erated at each step (the annealled model), which simplifies theoretical analysis
of network behaviour.

4.1.3 Theoretical results and hypotheses

Classes of behaviour The dynamics of a system will fall into three different
phases depending on the value of K. There are a number of different metrics for
distinguishing between these phases, one of which is information transfer. If two
identical systems are initialized with similar, but not identical, starting states,
the distance between their subsequent states (measured by a Hamming metric)
will change over time. This property reflects the localisation of information
transfer. If the Hamming distance stays small, information is communicated
across only a local portion of the network. If the Hamming distance increases,
it indicates that information is being transferred to a much larger portion of the
network.

When K > 2, the Hamming distance grows exponentially with time and
the system is in the chaotic or disordered phase. When K < 2, the Hamming
distance decays exponentially with time and the system is in the frozen or
ordered phase. For K = 2, the Hamming distance remains stable, subject to
fluctuations. This phase has been referred to as the critical or complex phase.
It is also colloquially known in some contexts as “the edge of chaos”.
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Figure 6: An example of a Boolean network: (a) the wiring diagram; (b) the
updating rules; (c) a state transition table, showing how network activation at
time t + 1 depends on network activation at time t; and (d) the state space of
the network, with two point attractors and a limit cycle with a period of two.
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For quenched networks (i.e., those with updating functions fixed over time),
a system will eventually return to a previously visited point and the dynamics
will form a cycle with a given period. All possible states in a system will either
be a part of one of these cycles, or a transient point in a path leading to one
of these cycles. Taking language from the field of dynamic systems, a cycle can
be referred to as an attractor and the set of all points that lead to a particular
cycle as its basin of attraction. A garden of eden state is a particular type of
state that has no predecessors. An attractor can either be a fixed point (period
equal to 1), or a limit cycle (period greater than 1) (see Figure 6 (d)).

Attractors as cell types Chaotic systems tend to contain cycles with long
periods and long transients. Frozen systems tend to have much shorter cycles
and transients. The behaviour of critical systems is intermediate between these.
As mentioned in Section 2, different cell types are distinguished primarily on the
basis of which of their genes are expressed. Kauffman draws an analogy between
an attractor in a Boolean network and a particular cell type or fate. The tran-
sient period then corresponds to the process of cell differentiation. In the chaotic
regime, these transients would appear to be unrealistically long. Furthermore,
systems in the chaotic regime tend to be highly sensitive to perturbations, which
does not correspond to the robust behaviour displayed by biological systems.
On the other hand, systems in the frozen regime, while displaying acceptably
short transient lengths, have virtually zero sensitivity to perturbations, which
would appear to preclude any differentiation whatsoever.

Kauffman therefore proposed that life occurs in the vicintiy of the critical
regime [70], and argued that the relationship between attractor number and
system size in Boolean networks mirrored the observed relationship between
cell types and number of genes in various biological organisms [67]. The exact
properties of the scaling law between system size and attractor number has been
the subject of continued debate [15, 17, 115]. Regardless, at a qualitative level,
systems in the critical regime tend to display both short transient lengths and
a small, but significant, level of sensitivity to perturbations. These features are
consistent with a biological system in which cell types are relatively stable but
have a small possibility of mutating to one of a few “neighbouring” cell types.
The properties of Boolean network state spaces and the analogy between basins
of attraction and cell types have been extensively explored by Wuensche [143,
144].

4.1.4 Extensions and applications

Updating rules A major problem with Kauffman’s argument is that the
level of connectivity of networks displaying such complex behaviour (K = 2)
is much lower than has been observed in real systems (where some genes may
be controlled by as many as 20 regulatory factors). Several modifications to
the Boolean model have been proposed that address this issue. By default, a
random Boolean function has an equal probability of switching a given gene on
or off. However, the model can be extended by the addition of a bias term,
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Figure 7: The phase space of Boolean networks with random (left) and scale-free
(right) connectivity.

p, specifying the probability that a certain combination of inputs result in an
element being switched off.

The behaviour of a network now depends on both K and p For a fixed K,
these three phases can also be reached by altering p, the bias in the rule tables
(see Figure 7). As p is changed, the level of connectivity corresponding to the
critical phase, Kc is given by:

Kc =
1

2p(1 − p)
(1)

Kauffman has also proposed that biology may use only a subset of the to-
tal possible range of Boolean functions, termed canalizing functions, in which
the state of a single input is sufficient to determine at least one of the possible
output states [70]. A network using canalizing functions displays more stable
behaviour than a non-canalizing network, however, as K increases, the pro-
portion of functions that are canalizing decreases rapidly. It has been argued
that canalizing functions are likely to be extremely rare at realistic levels of
connectivity [7]. However, reviews of the biological literature have suggested a
strong bias towards canalizing functions in regulatory interactions with 3, 4 and
5 inputs [53]. A number of other definitions of Boolean updating functions that
produce more stable behaviour have also been proposed [105, 96].

Network structure While the approaches to increasing network stability
mentioned so far have focused on modifying the updating rules, or the net-
work dynamics, it has also been suggested that changing network structure may
stabilize network behaviour. In particular, if nodes are connected with a scale-
free distribution (see Section 7 below), rather than a random distribution, the
position of the order/disorder boundary in the state space will be modified,
increasing the size of the ordered region [7, 43, 91] (see Figure 7).

Another approach that has been taken to generating Boolean networks in
a non-random fashion is to extract the network structure and updating rules
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from a lower level of description. In the Artificial Genome model [99], network
structure and functions are generated by parsing a string of bases (the artificial
genome). This method results in networks with a significantly different degree
distribution and a restricted set of updating rules [46].

