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Abstract

We propose two fault tolerance techniques for hybrid CMOS/nano architecture implementing logic functions as

Look-Up Tables. We compare the efficiency of the proposed techniques with recently reported methods that use

single coding schemes in tolerating high fault rates in nanoscale fabrics. Both proposed techniques are based on error

correcting codes to tackle different fault rates. In the first technique,we implement a combined two dimensional coding

scheme using Hamming and BCH codes to address fault rates greater than 5%. In the second technique, Hamming

coding is complemented with Bad Line Exclusion technique to tolerate fault rates higher than the first proposed

technique (up to 20%). We have also estimated the improvement that can beachieved in the circuit reliability in

the presence of Don’t Care Conditions. The area, latency and energycosts of the proposed techniques were also

estimated in the CMOS domain.

I. I NTRODUCTION

Molecular electronics holds the promise to overcome the physical limitation of lithography-based VLSI technology

and offer the possibility of significantly denser circuits.However, tremendous growth in device density will be

accompanied by a substantial increase in hard [1], [2], [3] and soft [4], [5], [6] faults. To achieve acceptable levels

of manufacturing yield and computational reliability, fault tolerance must be integrated into the design flow of

nanoscale circuits.

Much work has already been done in the area of fault tolerance/avoidance for nanotechnology to increase circuit

reliability in the presence of increased hard and soft errorrates. One of the proposed techniques, Triple-Modular-

Redundancy (TMR), is based on the use of three copies of the same module and an arbitration unit [7], [8]. TMR

technique fails when there are faults in more than one module. The reliability of TMR is also limited by that of

the final arbitration unit making this approach insufficientin the presence of high defect rates [7]. Reconfiguration

is another technique that can circumvent physical defects by first mapping defects on reconfigurable fabrics then

synthesising a feasible configuration to realise an application for each nanofabric instance [9], [10], [11]. However,

defect mapping and reconfiguration is performed on a per chipbasis which poses a scalability challenge. The
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prohibitively low reliability of these new nanodevices dictates that they must be interfaced with CMOS circuits to

tolerate the inevitable high fault rates. This leads to a newparadigm of hybrid CMOS/Nano architecture [12], [13],

[14], [15] to perform reliable computing using unreliable components (nanodevices). In this architecture, nanoscale

devices offer a highly dense fabric for data storage and computation, whereas CMOS components are utilised for

interfacing and for highly critical circuit operations. Both CMOS circuits and high fault rates will reduce the net

density delivered by these nanodevices.

Recently, Error Correcting Codes (ECC) have been proposed as a promising approach to improve the reliability

and yield of heterogeneous CMOS/nanodevices systems. In [12], [6], ECCs were mainly used for the suppression of

soft errors rather than physical defects i.e. maintaining the fault tolerance level rather than enhancing defect tolerance.

In [12], authors suggested a hybrid fault tolerance technique based on Hamming code and reconfiguration. In [6],

the authors proposed an implementation of ECCs based on the theory of Markov random fields (MRF) to combat

soft faults thus increasing the reliability of hybrid systems. In [13], two nanoelectronic memory fault-tolerant system

design approaches based on Bose-Chaudhuri-Hocquenghem (BCH) codes were suggested. Previously, single error

correcting codes such as Hamming and BCH have been used in thecontext of reliable memory designs [12], [16].

In [16], the authors explored combining error correction codes with various repair techniques to combat the high

defect rates in hybrid CMOS/Nano fabrics with particular focus on memory architectures. The previous works have

only addressed fault tolerance in memory architectures. ECC-based techniques can also be applied to memory-based

implementation of logic circuits (i.e. Look-up Tables) which includes Don’t Care Conditions (DCCs). The presence

of DCCs in Boolean logic functions presents a strong case to apply these techniques to circuits implemented as

Look-Up Tables (LUTs) on CMOS/nanodevice fabrics. As we will demonstrate in this work, the existence of DCCs

can be exploited in this type of architecture since it helps in masking of erroneous bits which is not possible in

memory design.

Fig. 1 gives an overview of the targeted hybrid CMOS/nano architecture. The proposed architecture is technology-

independent i.e. the nanoscale fabric is built using any of the recently proposed nanodevices including carbon nan-

otubes (CNT) or silicon nano-wires (NW). The techniques proposed in this work target CMOS/nano computational

architecture incorporating a LUT implementation of logic functions, as outlined in [17]. LUT implementation is an

effective functional-coding approach that provides low-level protection of individual Boolean functions [18], [19].

