Pragmatic Web Service Design: An Agile Approach with The
Service Responsibility and Interaction Design Metho d

David E. Millard , Yvonne Howard, Noura Abbas, Hugh C. Davis, Lestdre@ilGary B. Wills,
Robert J. Walters

School of Electronics and Computer Science

University of Southampton, Southampton, UK
+44 (0)23 8059 5749
{dem, ymh, na06r, hcd, Ig3, gbw, rjwl} @ecs.sotarut

Abstract

Service-Oriented Architectures (SOAS) are increglgideployed to achieve distributed systems thatraodular,
flexible and extensible. However, designing for S€k be challenging; there are issues involvinggttaaularity

of the cooperating services, problems with proprietdata models being exchanged, and there areumentdy
accepted conventions for describing a servicesanteractions at an abstract level. This papezgan overview of
the Service Responsibility and Interaction Desigativdd (SRI-DM), an agile approach for engineeringvab
Service design based on capturing a scenario ag-gase, factoring this into a set of Service Resipdity and
Collaboration Cards, and constructing a Sequenagralin illustrating their interactions in fulfillinthe scenario.
Through two case studies the paper shows how USRBDM can expose many of the problems of over-
engineering SOA and help to create simpler, moagipatic web service designs.

Keywords: Web service design, Agile software depgient
Subject Classification: D.2.2 Design Tools and Teghes

1. Introduction

Engineering widely distributed systems has long been aeciya!for the software engineering
community. In the last few years a trend has emerged towardg& Oriented Architectures
(SOA) that aims at simplifying this problem. SOAs are aenapt to modularize systems in such
a way that they are composed of independent software componentsféinagervices to one
another through well-defined interfaces. The service approachabyideited to more loosely
coupled systems, where individual parts may be developed by diffexeple or organizations.
Wilson et al. describe the three main advantages of such a sgstévtodularity (dynamic
coupling), Interoperability (standard interfaces), and Extensibilityaf@sidation) [15].
Service-orientation is a philosophical approach to creating disttitaytstems, but there are a
number of standards and approaches to providing them at an impleoreteag! (including
Web Services based on SOAP, GRID Services based on OGSI, andsRE&Es based on
HTTP and XML). Because of the difference in these approaamesdue to a lack of common
notation and engineering experience, developing a service-oriensegimsgan be difficult.
Decisions must be made about how to divide a problem into logicatesgrhow those logical
services should be interfaced to maximize reuse, how they shouldheeegltogether to create
composite services, and what service-oriented implementation isusest to each service, or to
the design as a whole.

A particular danger is inver-engineeringhe web service design, resulting in a system which is
highly granular (introducing performance overheads) but which doesn&fibérom that

granularity in terms of reuse and extensibility (due to tight aogpbdf data models or high
dependency on a particular order of interaction).
In this paper we give an overview of the Service Responsibillylateraction Design Method
(SRI-DM), an agile approach for the modeling of services abatrat level that is independent
of implementation. SRI-DM:
- Defines a scenario with a use case diagram.

Factors a set of services based on individual use cases.

Represents these services at a high level using Service Riedpiprasd Collaboration

cards (SRCs).

Refactors these SRCs as necessary.

Defines how services could interact to fulfill the scenario using a seqdegram.
Through two case studies (PeerPigeon and ASDEL) we show how usiAgMsBan identify
the problem of over-engineering, and help to create simpler more pragmatiervieb designs.

2. Background

Service orientation is an approach to creating stand alone compouemtthat their potential

for reuse is maximized. A number of standards, infrastructurdspeotocols have emerged
which provide for this at an implementation level.