Timing Most of the results mentioned so far have relied on the assumption
that network updating is carried out synchronously, that is, the activation of
every node is updated simultaneously. It has been pointed out that relaxing
this assumption and allowing asynchronous updating introduces a level of inde-
terminism that interferes with many of the interesting phenomena displayed by
traditional Boolean networks [55]. Using two different definitions of asynchrony
(essentially with and without replacement), Harvey and Bossomaier found that
cyclic attractors disappeared, point attractors remained, and a new category of
“loose attractors” appeared, in which the network passes indefinitely through
some subset of its possible states [55]. The nature of basins of attraction also
changes, with some being definite basins, from which all paths lead to the at-
tractor, and others being possible basins, form which at least one path leads to
the attractor.

This work was followed up by Di Paolo, who defined a measure of “pseudo-
periodicity” in which an autocorrelation function is used to measure the proba-
bility of a given state approximately recurring with a particular regularity. He
demonstrated that it was possible to evolve systems that were able to display
rhythmic behaviour [94]. Analysis of these evolved systems has been carried
out to determine what properties of networks allow the emergence of robust
rhythmic behaviour from inherently noisy components [103]. A pruning algo-
rithm is presented that allows evolved rhythmic networks to be reduced to their
functional core and reveal that a common feature of these networks is a ring of
elements that produces travelling waves of activation. This architectural com-
ponent acts as a cellular clock for the entire system, other nodes in the network
being either stationary or entrained by the central clock. One limitation of
this analysis is that it favours the evolution of rhythmic behaviour in networks
with relatively low values of K. An advantage of these systems is their intrinsic
robustness to external perturbation. The evolutionary search mechanism used
to evolve these networks also biases the discovery of networks operating with
a single timescale, whereas biological systems can accommodate more complex
temporal designs [103].

Applications Boolean networks of genetic regulation have also been applied
in a number of other domains, including:

• to build models of specific systems, such as, Drosophila embryogenesis [18]
and the endothelial cell cycle [63];

• as the basis for phenomenological models of a morphogenetic processes [59,
60, 61];

• to study the evolutionary dynamics of regulatory networks [21, 22, 44];
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• as a framework for inferring regulatory networks from gene expression
data [78, 1, 2, 3]; and

• as a biologically-inspired control mechanism for autonomous agents [35].

4.1.5 Strengths and limitations

The main strengths of the Boolean network model are its analytical tractability
and the ease and efficiency with which it can be simulated. The primary limi-
tations of the model are its perceived lack of applicability to biological systems.
Some of these issues, such as connectivity and synchrony, have been raised in
the section above. A more fundamental objection concerns the starting point
for these models, the validity of the Boolean assumption. Some genes are known
to have different regulatory effects depending on their level of expression and in
some situations the transient period between as a gene switches may be signifi-
cant. While a Boolean representation may be sufficient for a product that tends
to be present either in excess, or in insignificant quantities, products whose
concentration varies in a more smoothly continuous fashion may require a con-
tinuous function to accurately capture their dynamics [112, 20]. A number of
researchers have also demonstrated that there is not a direct correlation between
the dynamic behaviour of Boolean systems and that of corresponding continuous
systems [49, 11], suggesting a qualitative loss of behavioural information.

4.2 Generalised logic

The generalised logic formalism for modelling GRNs has been developed by René
Thomas and a number of colleagues over the past three decades [127]. While its
origins lie in similar areas to the Boolean models described above, it is distin-
guished by several features: it is inherently asynchronous, it allows variables to
take multiple logical values and it allows for a more sophisticated definition of
logical interactions, involving multiple thresholds and parameters. Generalised
logic is also motivated by a different set of questions. While Kauffman’s net-
works were developed to investigate the theoretical properties of an entire class
of networks, generalised logic tends to focus on models of actual systems. It
provides a set of tools with which to characterise and analyse networks derived
either from known interactions or from measured patterns of gene expression in
terms of their dynamic steady states.

4.2.1 Assumptions

Although the initial version of the generalized logic formalism described the state
of a gene in a Boolean fashion [123], later iterations introduce the possibility
of state variables assuming more than two levels [133, 124]. The argument
for multivariate logic is that when a particular element acts in more than one
context, it cannot necessarily be assumed that the thresholds required for each
of these actions to occur is going to be equal. For example product X may have

19



an effect on gene Y when it reaches concentration c1 and also have a further
effect on gene Z at concentration c2 (see Figure - multiple thresholds).

The generalized logical formalism also allows for a considerably more sophis-
ticated form of logical updating than the Boolean rules used in RBNs. The first
refinement is the introduction of logical parameters, which allow for weighted
gene interactions [113]. The argument for allowing this complication is that
genes may be expressed to different extents in different circumstances and there-
fore may affect the expression of another gene to varying degrees. The second
refinement concerns the possibility that some steady states of a system, partic-
ularly unstable ones, may be located at the threshold values [113]. This issue
is dealt with by introducing logical values for the thresholds, as well as for
expression levels below and above thresholds.

Unlike RBNs, in which time is measured discretely, the generalized logic
formalism uses continuous time, allowing for asynchronous updating of ele-
ments [124]. It is important to note that the form of asynchrony used here is
deterministic in its ordering of element updating. Instead of a set of determin-
istic state transition rules, a generalized logic model defines a set of functions
mapping current states to their image, or the state towards which a system
would tend to move if all variable updates were carried out. This transition
is enhanced by the inclusion of two time delays, one describing the period be-
tween a gene switching on and its product reaching functional levels and the
other describing the period between a gene swtiching off and its product drop-
ping below functional levels (see figure - time delays). The use of asynchrony
produces to systems containing more complex sets of periodic attractors than
standard synchronous networks and the dynamics of such systems tend to be
closer to equivalent differential models.