In our experiments, the LUTs under test are represented by randomly generated symmetric matrices of sizes ranging

from 23×3 to 26×6 where the probability of 0 and 1 are equal. The errors are injected randomly in the nanofabric

causing the corresponding bits to change their values (i.e.1→ 0 or 0→ 1). We have assumed random distribution

of errors to simulate the worst case scenario as correlated errors are technology specific. The proposed fault tolerant

techniques are based on ECC and partial redundancy to address the permanent and transient faults in nanoscale

LUTs. In the first technique, we implement a two dimensional coding scheme using Hamming and BCH codes to

address both hard and soft errors in the presence of high fault rates. In the second technique, we target the high

physical defect rates in the nanofabric by integrating ECCswith bad line exclusion technique. In this technique,

the high bit density offered by nanodevices is exploited to provide the necessary spare rows to compensate for
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Fig. 1. Hybrid Nano/CMOS Architecture Overview

the defective lines. While the exact manufacturing defect rate and transient error rate are not yet pinpointed, it

is believed that they will easily exceed 10% [2]. The authorsin [17] assume small fault rates (less than 10%) in

nanofabrics for small LUT sizes with 50% of LUT entries set asDon’t Care Conditions (DCC). We first investigate

the effectiveness of our proposed techniques over the methods [17], [12] in high defect rate scenario.

II. PRIMITIVES

We first examine the ineffectiveness of using single ECCs such as Hamming and BCH in the presence of high

error rates for different LUT sizes.

A. Hamming

Hamming is a single-error-correcting and double-error-detecting code i.e. the code is capable of correcting one

error and detecting two errors in a codeword. A typical Hamming code is (2m−1, 2m−m−1), in other words, for

2m−m−1 data bits,m parity bits need to be added for full protection.

To demonstrate the reliability improvement that can be achieved from the techniques discussed in this work, we

have performed experiments on randomly-generated symmetric LUTs where the probability of 0 and 1 are equal.

The LUTs are of sizes ranging from 23×3 (3 inputs, 3 outputs) to 26×6 (6 inputs, 6 outputs). The circuit failure

probability Fm, resulting from randomly injectingm errors, is obtained by calculating the ratio of defective LUTs

after decoding to the total number simulation iterationsI = 5000. In this work, we assume that a nanodevice is

subject to both stuck-open and stuck-short defects with equal probabilities. We also assume that errors are uniformly

distributed across the fabric where both physical and transient errors are random and statistically independent. For

comparison purposes, we use the simple Hamming code [17] as areference point for the evaluation of our proposed

techniques.

Theoretically, the probability of a row of lengthl having m defective bits is given by the following binomial

equation:

P(m) =

(

l
m

)

Pm(1−P)l−m (1)
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Fig. 2. Hamming - Failure rate obtained through simulation and theory
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Fig. 3. Hamming - Effect of varying LUT size on failure rate

whereP is the error rate of the fabric. The probability that the Hamming decoder fails to correctly decode an

erroneous codeword is equal to the probability of having more than one error per row. Using equation (1), this is

given by the following equation:

Prow =
r+rpar

∑
k=2

(

r + rpar

k

)

Pk(1−P)r+rpar−k (2)

where r and rpar are the number of bits and number of parity bits in a row respectively. The failure rate of a

LUT with c columns is equal to the probability that at least one row is defective and it can be computed as:

Pf ailure =
c

∑
k=1

(

c
k

)

Pk
row(1−Prow)c−k (3)

In the case of 24×4 LUT, equations (2) and (3) can be rewritten as:

Prow =
4+3

∑
k=2

(

4+3
k

)

Pk(1−P)4+3−k

Pf ailure =
16

∑
k=1

(

16
k

)

Pk
row(1−Prow)16−k

Fig. 2 illustrates the failure rate obtained both theoretically (using equations 2 and 3) and through the above

simulation procedure. As can be seen, the two graphs are almost identical, validating the derived theoretical

equations.

Fig. 3 shows the variation of failure rate with respect to several percentages of injected error rates for different

LUT sizes. For defect rates as small as 1%, the Hamming code perfectly detects and corrects all faults for LUTs

of sizes smaller or equal to 24×4 as reported in [17]. However, it can be seen that even for a small LUT size of
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Fig. 4. BCH - Padding

23×3, and error rate greater than 5%, more than 10% of circuits fail. We can also observe that as the LUT size

increases, the fault tolerance of the circuit falls more rapidly indicating the inefficiency of this scheme.