Web services have received a great deal of recent attentionream®faned around a set of
standards (such as SOAP, WSDL, UDDI) developed by the W3@ke fanctionality available

over the Web as simply as data [4, 7]. A new generation of Wabc&estandards (such as
WS_Security) is now being introduced to add a standard layer ofnéictien and security to

Web Services. This will make Web Services attractive fotegys builders as it will become
possible to build virtual organisations using relatively lightweight middleware

Another approach to service provision is represented by Represent&tiatealransfer (REST)

[6], where HTTP and XML are used to send and retrieve datadmate script or application
residing on a Web server. REST services are popular, but aseawe enough to build virtual
organizations and therefore will not be able to support the growing muohlsophisticated

service-based systems.

We believe that each approach is appropriate in different isihigatand that an agile
methodology for service design should be agnostic about the service technolégy itsel

2.1. Establishing SOA

The take-up of Web services within enterprises may be probterétatherley suggests that in
the educational domain there are a number of barriers that preeewidespread use of Web
services for delivering Web-based educational materials [I¥gsd barriers relate to the need
for understanding Web service protocols and the dynamic nature abtheunication with
Web browsers. Mukhi et al. believe that an increase in the adomti SOA requires
improvement to some of the non-functional features such as seduaigactionality and
reliability [10]. They have developed a framework that supports and tteesactional and
reliable services, achieved by using a policy model based on WS_Policy.

SOA specifications are progressing toward standardizatiorvamiety of ways, including small
groups of vendors and chartered technical committees. The e-Fogkmievan initiative by the
UK’s Joint Information Systems Committee (JISC) and AustialDepartment of Education,

Science and Training (DEST) to systematize a SOA for Eaucand Research [11,17]. We
believe that substantive barriers to the establishment of S@Agle little shared understanding
about how services should be developed, what granularity is appropriatiéférent problems,
and no common notation to enable developers to share designs.

2.2. Modeling Services

Dijkman and Dumas explain the need for particular Service Odddésign strategies [5], based
on a number of characteristics that differentiate Service tomponent-based design: High
Autonomy (of designers and developers), Coarse Granularity (o€senterfaces), and Process
Awareness (close relationship with business processes). Eradgwes service development is
most affected by the latter two characteristics. Quartal @escribe the use of design milestones
to help develop Web services from business practices [12], and Benatali Dumas have
created environments to ease the creation of composite servick&a[8h et al. suggest that the
best way to implement Web Services in an enterprise is tb \stdr a component-based
architecture that exposes business process level servit®slaservices [9]. Wada et al have
taken a model driven approach to this problem, building a model of the donshthem using
this to derive an object design [13]; this kind of modeling has alsa bheed with SOAs to
validate a design [1].

Wilson et al. present Reference Models as a potential solution Bi6hdly speaking a
Reference Model can be thought of as a description of howad setvices within a Framework
collaborate to provide the necessary functionality for a paaticdomain. Reference models are
a way to help architects and software vendors make consistectllajvisions in their
architectures and products. However, they require a method forkidegcservices and their
interactions at an abstract, logical level.

While model-driven approaches give you the benefits of automatic nmradsformations where
there is a consistent/constrained understanding of the processesellve that this model-
driven approach to service-design may be too high an overhead inuntamain environments.
In these situations an agile approach seems more appropriate.

2.3. Agile Methods

Agile methods are a number of software development methods ¢natproposed in the mid
1990s as a reaction to inflexibility of traditional approaches. An agile methadl lneulefined as
an adaptive process run by talented and creative people and conwdhederative and
incremental development [18]. Although agile methods were initisbcribed as development
methodologies, the termagile represents an attitude, a philosophy, and a way of thinking that
was presented through the principles and practices in the agidesta [19]. This way of
thinking can be applied to many other aspects of software cremtohnding design and
modeling. Agile techniques share common principles [16] such as:
- delivering working software frequently within a short timescale

close communication

simplicity

programming over documenting

customer involvement

encouraging rapid and flexible response to change.