4.2.2 Model Description

The first stage in building a logical description of a system is to specify the
graph of positive and negative interactions between logical elements. From this
diagram, logical equations, and a corresponding image table may be inferred.
It is important to note that, unlike the Boolean network approach described
above, the image table does not show deterministic transitions. Whereas the
standard Boolean network assumed synchronous updating of all elements, the
generalised logic formalism is inherently asynchronous. Therefore, in a transi-
tion involving the change of state of two genes, the probability of both genes
being updated simulataneously is infinitesimally small. Therefore, one of the
two possible transitions will occur first, dependant on the time delay for that
element, and determine the next state. Carrying out this process for all states
results in a transition graph, from which steady states and cycles can be iden-
tified (see Figure 8). The path that will actually be taken from this graph can
be determined by considering the time delays of each transition. A more thor-
ough description of the model, including more advanced elements such as logical
parameters and multi-valued logical variables is given in [127].
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Figure 8: An example of a generalised logic network: (a) a simple network with
two negative interactions and one positive interaction; (b) the logical updating
rules; (c) the image table. Note that two of the states, 100 and 101 have
themselves as image, these represent the steady states towards which a system
will ultimately move; and (d) the transition graph.
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4.2.3 Theoretical results and Applications

Once a model has been built, the set of logical equations can be analysed to
determine the logical steady states of the system, analogous to attractors in
Boolean systems. A state space can then be constructed in which each state
corresponds to a qualitative behaviour of the system.

The ease with which qualitative analyses can be carried out has been in-
creased by theorems which allow the identification of steady states of a sys-
tem by considering the characteristic state of the circuits that make up a sys-
tem [114, 126]. A circuit is a complete loop in the system’s interaction graph.
The characteristic state of a circuit is the intersection of the thresholds beyond
which each variable in the circuit is active. The properties of these circuits will
determine which of them are functional in given conditions, and from this knowl-
edge, the steady states of the system can be determined. While the number of
logical states grows rapidly with the size of the system, the number of circuits
increases much more slowly, therefore the ability to derive steady states from
characteristic states greatly improves the scalability of this type of analysis.

A feedback circuit can also be described as positive or negative, depend-
ing on whether it contains an even or odd number of inhibitory interactions
respectively. Negative circuits generate homeostasis, while positive circuits are
involved in multistationarity, and hence differentiation. Circuits may interact
to produce multistationarity in a number of different conditions [128].

The generalised logic formalism has been applied to the analysis of a number
of real genetic systems, including phage-λ [122], dorso-ventral patterning in
Drosophila [106] and flower morphogenesis in Arabidopsis thaliana [84].

4.2.4 Strengths and limitations

The generalized logic formalism is a powerful method for analysing networks
whose interactions are well known. It enables the possible qualitative behaviours
of a system to be determined in a rigorous and scalable fashion. The use of logi-
cal values corresponding to functional thresholds removes the necessity of having
to set the values of large numbers of real parameters. The process is amenable
to being automated by a computer and it has been demonstrated to be effective
for the induction of gene networks from expression data. The explicit inclusion
of time delays leads to a considerably more accurate picture of biological sys-
tems than synchronous Boolean networks and a number of theoretical insights
into necessary conditions for multistationarity have been shown.

One of the primary limitations of this approach is that, because it has been
designed for the detailed analysis of relatively small systems consisting of well
characterized interactions, its scalability is limited. It is less suited to the ex-
ploration of different classes of behaviour and of large, less well-known systems.
Furthermore, phenomena such as cyclic behaviour in generalized logic models
are quite sensitive to those parameters which do require specification, such as
time delays.
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4.3 Continuous logic

Continuous logic is used to refer to models of regulatory systems in which the
activation of a given gene is again considered to be Boolean, but the analytical
treatment of the models is more similar to that used in continuous models than
previous approaches. Furthermore the system states that are measured are gen-
erally qualitative in nature (in comparison to true continuous approaches, where
system states are frequently quantitative). Such continuous logic models have
been used both for ensemble approaches to determining classes of behaviour as
well as qualitative simulation approaches for modelling the behaviour of partic-
ular systems.

Glass networks use piecewise linear differential equations (PLDEs) to de-
scribe the switching of gene states in continuous time [49]. This methodology
has the advantage of rendering systems amenable to analysis, while still allowing
complex periodic and chaotic dynamic patterns. The motivating question for
this formalism is: “Given a network with a certain logical structure, what are
the possible dynamics that can be found in this network?” [40].

4.3.1 Assumptions

In order to simplify mathematical analysis, nonlinearities in the updating func-
tion are eliminated by replacing continuous sigmoidal functions with discontin-
uous step functions. The rate equations that result from this approximation are
in the form of piecewise linear differential equations. The n-dimensional phase
space of a model may therefore be pictured as being divided by threshold hyper-
planes into volumes corresponding to qualitative states of the system (spaces
in which the system behaves in a qualitatively distinct way) (see Figure 9).
Transitions between neighbouring qualitative states occurs whenever a solution
starting in one region ends in another region. These systems have two types of
steady states: regular steady states, lying within a volume and singular steady
states, lying on one or more threshold planes between volumes.

One of the primary advantages of using differential equations to model up-
dating functions is that time may incorporated in a continuous fashion. A dis-
advantage of this approach is that analytical methods frequently scale poorly,
limiting analysis to small systems, the use of unrealistic simplifications, or the
use of numerical simulation, which typically requires the introduction of some
form of temporal discretization.

A common feature of these formalisms is their motivations is frequently to
render the dynamics of complex regulatory systems tractable to mathematical
analysis. As a result, they omit many complicating features of real biological
systems, including time delays, spatial structure, sigmoidal activation and reg-
ulatory control of decay rates. A framework that allows regulatory mechanisms
to be described more comprehensively has been proposed by Mestl and col-
leagues [85], however, this additional complexity limits the application of these
techniques to relatively small systems.
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Figure 9: The phase space of a continuous logic model showing the volumes
defined by the various activation thresholds.

4.3.2 Applications

Early usage of this formalism was restricted to analytical techniques [39] and
ensemble approaches [49]. The mathematical complexity of the approach fre-
quently limited application to only very small systems (two or three interacting
genes). Recently, a streamlined qualitative simulation technique based on PLDE
models has been proposed [34, 33] that is extendable to large systems and has
been used to model sporulation in B. subtilis [32].