B. Bose-Chaudhuri-Hocquenghem (BCH)

In this section, we examine fault tolerant approach using stronger BCH coding and evaluate its efficiency in

dealing with the high defect probabilities in nanoscale LUTs. BCH is a multilevel, variable length and easy to

decode ECC used to correct multiple random errors in a codeword. The simplest form of BCH codes is the single

error-correcting BCH(7,4,1) which is equivalent to Hamming code. We first examine BCH [13] with 0% Don’t Care

Conditions using BCH(15,7,2), which adds 8 parity bits in order to detect and correct 2 errors in the codeword.

The required word length is 7 bits; however the size of each entry in our LUT is only 4-bits in the case of 24×4

LUT. Therefore, we need to pad the data bits with the necessary bits so that it is equal to the required data word

size, as shown in Fig. 4.

The graph shown in Fig. 5 represents the failure rate achieved using the 2-bit error-correction BCH and in the

absence of DCCs. The fault tolerance obtained from the simulation results revealed a performance very similar to

Hamming. The reason behind this is that even though the BCH(15,7,2) code can tolerate more errors than single

error correction techniques, there is a higher probabilityof errors per codeword in LUTs. The padded bits and the

redundant bits added to the data word doubles the probability of faults in each entry of the LUT. The codeword is

15-bit long for the 2-bit error-correction BCH which is twice longer than the 7-bit long codeword for the single

error correcting Hamming code. Hence, strong ECCs have the capability of tolerating more errors at the cost of

more parity bits added to the codeword, which in turn makes them more vulnerable to higher fault rates; and hence

a rapid drop in their efficiency as the fault rate increases inthe LUTs.

Instead of coding row entries in LUTs, we use stronger ECCs such as BCH codes to encode columns. BCH(31,16,3)

for example can detect and correct 3 errors per column, but atthe cost of adding 15 parity bits. The results obtained

from simulations are shown in Fig. 5. For low error rates, BCHexhibits a better performance than Hamming. At

5% of errors, we can notice a 70% improvement in failure rate over Hamming. However, when errors exceed 10%,

this coding technique completely fails.

III. PROPOSEDFAULT TOLERANCE TECHNIQUES

In this section, we present two different hybrid fault tolerant techniques to address the high fault rates in nano-

LUTs. As we have seen earlier, single error correction schemes prove to be inefficient in dealing with such high

error rates. The first proposed approach combines Hamming and BCH to target higher error rates (greater than 5%),

while the second technique combines Hamming with Bad Line Exclusion to address error rates as high as 20%.

August 27, 2009 DRAFT



6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ai

lu
re

ra
te

0.0 0.05 0.1 0.15 0.2

Error rate

Row Coding: Hamming(7,4,1)
Padding: BCH(15,7,2)
Column Coding: BCH(31,16,3)

2
4

4 LUT

Fig. 5. Failure rate comparison between different 1-D codingtechniques

A. Combined Two-Dimensional Coding : Technique 1

To reduce the failure rate for fault rates exceeding 5%, we implemented a two-dimensional coding technique

based on Hamming and BCH codes (also known asproduct code[20] [21]). The idea is to encode both rows and

columns in LUTs as shown in Fig.6(a). In [21], the authors proposed a Hamming-based two-dimensional coding

scheme to tolerate the occurance of random and burst errors in on-chip interconnects. The single error correction

Hamming code is used for both row and column encoding. In our proposed technique Hamming code is used to

encode data bits in each row of the LUT, and then a stronger BCHcode is used to encode each column. The

choice of BCH for column encoding is due to its ability to tolerate more errors in a codeword and given the size

of columns which is 2N, this choice seems appropriate. Retrieving data from the encoded LUT comprises of two

decoding steps. In the first step, columns are first decoded using the BCH decoder. This step will allow the detection

and correction of the biggest portion of errors because of the capability of the BCH decoder to correct more errors

in the codeword than the Hamming decoder. Then, in the seconddecoding step, the Hamming decoder is used to

remove the remaining faults.