SRI-DM is agile as it enables a team of developers tme&efiscenario quickly and generate a
number of services that will fulfill it. It is lightweight in that the documéatais limited to what
is needed, and serves to drive the development forward as well as record it for others

3. SRI-DM

In this section we present an overview of the Service Responsidiliyinteraction Design
Method (SRI-DM). It uses a collection of logical descriptionsr{&e Profiles) to describe how
a number of services, regardless of implementation, could be combirsdvéoa particular
problem defined as a use case scenario.
The method produces a design that has the following parts:
- A Scenaria presented as a Use Case Diagram and narrative that desgrgyoblem for
which a set of services can provide a solution.
Service Profiles a set of profiles that describe a number of services absinact logical
level. These suggest granularity, and describe the individual t&palof each service.
They promote reuse and understanding of the design, while retdiexiglity in the
implementation.
A Sequence Diagramshowing one example of how the services can interoperate to fulfil
the scenario.
SRI-DM separates abstract representations of services fronintipg@mentation; however as the
design process is agile, it is iterative (as we will sethe Service Profile section) in order to
cope with requirements change
Service Profiles are not concrete interfaces and so cannot dyébddausing interface definition
languages (such as WSDL). Instead they set the granutdritye model, and describe in a
semi-formal way the role of each service and the potentias wayhich they might rely on one
another.
In the rest of this section we will look at each part of tRé-BM — Scenario, Service Profiles,
and Sequences — and describe their formal notation.

3.1. Scenarios

Our method takes as its starting point a scenario that desaripesblem that is to be solved
using a set of interacting services. We have chosen use agsands as our method of modeling
because they are high level and implementation independent. From epagtl of view they
are also useful in that they are relatively informal, simphel laelp to define and structure a
problem space without too much detail about the activities withinsirete. A brief narrative
description is held alongside the diagram as a whole, as whdr &ach individual use case.
These descriptions help disambiguate the use cases, explain theofrakee different actors
associated with the use cases, and focus at a high level on what each use cese[#ijol
Scenarios are developed in a community or user focused manner withnagile principles to
ensure that they are relevant. These use case diagramse dhptyoractice of an existing user
community.

3.2. Service Profiles

Service Profiles are abstract descriptions of servicesntagtbe fulfilled by several different
Service Implementations which may each expose different corintetéaces. Service Profiles
are thus modeled in an abstract way that does not prescrib@ anddel or dictate explicit
methods. To do this we created Service Responsibility and Colladrocairds (SRCs) based on
Class Responsibilities/ Collaborations, a modeling technique firstrided by Beck and
Cunningham for exXtreme Programming [2].

Our SRCs model the capability of a service to realize afgpase case (a single bubble from a
use case diagram). An SRC card is a small card (we use Adsadthrds in our sessions). The
name of the service appears at the top of the card. Down therldfsti of the card, we list the
responsibilities of the service. On the right hand side wealist group other services which
collaborate to fulfill the responsibilities listed on the lefntiaside. The responsibilities of a
service describe at a high level: what it is for, what it does, and what it@adeor

(1.2) List all operations and
turn common operations into
collaborations

Take Assessment

Responsibilities Collaborations

- Authenticate
- Schedule

- Open Assessment - Track (3) Group Operations into

- Display Rubric responsibilties

- Confirm Candidate has

read Rubric

- Present ltems according - -

to assessment instructions Take Assessment

- Render Item

- Render Hints \ Responsibilities Collaborations

- Record Response 4.5.6) Test f

- Process Resp_cnse - Choose Assessment | - Authenticate (4.5,6) Test for

- Confirm Candidate has - Open Assessment _ Schedule completeness and refactor
finished assessment @ - Display Rubric Track as necessary

- Enforce assessment - Confirm Candidate has | - Trac

constraints (time limits, etc) read Rubric

- Record usage data - Present ltems accordin!