4.4 Further reading

The most comprehensive, if not always the most accessible, source of Kauffman’s
work on random Boolean networks as models for gene regulation is contained
in The Origins of Order [70]. Some of his ideas are developed in a less for-
mal, and more speculative, way in At Home in the Universe [71]. A readable
overview of the analogy between basins of attraction and cell types is provided
by Wuensche in [144]. The best starting point for a description of the gener-
alised logic formalism is given in a pair of recent articles in Chaos [128, 127],
which review and summarize many previous results. A good non-technical de-
scription of the theoretical findings from this research program can be found
in [125]. Similarly, a comprehensive overview of the De Jong’s approach to
qualitative simulation, describing both the formalism and its relation to other
similar approaches, is [33].

5 Continuous models

The modelling formalisms described in Section 4 above all share the assumption
that state variables can be represented in a discrete fashion. In reality, while
it is true that, at a given point in time, a gene is either being transcribed or

24



not being transcribed, levels of activation, rates of transcription and product
concentrations can all vary in a continuous fashion. This section describes a
number of approaches to modelling GRNs in which a continuous representation
is used for state variables.

5.1 Ordinary Differential Equations

There is a long history of using systems of ordinary differential equations (ODEs)
to model the reaction kinetics of regulatory systems. These approaches have
several advantages. In principle, their more detailed representation of regula-
tory interactions provides a more accurate representation of the physical system
under investigation. Additionally, there is a large body of dynamical systems
theory that can be used to analyse such models. The primary disadvantage of
ODE approaches is that they can be much more computationally intensive to
analyse and solve than discrete models, especially for realistically sized systems.

5.1.1 Assumptions

Biological processes are almost inevitably highly complicated, and most mathe-
matical models of gene regulation make two simplifying assumptions. The first
of these is that the control of gene expression resides in the regulation of gene
transcription. This assumption is known to be incorrect, as control may also be
exercised at a number of other levels, including the post-transcriptional process-
ing and translation of RNA and the control of RNA and protein degradation.
While models have been developed that do investigate some of these processes,
they are rarely integrated into a comprehensive framework. The second as-
sumption is that genes are expressed and proteins produced at a continuous
rate. Again, this assumption does not always hold. In some systems where
the number of molecules involved is very small, the production and movement
of individual molecules may be important, and there may be a degree of ran-
domness. Stochastic approaches to modelling have been developed that reduce
reliance upon this assumption, these are described in Section 6 below.

5.1.2 Model description

The basis for many ODE descriptions of regulatory systems is chemical rate
equations, which describe the relationship between the rate of a reaction and
the concentrations of the reactants. For example, consider a simple regulatory
system in which a transcription factor X associates with an empty binding site
Y0 to give a bound site Y1 at some rate k1 and dissasociates at some rate k

−1.
A bound site results in transcription and the production of a product P and
an empty binding site (Y0) at rate k2. This system may be represented by the
following rate equations:

X + Y0
⇀↽

k1

k
−1

Y1 (2)

Y1 →k2 P + Y0 (3)
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which can then be translated into the following set of differential equations:

dx

dt
= −k1xy0 + k

−1y1 (4)

dy0

dt
= −k1xy0 + k

−1y1 + k2y1 (5)

dy1

dt
= k1xy0 − k

−1y1 − k2y1 (6)

dp

dt
= k2y1 (7)

Introducing a number of assumptions: that the total number of bound and
unbound sites is constant, y0 + y1 = b; and that the number of transcription
factors is significantly higher than the number of binding sites, x À b, such that
all of the binding sites will generally be occupied, this set of equations can be
simplified to:

dx

dt
=

−Kmaxx

kn + x
(8)

Kmax = k2b (9)

kn =
k
−1 + k2

k1

(10)

These equations correspond to the Michaelis-Menten kinetic scheme and
describe a situation where the rate of expression increases with transcription
factor availability up to some limiting value [38] (see Figure - graph).

Early work investigating the existence and properties of various steady, pe-
riodic and chaotic solutions to these sets of equations has been summarized
in [132]. The equations above can be generalised to a set of reaction-rate equa-
tions in which the concentration of a gene product is described in terms of the
concentrations of the other elements of the system:

dxi

dt
= fi(x) (11)

where x is the vector of gene product concentrations and fi is an update
function. This form of equation can be extended to include the influence of
external input signals, product degradation and time delays:

dxi

dt
= fi(x,u) (12)

dxi

dt
= fi(x(t − τ)) (13)

dxi

dt
= fi(x) − γixi (14)
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where u is a vector of input signals, τ is a time delay and γi is the degra-
dation rate of product i. Another possible extension is to model transcription
and translation as indpendent processes, in which the production of messenger
RNA depends upon the concentrations of protein transcription factors and the
production of proteins depends on the concentrations of messenger RNAs:

dri

dt
= fi(p) (15)

dpi

dt
= gi(r) (16)

where p and r are vectors of protein and mRNA concentrations respectively.
In eukaryotic organisms, protein and mRNA are each produced in different
cellular compartments and must be transported between them. An advantage
of this approach is that it allows time delays due to mRNA and protein transport
to be explicitly incorporated into a model [112].

A number of different functions have been used for fi, the updating function.
A common feature is their sigmoidal shape, which experimental evidence has
suggested is plausible. Possibile updating functions include the hill curve and
the logistic function, respectively:

f(xj , θij ,m) =
x

m
j

x
m

j + θ
m

ij

(17)

f(xj ,m) =
1

1 + e−mxj
(18)

where m > 0 is a steepness parameter and θij > 0 is a threshold for the
influence of xj on xi.