We can further improve the fault tolerance of this techniqueby using systematic BCH code along withcheck bits

as illustrated in Fig.6(b). In systematic block codes, databits remain unchanged in the codeword, and the parity bits

are attached to the end of the data bit sequence. We exploit the fact that the number of 1’s in any wrong decoded

word will most probably be different from the number of 1’s inthe expected correct word. Therefore, we use check

bits to store the number of 1’s of each column after all row entries of LUT are encoded using Hamming. If the

number of faults per column exceeds the error correcting capability limit of Systematic BCH, the BCH decoder

will generate the wrong output and hence cause the entire technique to fail. Therefore, to avoid failure, the check

bits are always compared with the number of 1’s of the output of BCH decoder, if they are not equal, the codeword
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Fig. 6. 2D Coding for 24×4 LUT (a) Hamming & BCH (b) Hamming & Systematic BCH with check bits.In the row encoding, Hamming(7,4,1)

is used to detect and correct one error per row by adding threeparity bits. BCH(31,16,3) is used to encode columns can detect and correct

three errors per column at a cost of adding 15 parity bits.

Fig. 7. Flow chart to illustrate the multiple-step decoding process of the proposed 2D coding technique

remains unchanged and all the faults in the first 16 bits of thecorresponding column are left to the second iteration

of decoding to be corrected using the Hamming decoder. The flow chart in Fig. 7 illustrates the decoding process

to retrieve rowM from a LUT of size 2N ×N.

Assuming the same error probabilityP for each bit, the probability of havingm defective bits in a column of

length (c+ cpar) follows the binomial distribution given in equation (1). Therefore, the probability that the BCH

decoder fails to correct a column because the number of faults exceeds its correction capabilitybch err is given

by:

August 27, 2009 DRAFT
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Fig. 8. 2D Coding - Failure rate obtained through simulation and theory
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Pcol =
c+cpar

∑
k=bch err+1

(

c+cpar

k

)

Pk(1−P)c+cpar−k (4)

wherec andcpar are the number of bits and number of parity bits in a column respectively.

The BCH correction of columns reduces the probability of a bit being erroneous by a factor ofPcol. Therefore,

the remaining faults which are randomly distributed over the rows will have a new error probabilityPnew that is

given by the following equation:

Pnew= P×Pcol (5)

Using this new error rate, the failure rate for each row afterHamming decoding is obtained using equation (2),

as follows:

Prow =
r+rpar

∑
k=2

(

r + rpar

k

)

Pk
new(1−Pnew)

r+rpar−k (6)

Hence, the final failure probability of our combined 2D coding technique is computed as:

Pf ailure = 1− (1−Prow)r (7)

For the example used in Fig. 6, equations (4), (6) and (7) reduce to:

Pcol =
16+15

∑
k=3+1

(

16+15
k

)

Pk(1−P)16+15−k

Prow =
4+3

∑
k=2

(

4+3
k

)

Pk
new(1−Pnew)

4+3−k
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Pf ailure = 1− (1−Prow)16

Fig. 8 shows the failure rate obtained both theoretically (Pf ailure) and through simulation in the case of 24×4

LUT. As we can see, there is an excellent correlation betweenexperimental and theoretical results.

The plots for simulation results of the circuit failure ratefor Hamming (7,4,1), BCH (31,16,3) and 2D coding

techniques are shown in Fig. 9. It can be seen that for error rates smaller than 15% 2D coding technique (without

check bits) exhibits better tolerance than both Hamming andBCH. For example, when the percentage of injected

faults is 5%, 2D coding perfectly detects and corrects all injected faults, whereas Hamming code achieves a failure

rate of approximately 45%. However, as the fault rate increases beyond 15%, this technique completely fails. This

improvement in reliability is achieved at the cost of a higher number of parity bits which will result in additional

area and energy overhead.

Fig. 9 also illustrates the enhancement achieved in fault tolerance by incorporating the check bits into the

technique. 2D coding with check bits achieves significantlylower failure rates for error rates greater than 5% and

upto 10% as compared to basic 2D coding technique resulting in an improvement of 37% in fault tolerance. As can

be seen, using check bits will improve the fault-tolerance of our combined 2D coding technique. However, the need

to store the number of 1’s in a highly-reliable memory (i.e. store at most approximately[log2(numrows)×numcolumns]

bits in a CMOS memory) will incur an extra area and delay overhead that need to be evaluated based on practical

IC designs as explained in Section IV.