- Enforce item constraints to assassrﬂentinstﬂ.ICtior?S Take Assessment

no. retry's, etc, =

E Close Xssess)mem . sﬁggg: “?r?t‘s Responsibilities Collaborations

- Record Response

- Process Response Manage Assessment - Authenticate

- Confirm Candidate has SE-SCS?'I\?)gse Assessment =Schedule
@ finished assessment | - Open Assessment - Track
- Enforce assessment | - Display Rubric
constraints (time limits, etc) - Confirm Candidate has
- Record usage data | read Rubric

- Confirm Candidate has
finished assessment

- Enforce assessment
constraints (time limits,
etc)
- Close assessment

[Enforce item constraints |
(no. retry's, etc)
- Close assessrnenl |

Present Items according
to assessment
instructions

- Render ltem

- Render Hints

- Record Response

- Process Response

- Enforce item constraints

(no. retry's, etc)

Record usage data

Figure 1: The factoring of the “Take Assessment& (@ase into a SRC

Deriving SRCs from the Use Cases is a six-step process:

1. Work through each use case. A traditional noun and verb analysis isuhtasbnique;
verbs can indicate the responsibilities of the services thall th¥ use case, and nouns
imply a data model and inform the narrative. From the verb analydes down all of the
operations needed for a use case.

Group the operations into responsibilities and collaborations.
Consider which operations might be common with other SRCs and move ritranthie
responsibilities to the collaborations column.

wn

4. Identify which responsibilities would benefit from which collaboration.

5. Test the completeness/accuracy of the design by working various seenario

6. Re-visit the SRC and re-factor as necessary as other SR@s\&eloped, and as common

collaborations become apparent.

Figure 1 shows this process applied to a “Take AssessmentCase (the numbers above each
card refer to the stages described above). The use casgtilmscsi used to derive the initial list
of operations, which are consequently factored into a set of respdiesitaind collaborations.
This example is taken from the work of the FREMA project [20]cwhbuilt a number of
reference web service models for the domain of assessment.

3.3 Service Sequence Diagrams

At the scenario level, services represented by SRCs must intetaeaeh other to fulfil a wider
purpose. We use Sequence Diagrams to represent the interactions)gsihdweh services
should communicate and in which order, and containing enough description to shotlvehow
individual services are responsible for moving and processingvad#taut having to specify the
detail of the data model or the decision making logic. Figure 2 shaesjuence diagram from
the FREMA “Take Assessment” example, and in particular theaictiens around theandidate
actor. Collaborations are modeled, although in this diagram thegramped together into one
column to aid clarity.

O Collaborations

-
/\

Top Package::Candidate

][] [smsamims] s]

Sign on | !
> Authenticate and authorise user

| Authenticate authorise Ok

Choose assessment R e T P e e
i

= i

I i
=] I
i i
e S HIHT .)7)/) process assessment items 1
o = | L Marks Repository
> close assessment
e i 1
'

Finish assessment

i
Assessment complete
|

i
i L

| Store Candidate Results

i

! L

|

i

i

i

| Track
1 .
| Log candidate complete
I N
T
|
i
! Marks Repository
Request feedback for assessment !

Get feedback for assessment for candidate
Feedback for selected assessment for candidate
View feedback

Figure 2: Sequence Diagram from the Take AssessdwmntCase

The SRCs and sequence diagrams are not intended to provide a compieietiaiesof
interacting services; they provide an overview model, and not anaicgéedescription or detailed
process model. Developers can use the SRCs to decide what retiieasiheir services will
take, and the sequence diagrams to see the consequences for interfacesdovmiher s

Figure 3: SRCs for Summative End-to-End CAA

3.4. Refactoring

The end of the SRI-DM process provides a set of SRC cardeandamal descriptions of the
conversations that occur between them. This is sufficient underggatadivegin to revise the
Services, splitting and conjoining as appropriate. Figure 3 shawartive set of SRC cards for
FREMA. They have been arranged into three broad categorieso(kgght: authoring, running

and marking) with a number of smaller supporting services below (nhtigk and tagging).

There is no single solution for a good design, and these services caoalddiered in a number
of different ways. SRI-DM gives the designer a good understanditig @omplexity of Service

interactions, and we would suggest that revising the design to ménidata and interaction
complexity leads to more realistic service designs.