Due to nonlinearity of the updating functions, analytical solutions are not
normally possible. In some cases, qualitative properties can be established, such
as existance of steady styates, limit cycles and critical points [131]. The analysis
of feedback dynamics carried out by Thomas [125] (described in Section 4.2) can
be extended to continuous systems.

Another approach is to simplify the equations by replacing non-linear sig-
moidal functions with step functions, or some other form of piecewise-linear
function as described in Section 4.3 above.

Finally, it is sometimes possible to use numerical techniques to solve sets
of equations. In numerical simulation, the exact solution of an equation is ap-
proximated by calculating values for each of the state variables at a series of
discretised time steps. A number of systems have been characterised and solved
in this manner, some of which are described below. A significant problem with
the numerical approach is the lack of measurement of the various kinetic pa-
rameters in a system. The number of systems for which detailed parameter
values are known is very small, and the size of most systems makes it unfeasible
to obtain in vitro or in vivo measurements of many parameter values. Some
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researchers have dealt with this problem by searching the parameter space of
a system for combinations that allow the qualitative behaviour to be repro-
duced [138]. Another possible solution is to use the rapidly increasing amounts
of available gene expression data to estimate parameter values, as described in
the section on ‘reverse engineering’ below.

5.1.3 Applications

Model systems There exist only a small number of systems for which suf-
ficient experimental data has been obtained to enable accurate models to be
built. One of the best characterised systems is phage-λ [95]. This system has
been the subject of a number of mathematical models [109, 102], including a
hybrid model [82] and a stochastic model [9].

Other areas of modelling include the circadian clock [76], and the cell cy-
cle [130]. Further models are reviewed in [57].

Reverse engineering of network structure Many of the approaches to
modelling and simulation described above focused on either characterising a
small, well-known regulatory system, or exploring the possible behaviour of
a particular class of model networks. The relatively recent development of
high-throughput experimental techniques in molecular biology has opened a
new avenue of investigation. For the first time, there exists sufficient data to
potentially enable network structure and dynamics to be inferred automatically
with little or no a priori knowledge. DNA microrarrays can be used to generate
thousands of measurements of gene expression levels during the course of a single
experiment. The reverse engineering approach begins with the assumption that
the interactions between these genes can be modelled as a network and aims to
infer these interactions from the expression data.

Two of the main problems hampering reverse engineering efforts are the
highly complex, combinatorial nature of the problem, and the relatively poor
information content of the available data. Whereas microarrays are capable of
collecting data on a large number of genes, the number of data points for each
gene is typically very small. Furthermore the data is typically very noisy.

Both discrete and continuous modelling formalisms have been used for the
task of network induction, as well as a number of different approaches to param-
eter learning. A recent overview of the different models and learning strategies
used is provided by van Someren and colleagues [134].

Forward engineering of novel networks As some of the basic control mod-
ules in regulatory networks become more well understood, the construction of
synthetic networks in vitro has become possible [56]. These novel networks not
only have many potential therapeutic uses, they also allow understanding of
regulatory processes to be refined. Systems constructed so far include a toggle
switch [45] and an oscillator [41]. In addition, suites of networks have been
created by randomly combining low level modules, allowing the combinatorial
possibilities of synthetic networks to be explored [52].
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Output Layer


Hidden Layer


Input Layer


Figure 10: A standard feed-forward neural network. Nodes are divided into
input nodes, output nodes and hidden nodes, which significantly increase the
computational abilities of the network. This basic structure may be modified
by changing the number of nodes in a layer, the number of layers and the
arrangement of the links. In particular adding feedback links from the output
layer back to the input layer allows the network to process temporal information,
such as grammatical structure and patterns of gene expression.

The role of modelling in this process is to enable the behaviour of complex
networks to be predicted via simulation before the circuit is implemented in
vitro. Modelling formalisms with a high level of biological fidelity are therefore
preferred, and several quantitative and semiquantitative approaches incorporat-
ing both deterministic and stochastic dynamics [65].

5.2 Neural network models

Artificial neural networks are mathematical models of information processing
originally inspired by networks of neurons in the brain [58]. A neural network
typically consists of a collection of nodes, some of which may be designated as
input or output nodes, connected by weighted links (see Figure 10). Each node
contains a transfer function that transforms a set of weighted input signals into
an output signal. These networks can be trained to match particular patterns
of activation via a number of learning processes.

Mathematically, it is possible to create a mapping between a neural network
and a system of ODEs. Conceptually, a relatively straightforward analogy may
be drawn between an information processing system in which the constituent
elements are neurons and the links are synaptic interactions and a system in
which the elements are genes and the links are regulatory interactions. Conse-
quently, a number of researchers have used network architectures and concepts
taken directly from neural networks and connectionist models [87, 136, 137].

The regulatory input to gene i is described as a the sum of the weighted
inputs modified by the gene’s activation threshold θ:
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gi =
∑

j

wijyj + θi (19)

where wij is the strength of the regulatory interaction between genes i and
j. A gene’s level of activation is determined on the basis of this regulatory input
and degradation:

dxi

dt
= αifi(gi) − γixi (20)

where α and γ are activation and degradation rates and fi is a sigmoid
transfer function as described above.

This type of formalism has been used in several different types of models.
Mjolsness et. al. developed a phenomonological model of segmentation in the
Drosophila blastoderm that used a neural network model to describe the internal
dynamics of a cell as well as a generative grammar that described higher-level
developmental processes such as cell division and differentiation [87]. This model
has also been applied to other aspects of pattern formation and neurogenesis
in Drosophila [100, 101, 79]. In these models, network parameters were trained
such that the dynamics matched observed experimental behaviour.

Vohradský used a similar approach to model the lysis/lysogeney decision in
phage λ [136, 137]. Here, the network structure is determined a priori from
known interactions and the interaction weights are learned from experimental
data. Several variations on the basic network are investigated, including con-
nected networks and multi-compartment models, in which protein and RNA
products are represented by separate network layers [137] (see Figure 11).