Next we examine the effect of varying LUT size on circuit reliability. As can be seen in Fig. 10, the failure rate

increases rapidly for bigger LUTs. For a fault density of 10%, the failure probability to successfully instantiate a

LUT on the defective nanofabric increases from 5% in the caseof 23×3 LUT to complete failure for 26×6 LUT.

Comparing the results of Fig. 10 with Fig. 3, we can observe that combined 2D coding technique outperforms

single dimensional coding in terms of fault tolerance despite its insufficiency in coping with fault rates higher than

10% and bigger LUT sizes. In the case of 26×6 LUT, we can observe a nearly 0% failure rate at 5% error rate,

whereas Hamming completely fails.

Boolean functions are defined by their On-set, OFF-set and their DCC-set [17]. If an entry in a LUT is a

DCC, the output can be either 0 or 1. We examine the impact of DCCs on our 2D coding technique. In order to

theoretically calculate the circuit failure rate given thepercentage of DCCs in the LUT, we first need to calculate

the failure probability of the BCH decoder and the new error rate after decoding which are given by equations (4)

and (5). After column decoding, the probability that the Hamming decoder fails to correctly detect and correct all

errors does not only depend on the number of faults per each row, but also on the number of erroneous bits in

the output of the decoder. Therefore, the probability that agiven number of bits are erroneous in the output of the

decoder, denoted asP(n)bit , assuming a number of errors in the codeword has to be estimated wheren is smaller or

equal to the number of bits of the decoded word. For a 24×4 LUT, the values ofP(n)bit are shown in table I.

The failure rate of correctly decoding a row using the Hamming decoder is obtained using the following equation:

August 27, 2009 DRAFT
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Fig. 10. 2D Coding - Effect of varying LUT size on failure rate
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Fig. 11. 2D Coding - Failure rate obtained through theory and

simulation in the presence of 50% DCCs

P(n)bit
number of errors in a codeword

2 3 4 5 6 7

P1bit 0.4306 0.1952 0.3639 0.1415 0 0

P2bit 0.4287 0.4274 0.4335 0.4271 0 0

P3bit 0.1407 0.3774 0.2026 0.4314 0 0

P4bit 0 0 0 0 1 1

TABLE I

HAMMING DECODER: DISTRIBUTION OF ERRONEOUS BITS IN THE OUTPUT WORD- 24×4 LUT

P′
row =

r+rpar

∑
k=2

[

(

r + rpar

k

)

Pk
new(1−Pnew)

r+rpar−k×
r

∑
n=1

[

P(n)bit

n

∑
m=1

(

n
m

)

(1−PDCC)mPn−m
DCC

]

]

(8)

The total failure probability is computed as:

Pf ailure = 1− (1−P′
row)r (9)

Fig. 11 presents the failure rate obtained theoretically, based on the previously outlined equations, and using the

simulation procedure in the presence of 50% DCCs. The two graphs perfectly match each other which validates

our theoretical predictions.

Fig. 12 shows the results obtained before and after injecting 50% of Don’t Cares in 24×4 LUTs. As can be

observed, the optimum improvement is recorded at 10% error rate where the failure rate is reduced from nearly

50% to 37%.
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B. Hamming with Bad Line Exclusion : Technique 2

ECCs are usually preserved for the suppression of transientfaults to enhance computational reliability. However,

the high defect densities in future nano-circuits [2] dictates involving coding techniques at the initial repair of hard

errors to minimize the required amount of redundant resources. As can be seen from Fig. 9, ECCs alone are not

able to address the issue of high defect rates induced duringmanufacturing. Hence it is imperative to use ECCs in

conjunction with other techniques in order to detect and correct larger portions of physical defects (up to 20%).

To deal with higher defect rates, we have combined Hamming code with Bad Line Exclusion technique. This

technique requires allocating enough redundant rows for each LUT to be repaired. The use of redundant wires to

tolerate physical defects was presented in [16] and [22]. Aswill be shown, the amount of spare rows depends on

two main factors: the defect rate of the fabric and the size ofthe LUT. Repair consists of two phases: a must-

repair phase and a final-repair phase. In the must-repair phase, line exclusion is applied only in one dimension

where the defective rows are excluded and replaced with spare rows if the number of defects per row exceeds

the correction capability of Hamming. Therefore, defect counters for the faulty rows are required during the initial

testing process of the nanofabric. It is worth mentioning that the configuration process is performed only once during

the manufacturing phase (i.e.off-line configuration) and hence the area of the configuration logic is not added to

the CMOS area overhead of this technique. In the final-repairphase, the Hamming decoder detects and corrects

the remaining defects as shown in Fig. 13. During the initialanalysis of the fabric, the bad rows are detected and

their physical address is used to create a special table to map the continuous logical address to the actual physical

location of defect-free rows. Such a mapping table has to be stored in a highly-reliable memory implemented in

CMOS. The physical implementation of this logical-to-physical mapping table is beyond the scope of this work

and is not included in the area overhead estimation of this technique in the next section.
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To obtain the probability of failure, we first calculate the probability Prow of a row of lengthl being excluded.