4. Case Studies

In this section we look at two case studies that show how SRhB$/exposed unnecessary
complexity, and resulted in a simpler and more pragmatic service design.

4.1. Case Study 1: PeerPigeon

PeerPigeon was a six-month JISC (UK) funded project to produsteod services to support the
peer review process in higher education institutions. It was amestiteg application of SRI-DM

as it demonstrates how the method can identify data and conversatigsiexity between
services, ultimately resulting in simpler design.

Peer Review, sometimes called Peer Assessment or Peeatitval is an important technique
for educators where students produce feedback (or grades) for bacsi wtork. Peer Review
activities can be formative or summative, and vary greatly iir tt@mplexity. To create
PeerPigeon we needed to create a canonical model of Peer Review, whidrbyweximining a
number of existing Peer Review systems and then generalizingcéonaon set of building
blocks. The PeerPigeon Peer Review Pattern is basBPe@emReview Cycleghe visible stages
of peer review) andPeer Review Transform@he invisible rules that dictate how documents
move between peers within each stage). For example, in thetodye & course is run as a
academic conference, the students who take the course are both anthoeviewers of the
conference papers and also form the committee. The studentsessealsthrough these peer
assessment activities. Figure 4 shows how the peer revievs $taige typical conference paper
can be expressed as six different cycles with a single transformhin eac

Cycle Transform
Input Action / Participant Output

1. Author - Authors each write a Paper
2. Review Each Paper is transformed by a Reviewer into a Review
3. Decision Each Set of Reviews| is transformed by the Committee into one Decision
4. Decision Feedbacl] Each Decision is given to theappropriateAuthor -
5. Review Feedback | Each Set of Reviews| is transformed bgppropriateAuthor | into a Revised Paper
6. Final Paper Each Revised Paper | is given to the Committee -

Figure 4: Cycles and Transforms for a Typical AcaieConference Paper

We assumed that a general Peer Review system would ne&eé thisaPattern and instantiate it
into a Plan, a set of concrete transforms involving real partigpeaitth an appropriate schedule.
This context enabled us to create a generalized use case for peer sesi@wa in Figure 5.
Using SRI-DM we began the process of converting these uses daa® initial Service
Descriptions. Figure 6 shows the results of refactoring with[BR]-the method made it clear
where the design was overly complex and allowed us to simpjifcdmsolidating tightly
coupled services. The first refactoring seems very plausibth, tive core PeerPigeon System
represented by four services (Author, Populate, Validate and R@sgksent Plan). However it
quickly became clear that these services have to be tighilled in terms of data, in that they
need to agree on the format of the Peer Review Plan. The secactdniefy shows a much more
pragmatic view of the system, with a user interface accessing thEeerigeon engine that has
been exposed as a service, which itself uses separate loggirfathmt and packaging
services. .

Using SRI-DM exposed the granularity and tight data coupling in itisé factoring, and
together with its explicit requirement to refactor for simipfic resulted in a successful, efficient
design.