Neural network models have also been widely used in network inference (see
the appropriate sections of [134] for a comprehensive review). In this domain,
D’haeseleer has performed a comparison between the performance of network
models using both linear and non-linear updating functions and obtained several
analytical results [36].

5.3 Hybrid models

In the last decade, a number of models have been developed that take a hybrid
approach to modelling gene regulatory networks. In these models, biochemical
processes that are characterised by sharp thresholds are represented by Boolean
elements, while genes whose activations vary more continuously with time, or for
which intermediate levels of activation are significant, are modelled continuously.
Early work in this direction was carried out by McAdams and Shapiro, who
characterised the phage-λ circuit in terms of an electrical circuit, incorporating
discrete and continuous elements, time delays and feedback dynamics [82].

A similar approach has been developed by Eric Davidson and colleagues,
who have taken a strongly integrative approach to modelling the regulatory net-
works responsible for development [28, 29]. This work has ranged from detailed
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Figure 11: A two-compartment model of gene expression. Regulatory proteins
A,B,C, . . . , n control the level of expression of gene i within the nucleus. The
resulting mRNA, along with additional factors α, β, γ, . . . , v controls the pro-
duction of the corresponding protein i. Note also the presence of mRNA and
protein degradation and an autoregulatory feedback loop. (From [137]).

characterisation of the logic underlying individual regulatory interactions [145]
through to a network level view of regulatory dynamics [30]. One of the novel
conceptual distinctions drawn in this approach is between the “view from the
genome” and the “view from the nucleus” [10]. The former represents all possi-
ble regulatory interactions that genome encodes, while the latter restricts itself
to those that are active in a particular cell at a particular time.

A key feature of this approach is the use of both continuous and Boolean
functions, which result in a model lying somewhere between a continuous ki-
netic model and a Boolean model. The primary advantages of this level of
abstraction is the clarity with which complex circuits may be represented, com-
putationally simulated and empirically validated. The main cost associated
with this approach is the loss of many of the analytical techniques that can be
applied to more “pure” continuous or logical models. As the motivation for this
work lies more in the direction of integrating and guiding experimental data,
with less focus on abstract theoretical results, this trade-off is considered to be
acceptable. An emphasis has been placed on the role of models as “the devel-
opmental biologists essential organizer for getting causal relationships between
genes straight” [19].

5.4 Spatial models

Many of the models described above do not include any consideration of the
physical space in which gene regulation is occurring. However, there are at
least two possible situations in which spatial information may be important.
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All regulatory events involve a physical interaction between molecules, some of
which are present only in very small numbers and all of which are several orders
of magnitude smaller than the size of a cell. Therefore a molecule may take
some time, and require the assistance of some additional mechanism, before it
is located in a position to act. This importance of localisation is compounded in
eukaryotic cells, which have a complicated internal structure. As an example,
while mRNA molecules are transcribed from DNA in the cell nucleus, they
must be transported through the nucleur membrane and into the cytoplasm
before they can be transcribed. While including the location and momentum
of every single molecule would quickly become computationally infeasible, some
models incorporate time delays to allow for the diffusion and transportation of
molecules [111].

The second situation when spatial information may be required arises in
models that incorporate interactions between cells. One of the most appar-
ent distinctions between prokaryotic and eukaryotic organisms is that, while
prokaryotes all consist of a single cell, a large majority of eukaryotes are multi-
cellular. A human, for example, consists of around a trillion cells. Specifying
the morphogenetic processes that transform a single cell into a complete organ-
ism requires a substantial increase in regulatory complexity. It also introduces
several new issues related both to intercellular communication and to the me-
chanical processes of development, such as migration and cell adhesion.

Intercellular communication One of the simplest ways of implementing
intercellular communication is to simply allow network connections to exist not
only between elements within a cell, but also between elements in adjacent
cells [138, 83].

Mechanisms of development Controlling the formation of spatial patterns
during development presents a significant computational challenge. In addition
to the the internal dynamics of the cell, external factors such as protein gradi-
ents and physical interactions between cells also play a role. One of the earliest
mathematical attempts at modelling pattern formation was by Turing. His ap-
proach used a pair of coupled reaction-diffusion equations to describe a system
consisting of two chemicals, known as morphogens (see [16] for a review). As
the two morphogens diffuse across a spatial field and react with one another, a
variety of patterns emerge, depeding on parameter values. One problem with
this approach is the lack of any evidence for morphogens actually existing in a
biological system. A gap therefore exists between the phenomenological descrip-
tion of the pattern formation process and the regulatory process that controls
it at a genetic level.

The gene circuit approach of Mjolsness et. al. [87] mentioned above goes
some way towards addressing this issue. The geometric aspect of the model
uses a diffusion mechanism to describe communication between cells. Solé and
Salazar-Ciudad also use a reaction-diffusion mechanism linked directly to a reg-
ulatory network to investigate developmental dynamics [104, 118]. Their model
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is based on that of Mjolsness:

dxij

dt
= fj(xi) − γjxij + Dj5

2xij (21)

where xij represents the concentration of gene product j in cell i, the first
term specifies the production of xij , the second term its degradation, and the
final term specifies the diffusion component, at rate Dj . The networks are
connected together in a random fashion, inspired by the ensemble approach of
random Boolean networks [69], and the behaviour of the networks under differ-
ent parameter settings is explored. One finding of this study was that networks
capable of producing spatial patterns such as gradients, stripes, spots and noise
(chaos) are relatively common once a connectivity threshold is crossed [118].

5.5 Further reading

A good introduction to some of the mathematical modelling techniques used
to studt biological systems is Leah Edelstein-Keshet’s Mathematical Models in
Biology [38]. Early results on the mathematical modelling and analysis of reg-
ulatory circuits are reviewed and extended in [132]. Some more recent results
are reviewed by Smolen [112]. An overview of the gene network approach de-
veloped by Mjolsness and Marnellos, among others, can be found in Chapter 2
of Modeling Neural Development [80]. The hybrid approach to modelling de-
velopmental regulatory networks has been the subject of a number of recent
reviews [30, 20, 19].