Prow is equal to the probability of having more than one bad bit in that row given by:

Prow =
l

∑
k=2

(

l
k

)

Pk(1−P)l−k (10)

wherel is the number of bits in a row including the parity bits andP is defect probability of each bit. Therefore,

the probability of failure to instantiate a LUT on the fabricgiven the original number of rowsr and upper limit of

spare rowsrsp can be computed as:

Pf ailure =
r+rsp

∑
k=rsp+1

(

r + rsp

k

)

Pk
row(1−Prow)r+rsp−k (11)

In the case of 24×4 LUT and 25% spare rows, equations (8) and (9) can be rewritten as:

Prow =
7

∑
k=2

(

7
k

)

Pk(1−P)7−k

Pf ailure =
16+4

∑
k=4+1

(

16+4
k

)

Pk
row(1−Prow)16+4−k

Fig. 14 shows the failure rates for a 24×4 LUT for different error rates in the presence of various amounts of

spare rows. As can be seen, this technique is capable of tolerating an unprecedented percentage of defects when

compared to the Hamming alone and combined 2D coding technique shown in Fig 9. This is demonstrated by a

failure rate of nearly 0% for up to 20% of injected faults intorandomly generated 24×4 LUT.

To further our analysis, we examine the effect of variation in number of spare rows on the failure rate for different

LUT sizes. Fig. 15 demonstrates that as the error rate increases, more spares are needed to keep the level of fault

tolerance close to 0%. In the case of 24×4 LUT for instance, only 25% of spare rows are needed i.e. 4 more rows,

to completely tolerate up to 10% of faults rates. And as more errors are injected into the LUT, more spares should

be allocated and hence decreasing the useful bit density of the fabric. It can also be observed that as the LUT size

increases, the percentage of spares also increases to achieve low failure rates. For example, 26×6 LUT requires

twice its original size to tolerate 20% defect rate. However, we can minimize such high redundancy by adopting a

more powerful ECC such as BCH instead of Hamming.

While the authors in [17] assumed 50% don’t care conditions (DCC), our results have shown remarkable

improvement in fault tolerance even with zero percent DCCs in the LUT implementation. However, it can be

seen from Fig. 16 that the fault tolerance of this technique is significantly improved when we assume some of the

entries in the implementation as DCCs as compared to our results in Fig. 14.

The existence of DCCs (PDCC) in LUTs significantly reduce the bit failure rate as outlined in the following

equation:

P′ = P× (1−PDCC) (12)
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The new probability of a row being excluded after injecting Don’t Cares is obtained by replacing the fault rate

P with the new fault rateP′ in equation (8) as follows:

P′
row =

l

∑
k=2

(

l
k

)

P′k(1−P′)l−k (13)
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Fig. 17 illustrates the failure rate obtained both theoretically using equations 11 and 13 and through simulations.

As can be observed, there an identical match between the two graphs indicating the correctness of our derived

mathematical equations.

IV. I MPLEMENTATION

The realisation of fault tolerance in nano/CMOS nanoelectronic architecture will incur area, energy and operational

latency overhead in CMOS domain [15]. Such overhead must be taken into account when investigating and evaluating

hybrid CMOS/nanodevice fault tolerant architectures. Thehigh reliability decoders are implemented in CMOS and

therefore incur an increase in the area and energy consumption compared to the denser and low energy nano-LUTs.

Additional clock cycles are also lost in decoding and correcting codewords which cause latency overhead.