Figure 5: Generalized Use Case for Peer Reviewdbas¢he PeerPigeon Patterns

Fine Grained Service

First Refactoring

Second Refactoring

Author Assessment Plan

Assign Review Pattern

Create Review Pattern

Select Review Pattern

Author Assessment Plan

Populate Assessment Plan

Group

Assign Schedule

Assign Roles

Adjust Group

Adjust Schedule

Adjust Roles

Populate Assessment Plan

Validate Assessment Plan

Validate Assessment Plan

Run Assessment Plan

Distribute Resources

Run Assessment Plan

ReenPService

Log

Log

Log

Notify

Notify

Notify

Package Contents

Package Contents

Package Contents

Handle Exceptions

Allocate Mark

Tutor Interface

Submit artifact

Submit reviews

Student Interface

User Interface

Figure 6: Refactoring process in PeerPigeon

4.2. Case Study 2: ASDEL

ASDEL was an eighteen-month JISC (UK) funded project to constrsett of services to run
on-line assessments specified in the Question and Test In&ope(QTI) standard developed
by the IMS Consortium. QTI is a leading assessment standaragp€bdication describes a data
model for representing questions and tests and the reporting okrekelteby allowing the
exchange of data (item, test, and results) between tools (suathagrg tools, item banks, test
constructional tools, learning environments, and assessment delivienpsysThe ASDEL tool,
which delivers a QTI test, is callddlayr. Figure 7 presents the conceptual design diagram for
thePlayr. The external R2Q2 service allows a student to view a questiomemagjuestion, and
view the feedback. The R2Q2 engine is itself a loosely coupled eotthid comprising of three
interoperable services.

| Figure 7: Architecture for the Assessment DelivBygtem

The original design for the ASDEplayr tool called for a number of small loosely coupled
internal services communicating using SOAP. However, running losid tgith tens of
simultaneous users showed problems with quality of service. Usih@Rthe design was
refactored into a simpler, more practical set of servicegeBgveloping the services as internal
components we removed the performance problems, and the systend wetken simulations
with hundreds of simultaneous users. This supports the idea thatisteaial services can
suffer serious performance issues due to the overhead of the service interface.

Figure 8 illustrates the performance differences betvike original web service-based design
and the componentized design (where the web services had been resolwetisérvice). The
graph shows two sets of curv@diroughputis the number of requests the software is dealing
with per second, and initially increases as a function of the numheseds. It eventually peaks
and then decreases as the server resources become exhagisgmuiver runs out of available
processing power, memory, file handles, etc). @ier rate is the number of times the software
fails to produce the expected outcome (for example, fails to Ipadj@ due to resource limits).

The curves on the graph clearly show that the componentized versibe géyr (where the
small services had been consolidated into one large service) perfwuoh better than the fine
grained web service version. The reasons for this somewhat tdraimmgorovement are
numerous, but are mostly related to the reduction in memory andr€d@urce usage from not
having to continuously encode and decode SOAP XML messages.

Figure 8: Performance of the origir@ayr versus the improved design.

5. Conclusions

In this paper we have argued that there is a danger of overeernigmweb service architectures,
by creating designs with the wrong level of granularity. Highginular service designs may
seem to offer more benefits in terms of reusability, but in fieey be too tightly coupled in
terms of their data models and the complexity of the serviceagttens. In these cases it is not
worth paying the performance price of having many small sexyvared it makes more sense to
refactor them into larger more effective services that Heéediata and interaction complexity
internally. We propose that using the agile Service Responsibility and traarBesign Method
(SRI-DM) can help to prevent the problem of over-engineering and resuttrenpragmatic web
service designs, by helping to indentify and express compleritirel method the scenarios are
modeled as use-case diagrams, and the profiles as Service Responsilllaboration cards
(SRCs). SRCs capture the granularity of a service by defingngesponsibilities, and the
collaborations that it uses to fulfill those responsibilities. B#d-DM includes a process of
factoring abstract service profiles from formal domain sgéesarSRI-DM uses sequence
diagram to show how the SRCs interact to fulfill the originahseio. This sequence diagram an
example of one interaction that demonstrates the validity of the design.

We presented two case studies in which problems of tight couplireyadeiressed through the
use of SRI-DM: PeerPigeon, where the data and state modelogeterhplex to be effectively
shared across a loosely coupled interface; and ASDEL, where the perdermeerhead of many
small services was prohibitive and required a refactoring into moreieéféatger services.

The developers undertaking this case study are mixture ofiexped and people new to agile
techniques. We intend to carry out further study comparing the loebaof differently
composed teams. As SOAs become more reliable, and the standardyinoppdegm more
stable, it seems inevitable that they will form the basisnahy distributed systems. If these
systems are to be created as quickly and as flexibly asntwwéware deployments then we
must use design methodologies that are agile enough to cope with rapid turnaround,teeid tha
us to create pragmatic solutions that take advantage of thditbenfe SOA, but without
sacrificing the effectiveness of the overall system.