6 Stochastic models

6.1 Noise from within and without

As described in Section 2, gene activation is controlled by molecular signals,
some of which are proteins producted by other transcription events. In general,
genes are activated when the concentration of signal molecules crosses a thresh-
old. Although many mathematical models make the simplifying assumption
that proteins are produced at a continuous rate, evidence suggests they are ac-
tually produced stochastically in short “bursts” [81]. Therefore, the time taken
for a concentration to reach it’s critical threshold will vary stochastically. This
variability time delay length can result in significant differences in the timing
of similar events across an otherwise homogeneous population of cells. Due to
the complex nature of interactions between regulatory elements, it is possible
that individual cells may take different branches of regulatory pathway. An-
other potential source of stochasticity in the timing of events arises from the
fact that, if a particular signal is represented by only a very small number of
molecules, random molecular fluctuations may affect the time taken for a signal
to be transferred [93].
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Stochastic events in gene expression have several implications [97]. First,
identical systems provided with similar inputs may produce different outputs as
a result of stochastic elements of their regulatory mechanism. Second, it is likely
that the evolution of gene regulatory networks has been driven in part by the
requirement to produce deterministic outputs from a system constructed from
noisy components operating in a noisy environment. While it is the case that
in many situations regulatory systems are able to produce ordered results from
chaotic starting points, in other instances, noise is exploited to the benefit of the
system. The final implication is that deterministic modelling techniques may be
insufficient to capture some of the dynamics of inherently noisy systems [75, 97].

Mechanisms by which the effects of noise may be diminished include negative
and integral feedback (intensifying intermediate frequencies and dampening high
and low frequencies), redundancy mechanisms and regulatory “checkpoints”. In
some systems, noise is amplified and used to generate heterogeneity in a popula-
tion and hence increase diversity. Simulations have also found that complex sys-
tems involving many interacting feedback loops may be stabilised by noise [97].
In several studies [14, 138, 66], systems have been found whose robustness to
noise appears to be a systemic product of network structure, rather than any
explicit combinations of parameter settings or attenuating mechanisms.

6.2 Stochastic modelling approaches

Two main approaches have been developed to modelling stochastic events in
gene expression, stochastic differential equations and the stochastic simulation
algorithm. Stochastic differential equations extend the standard differential
equation description of the reaction dynamics to include a noise term

dxi

dt
= fi(xi) + νi(t) (22)

where νi(t) is an additive noise term. This equation, known as the Langevin
equation, can be developed into an alternative formulation that describes the
evolution of the probability density function. These equations are generally
too complex to be solved using analytic or numerical techniques, therefore a
Monte-Carlo approach is generally used.

A characteristic of stochastic differential equation approaches is that they
treat molecular concentrations as continuous variables. As mentioned above,
in many situations signal molecules may exist in very small numbers, therefore
it may be more appropriate to model them as discrete entities. An alternative
approach formulates an equation in terms of the probability that a molecule
undergoes a transition in a particular small time slice. This approach, known
as the master equation, produces equations that are mathematically simple,
but for realistic systems, are too numerous and too large to be feasibly solved.
Again, the approach typically taken is to simulate the system a number of
times and estimate a probability density function. A number of approaches to
the stochastic simulation of such equations have been developed [47, 48, 89].
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A major problem with both of these approaches is efficiency. Running mul-
tiple simulations of systems involving large numbers of reactions is computa-
tionally expensive. An important area of further research is the development
of multiscale approaches. These models would be able to use continuous rep-
resentations where individual events are not important, but still allow for the
possible occurrence of rare, but significant, events [25].

In addition, a number of other methods for modelling stochasticity have
been developed including stochastic Petri Nets [51] and stochastic neural net-
works [129]. Some of the logical modelling approaches described in Section 4,
such as the asynchronous Boolean model and the generalised logic formalism,
also include an degree of noises arising from the non-deterministic timing of
regulatory events.

6.3 Further reading

Stochastic modelling formalisms tend to be of a higher level of mathematical
sophistication than other approaches. A non-technical review of the important
issues and techniques can be found in [97].

7 Network models

Most of the methods for the modelling and simulation of gene regulatory net-
works described above have taken a “bottom up” approach. They take the
interactions between the indvidual elements of a system as their starting point
and then observe the global behaviour that results when the system is solved
or simulated. Recently, there has been an increasing amount of interest in a
“top down” approach, focusing first and foremost on the genetic system as a
network [90, 24]. The most basic feature of any network is its structure, the
way in which individual elements are connected together. The structure of a
network is constrained by the growth process that produced it and, in turn,
constrains the possible dynamics of the system.

7.1 Small world and scale-free networks

Starting with a large set of elements, it is possible to connect them up in a
number of different fashions. At one extreme, each element may be connected
to its nearest spatial neighbours, leading to a network known as a regular lat-
tice. At the other extreme, pairs of elements may be connected together at
random, leading to the type of random networks investigated by Kauffman [67]
(see Section 4). In the absence of any more detailed data on the architecture
of biological networks, the random approach seemed reasonable. In addition, it
allowed the use of a number of results from graph theory concerning the proper-
ties of random graphs. Real networks however, whether they be social networks,
telecommunication networks or genetic networks, are not connected at random,
and two recent models seem to offer a more representative model [64, 139].
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Figure 12: Regular, Small World and Random Networks. The networks are
generated by starting with a regular lattice (left) and randomly rewiring a pro-
portion, ρ of the links. When all of the links are rewired, the result is a random
network (right). For intermediate values of ρ, the result is a small world network
(centre), which is highly clustered, like a regular lattic, yet has a short distance
between nodes, as in a random network. (From [141]).