In order to obtain an estimate of the area, latency and energyoverheads per codeword, the corresponding decoders

were designed in VHDL and thoroughly tested through simulation using the appropriate test benches. Both Hamming

and BCH decoders are serial i.e. they receive 1-bit input andgenerate a 1-bit output per clock cycle, therefore, the

decoding latency is proportional to the codeword length. Using the 0.12µm CMOS standard cell library, the area

overhead of the Hamming decoder is 906µm2 and decoding one 7-bit long codeword requires 13 clock cycles and an

energy overhead of approximately 9pJ/MHz. The BCH decoder incurs higher overhead due to its high complexity:

an area overhead of 9132µm2, a latency of 69 clock cycles and an energy overhead of 286pJ/MHz. However, this

need to be further studied in the context of optimum design strategy where we negotiate the advantage of higher

density and low power dissipation against increased delay overhead.

The CMOS components as well as the redundant parity bits and spare rows in our techniques will reduce the

useful bit density offered by nanodevices. Therefore, another design parameter calledarea per useful bitratio is

used to compare the efficiency of the various techniques. Area per useful bit(a) reflects the area necessary to

achieve certain useful bit capacity and is obtained by dividing the total area of the fabric by the number of useful

bits in the LUT.

The total area of the fabric comprises of the area of nanodevices and that of CMOS subsystems. We adopt a

model presented in [14] to estimate the area of nanoscale memory. Each bank in the memory is composed of a set

of crossed nanoscale wires supported by a set of interface microscale wires. For a nano-circuit of 2n inputs andm

outputs, the area can be estimated as shown in [17]:

A =
(

Wlith(n+ log2m)+Wnano2
n).

(

Wlithn+mWnano2
n) (14)

The main parameters in the model are the number of rows 2n and columnsm. The area of the nano-memory is

dominated by the address lines which are microwires.Wlith = 105nm is the wire pitch of the lithographic address

wires andWnano= 10nm is the pitch for the nanoscale wires. For instance, in the case of a 24×4 LUT, the area of

the nano-LUT before encoding is 0.84µm2.

Table II compares the area overhead of the proposed technique with the earlier approaches. While we have

seen that Hamming in combination with bad line exclusion achieves much better failure rates as compared to error
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Technique Total Area

(µm2)

Area/Useful

bit (µm2/bit)

Hamming alone [17] 907 14

BCH alone [13] 9133 142

Hamming & Bad Line Excl.

(proposed)

908 14

TABLE II

AREA/USEFUL BIT OF THE PROPOSED TECHNIQUES

correcting schemes such as Hamming or BCH, this improvementin failure rate is achieved with little or no increase

in area overhead when compared with the simplest correctiontechnique proposed in [17]. It should be noted that

BCH has the highest area overhead due to the complexity of itsdecoding circuitry. Table II also shows the area

per useful bit ratio for a 24×4 LUT implemented using the three techniques.

While significant area improvement can be achieved over current CMOS for high density fabrics using hybrid

nano/CMOS architecture [13], it can be shown that further improvement in terms of useful bit density can be

achieved by sharing the decoders by multiple LUTs using timemultiplexing strategy as outlined in [17]. Another

way to minimise the CMOS area overhead is to synthesise logical circuits into smaller LUTs because the size of the

decoder increases proportionally with the size of the LUT. Moreover, as shown in the experimental results (Fig. 10

and Fig. 15), using smaller LUTs allows achieving higher levels of fault tolerance at the cost of low area overhead.

V. CONCLUSION

In this paper we investigated a promising look-up table based implementation of Boolean logic functions in

heterogeneous CMOS/nanodevice architectures. Our studies showed that single error correcting codes such as

Hamming or BCH prove their insufficiency in tolerating high error rates. We presented two hybrid fault-tolerance

techniques that address faults caused due to physical defects and transient faults. In the first technique, we encoded

both rows and columns of LUTs (using Hamming and BCH codes respectively) to target higher number of faults.

This technique significantly improves the fault tolerance with respect to single error correction schemes for error

rates greater than 5%. In the second technique, we complemented Hamming with bad line exclusion. This technique

results in remarkable improvement of failure rate against asubstantial fraction of bad nanodevices (up to 20%).

This is achieved at the cost of minimal increase in area overhead compared with Hamming, yet with much higher

efficiency in tolerating errors. Based on our studies this technique is very effective for LUT-based Boolean logic

architectures. We have also shown that the presence of don’tcare conditions in LUTs can significantly improve

circuit failure rates when we combine coding with bad line exclusion. Finally, we investigated the impact of these

techniques in terms of area, latency and energy overheads and showed that improved fault tolerance can be achieved

using the proposed techniques with little overheads compared to previous coding techniques.
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