7. References

1. Baresi, L., Heckel, R., Théne, S., and Varr6(ZD03). Modeling and validation of service-orightachitectures:
application vs. style. In Proc. of the 9th Euro G&nf (Helsinki, Finland).

2.Beck, K. and Cunningham, W. (1989). A laboratéoy teaching object oriented thinking. ACM SIGPLAN,
Notices, 24(10):1-6, October 1989.

3.Benatallah B., Sheng Q., and Dumas M. (2003). 3&l&Serv environment for Web services compositl&iE
Internet Computing, 7(1):40-48, Jan/Feb. 2003.

4.Curbera, F.; Duftler, M.; Khalaf, R.; Nagy, W.ulkhi, N.; Weerawarana, S. (2002). "Unraveling theb/gervices
Web: an introduction to SOAP, WSDL, and UDDI," Imtet Computing, IEEE , vol.6, no.2, pp.86-93.

5.Dijkman, R. and Dumas, M. (2004). Service-oridni2esign: A Multi-viewpoint Approach. Inter. Joutnaf
Cooperative Information Systems 13(4), Decembe#200

6.Fielding, R. T. and Taylor, R. N. 2002. Principldesign of the modern Web architecture. ACM Trdnter.
Tech. 2, 2 (May. 2002), 115-150.

7.Foster, 1., Kesselman, C., and Tuecke, S. (200hg Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Int. J. High Perform. Comput. Add, 3 (Aug. 2001), 200-222.

8.Highsmith, J. and Cockburn, A. (2001). “Agile sadre development: the business of innovation”. Gotar, Sep
2001, Volume: 34, Issue: 9, pg 120-127, ISSN: 09162.

9.Martin J., Arsanjani A., Tarr P., and Hailpern(B003). "Web Services: Promises and Compromiggsgue vol.
1, pp. 48-58, 2003.

10.Mukhi N. K. and Plebani P. (2004). "Supportingligy-driven behaviors in Web services: experienees
issues" in proc. of the"2Inter. Conf. on Service Oriented Computing ICSO& '

11.0livier B., Roberts T., and Blinco K., (2005 He e-Framework for Education and Research: An et
DEST (Australia). Downloaded 10 March 2007 from tphtwww.e-
framework.org/Portals/9/Resources/eframeworkrV1.pdf

12.Quartel D.A.C., Dijkman R.M., and van SinderenJM2004). Methodological Support for Service-ptéa
Design with ISDL. In: Proc. of the 2nd ACM Interoff. on Service Oriented Computing (ICSOC), pp01-1
13.Wada, H., Suzuki, J., and Oba, K. (2005). Madglurnpike: a model-driven framework for domairesific
software development. In Companion to the 20th AhMCM SIGPLAN OOPSLA '05., New York, NY, 128-129.
14.Weatherley J. (2005). "A Web service framewook &€mbedding discovery services in distributed alilpr
interfaces," in proc. of the 5th ACM/IEEE-CS Jo@unf. on Digital Libraries JCDL '05, Denver, CO, AIS
15.Wilson, S., Blinco, K. and Rehak, D. (2004).\&=¥-Oriented Frameworks: Modeling the infrastruetéor the
next generation of e-Learning Systems. A Paperapegpon behalf of DEST (Australia), JISC-CETIS (J&nd
Industry Canada. Downloaded 10 March 2007 from
http://www.jisc.ac.uk/uploaded_documents/Altilab8eeOrientedFrameworks.pdf

16.Larman, C. (2004). Agile and Iterative Developié manager’s guide. Pearson Education.

17.JI1SC (2007) http://www.e-framework.org/

18. Abbas, N., Gravell, A. and Wills, G. (2008) tdiscal Roots of Agile Methods: Where did “Agile ifking”
Come from? In: Proc. Of XP2008 Conf. Limerick,|émd.