Two related models, small world networks and scale-free networks have re-
cently been proposed to address this gap. Small world networks [141, 140] are
obtained when a small portion of the links in a random lattice are randomly
rewired (see Figure 12). The resulting networks have two important properties.
Firstly, the average distance between any two nodes in a network is very short,
as it is in a randomly connected network. Secondly, the clustering coefficient,
the number of nodes whose neighbours are also neighbours of each other, is high.
It turns out that this model is a reasonable description of a number of naturally
occurring networks [120, 116].

The closely related scale-free network model [13] is characterised by a power
law decay in the probability of a node interacting with k other nodes, according
to P (k) ∼ k−γ . This structural property arises from a growth dynamic termed
preferential attachment. Under this dynamic, a network is grown from an ini-
tially small number of nodes by successively adding new nodes. A new node has
a probability of being connected to each existing node dependant on the number
of connections that node already has. Thus networks with a large number of
connections are likely to attract more, whereas minimally connected nodes are
more likely to stay that way.

An interesting property of scale free networks is their robustness to the failure
of individual nodes. Because many of the nodes have very low connectivity, the
random removal of any individual node is unlikely to fundamentally affect the
structure of the network, providing a degree of robustness to error. On the
other hand, the fact that some nodes act as ’hubs’ and are connected to many
other nodes, such networks may be particularly vulnerable to attacks that target
highly connected nodes [5].

36



X


X


Z


Y


W
Z


Y


Z
Y


X


Feed-forward loop
 Bi-fan

Three-node


feedback loop


Figure 13: Examples of network motifs found in gene regulatory networks, elec-
tronic circuits, food webs and neural circuits. (Based on [86]).

One of the mechanisms by which the genome is hypothesized to have evolved
is by gene duplication. Certain copying errors can result in a segment of the
genome being duplicated and, because the duplicated segment encodes redun-
dant information, it can subsequently diversify and possibly increase the func-
tionality of the genome. The dynamics of this process have been modelled and
demonstrated to show similar properties, such as response to failure and attack,
to networks based on real data [117, 135].

7.2 Modularity, motifs and other structural features

The notion of clustering in a network model corresponds intuitively with the
idea of functional modules in regulatory networks [90]. It has been suggested
that functional modules are an important level at which to consider biological
organisation for a number of reasons [54]. Modules involve a small fraction of
network components working together in a relatively autonomous fashion and,
as such, they represent a possible route to reducing the complexity of regula-
tory networks. Furthermore, empirical evidence suggests that such independent
control substructures may actually exist [138]. It has also been suggested that
functional modules may be one of the units on which evolution operates [54].

Several statistical properties of networks have been identified that provide a
potential means if identifying and measuring modularity in systems. Ravasz et.
al. describe a hierarchically structured network, in which small functional mod-
ules combine in a hierarchical fashion into progressively larger units [98]. They
acknowledge however, that more work is still required to be able to accurately
and usefully characterise modularity in network structure.

A second approach to the investigation of modularity in networks is the
identification of “regulatory motifs”, small, repeated patterns of interaction that
occur with greater regularity than would be expected in a random network [86]
(see Figure 13).
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7.3 Further reading

Readable overviews of the small world and scale free network models have been
produced by both Strogatz [120] and Solè [116]. Alternatively, more compre-
hensive, and significantly more technical, reviews of network structure [4] and
network evolution [37] also exist.
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pable of pattern formation: From induction to reaction-diffusion. Journal
of Theoretical Biology, 205:587–603, 2000.

[105] J. A. De Sales, M. L. Martins, and D. A. Stariolo. Cellular automata
model for gene networks. Physical Review E, 55:3262–3270, 1997. [Link].

[106] L. Sánchez, J. van Helden, and D. Thieffry. Establishment of
the dorso-ventral pattern during embryonic development of Drosophila
melanogaster : A logical analysis. Journal of Theoretical Biology, 189:377–
389, 1997.

[107] R. Sarker, R. Reynolds, H. Abbass, K.-C. Tan, R. McKay, D. Essam, and
T. Gedeon, editors. Proceedings of the IEEE 2003 Congress on Evolution-
ary Computation, Piscataway, NJ, 2003. IEEE Press.

[108] C. R. Shalizi. Methods and techniques of complex systems science: An
overview. In T. S. Deisboeck, J. Y. Kresh, and T. B. Kepler, editors,
Complex Systems Science in Biomedicine. Kluwer, 2003. [Link].

45



[109] M. A. Shea and G. K. Ackers. The or control system of bacteriophage
lambda: A physical-chemical model for gene regulation. Journal of Molec-
ular Biology, 181:211–230, 1985.

[110] C. W. Smith and J. Valcarel. Alternative pre-mRNA splicing: the logic of
combinatorial control. Trends in Biochemical Science, 25:381–388, 2000.
[Link].

[111] P. Smolen, D. A. Baxter, and J. H. Byrne. Effects of macromolecular
transport and stochastic fluctuations on the dynamics of genetic regula-
tory systems. American Journal of Physiology, 274:C777–C790, 1999.

[112] P. Smolen, D. A. Baxter, and J. H. Byrne. Modeling transcriptional
control in gene networks - methods, recent results, and future directions.
Bulletin of Mathematical Biology, 62:247–292, 2000. [Link].

[113] E. H. Snoussi. Qualitative dynamics of piecewise-linear differential equa-
tions: A discrete mapping approach. Dynamics and Stability of Systems,
4:189–207, 1989.

[114] E. H. Snoussi and R. Thomas. Logical identification of all steady states:
The concept of feedback loop characteristic states. Bulletin of Mathemat-
ical Biology, 55:973–991, 1993.

[115] J. E. S. Socolar and S. A. Kauffman. Scaling in ordered and critical
random boolean networks. Physical Review Letters, 90(6):068702, 2003.
[Link].
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