19. Highsmith J., Beck k., Cockburn A. and Jeffire2001). "Agile Manifesto." from www.agilemang®.org.

20. Wills, G., Bailey , C., Davis , H., Gilbert ,,lHoward , Y., Jeyes, S., Millard , D., Price,Sclater, N., Sherratt
R., Tulloch , I. and Young , R. (2008) An E-Leampifrramework for Assessment (FREMA). Assessment &
Evaluation in Higher Education, 33 (4)

21. Ambler, S (2002). Agile Modeling, Wiley Publisg

Dr. David Millard received a BSc in Computer Scierfcom the University of Southampton in
1997, and a PhD in Contextual Hypermedia Systeors the University of Southampton in 2001.
He is now a Senior Lecturer of Computer SciencéhatUniversity, is a member of the ACM
Special Interest Group on the Web, and has puldisiver 100 papers on hypertext, web and e-
learning.

Dr. Yvonne Howard received a BSc in Computer Saeftom the University of Southampton in
1997, and a PhD in Evolutionary Software Processléllimg from the University of Southampton
in 2004. She is a Senior Research Fellow in Comteence at the University. She is the Project
Manager for the Faroes project which has produted Ltanguage Box. Her research interests
include in the use of Agile Software Engineerinchtgiques, particularly in placing users at the hear
of the design process and using rapid feedbackutlnl lbhe capacity for innovation in the user
community. Yvonne has published over thirty pape3ke is a member of a UK JISC Special Expert
Group that aims to provide a repository of contakied models of the Higher Education domain to
support innovation in the sector.

Noura Abbas received a BSc in Software Engineefiom Al-Baath University in 2003 and an
MSc in Software Engineering from the UniversitySduthampton in 2006. She is now a final year
PhD Student at the University of Southampton waglon the impact of Agile methods on Software
quality and customer satisfaction.

Dr. Hugh Davis gained a BSc in Ship Science from thiversity of Southampton (1981), before
completing an MSc at City University (1987) and Pd5outhampton (1995) in Computer Science.
He has worked as a social worker and teacher befaréng an academic career at Southampton in
1987. He has a long history of research in Hypér®ystems and in Technology Enhanced
Learning, with over 200 published papers, 3 bepepawards, and 30 grants. He is currently the
University Director of Education responsible fole@rning at Southampton, and leads the Learning
Societies Lab. His current interests focus on tee af technology as an agent for educational
change. He is a member of the BCS and a profedsimraber of the ACM.

Lester Gilbert is a Lecturer in Information Techogy at the University of Southampton. He has
published a textbook, Principles of e-Learning 8ys Engineering, integrating his business-
oriented practical experience of systems developnwdth multimedia and Computer Aided
Instruction to form the basis of his focus on e4h@@y and the use of technology in learning and
teaching. Lester is the Principal Investigatortioe JISC-funded REAQ and EFSCE projects, and a
co-Investigator on a number of other projects idicig FREMA, EASIHE, mPLAT, MathsAssess,
and R2Q2.

Dr Gary Wills is a Senior Lecturer in Computer $ce at the University of Southampton. He
graduated from the University of Southampton with ldonours degree in electromechanical
engineering, and then a PhD in Industrial hypermexyjistems. He is a Chartered Engineer and a
member of the Institute of Engineering Technology a&a Fellow of the Higher Educational
Academy. He is also an visiting professor at tleCPeninsular University of Technology, SA.
Gary's main research interests are in Personainhafiion Environments (PIEs) and their application
to industry, medicine and education. PIE systems anderpinned by Service Oriented
Architectures, adaptive systems and advanced kaigpele technologies.

Bob Walters worked for almost fifteen years workimgcommercial banking, before leaving to
study Mathematics with Computer Science at Univeref Southampton. After completing his
degree he worked for several years as a softwarelajmer before returning to Southampton as a
research fellow in 1996. Since then he has comgleis PhD in 2003 and is currently employed as
a lecturer in the School of Electronics and Comp8tience of University of Southampton.

