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Abstract

We propose two fault tolerance techniques for hybrid CMOS/nano actiiiteimplementing logic functions as
Look-Up Tables. We compare the efficiency of the proposed techsiguth recently reported methods that use
single coding schemes in tolerating high fault rates in nanoscale fabitis.fBoposed techniques are based on error
correcting codes to tackle different fault rates. In the first technigpegmplement a combined two dimensional coding
scheme using Hamming and BCH codes to address fault rates greateg%hdn the second technique, Hamming
coding is complemented with Bad Line Exclusion technique to tolerate fauls tdtgher than the first proposed
technique (up to 20%). We have also estimated the improvement that cachieved in the circuit reliability in
the presence of Don't Care Conditions. The area, latency and eweryy of the proposed techniques were also
estimated in the CMOS domain.

I. INTRODUCTION

Molecular electronics holds the promise to overcome thesjglaylimitation of lithography-based VLSI technology
and offer the possibility of significantly denser circuitdowever, tremendous growth in device density will be
accompanied by a substantial increase in hard [1], [2], @] soft [4], [5], [6] faults. To achieve acceptable levels
of manufacturing yield and computational reliability, fatolerance must be integrated into the design flow of
nanoscale circuits.

Much work has already been done in the area of fault tolefamoilance for nanotechnology to increase circuit
reliability in the presence of increased hard and soft erates. One of the proposed techniques, Triple-Modular-
Redundancy (TMR), is based on the use of three copies of the saodule and an arbitration unit [7], [8]. TMR
technique fails when there are faults in more than one moduie reliability of TMR is also limited by that of
the final arbitration unit making this approach insufficiemthe presence of high defect rates [7]. Reconfiguration
is another technique that can circumvent physical defegtiret mapping defects on reconfigurable fabrics then
synthesising a feasible configuration to realise an appdicdor each nanofabric instance [9], [10], [11]. However,

defect mapping and reconfiguration is performed on a per bagis which poses a scalability challenge. The



prohibitively low reliability of these new nanodevices ®@ites that they must be interfaced with CMOS circuits to
tolerate the inevitable high fault rates. This leads to a pavadigm of hybrid CMOS/Nano architecture [12], [13],
[14], [15] to perform reliable computing using unreliablengponents (nanodevices). In this architecture, nanoscale
devices offer a highly dense fabric for data storage and ctatipn, whereas CMOS components are utilised for
interfacing and for highly critical circuit operations. B0CMOS circuits and high fault rates will reduce the net
density delivered by these nanodevices.

Recently, Error Correcting Codes (ECC) have been proposedmomising approach to improve the reliability
and yield of heterogeneous CMOS/nanodevices systems2]n[f], ECCs were mainly used for the suppression of
soft errors rather than physical defects i.e. maintainiregfault tolerance level rather than enhancing defectdalss.

In [12], authors suggested a hybrid fault tolerance teamnipased on Hamming code and reconfiguration. In [6],
the authors proposed an implementation of ECCs based oméloeytof Markov random fields (MRF) to combat
soft faults thus increasing the reliability of hybrid syst In [13], two nanoelectronic memory fault-tolerant syst
design approaches based on Bose-Chaudhuri-Hocquengh@hh) @des were suggested. Previously, single error
correcting codes such as Hamming and BCH have been used aomitext of reliable memory designs [12], [16].
In [16], the authors explored combining error correctionle® with various repair techniques to combat the high
defect rates in hybrid CMOS/Nano fabrics with particulacds on memory architectures. The previous works have
only addressed fault tolerance in memory architectures48@sed techniques can also be applied to memory-based
implementation of logic circuits (i.e. Look-up Tables) whiincludes Don’t Care Conditions (DCCs). The presence
of DCCs in Boolean logic functions presents a strong casepplyahese techniques to circuits implemented as
Look-Up Tables (LUTs) on CMOS/nanodevice fabrics. As wd d@dmonstrate in this work, the existence of DCCs
can be exploited in this type of architecture since it helpsniasking of erroneous bits which is not possible in
memory design.

Fig. 1 gives an overview of the targeted hybrid CMOS/nanditecture. The proposed architecture is technology-
independent i.e. the nanoscale fabric is built using anyhefrecently proposed nanodevices including carbon nan-
otubes (CNT) or silicon nano-wires (NW). The techniques peagl in this work target CMOS/nano computational
architecture incorporating a LUT implementation of logimé€tions, as outlined in [17]. LUT implementation is an
effective functional-coding approach that provides l@wel protection of individual Boolean functions [18], [19]

In our experiments, the LUTs under test are representedrmoraly generated symmetric matrices of sizes ranging
from 28 x 3 to £ x 6 where the probability of 0 and 1 are equal. The errors asziafl randomly in the nanofabric
causing the corresponding bits to change their values(i-e.0 or 0— 1). We have assumed random distribution
of errors to simulate the worst case scenario as correlatetsare technology specific. The proposed fault tolerant
techniques are based on ECC and partial redundancy to adidegpermanent and transient faults in nanoscale
LUTs. In the first technique, we implement a two dimensioralicg scheme using Hamming and BCH codes to
address both hard and soft errors in the presence of highraels. In the second technique, we target the high
physical defect rates in the nanofabric by integrating E@@k bad line exclusion technique. In this technique,

the high bit density offered by nanodevices is exploited tovige the necessary spare rows to compensate for
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Fig. 1. Hybrid Nano/CMOS Architecture Overview

the defective lines. While the exact manufacturing defetg end transient error rate are not yet pinpointed, it
is believed that they will easily exceed 10% [2]. The authiar§l7] assume small fault rates (less than 10%) in
nanofabrics for small LUT sizes with 50% of LUT entries seDam’'t Care Conditions (DCC). We first investigate

the effectiveness of our proposed techniques over the metid], [12] in high defect rate scenario.

Il. PRIMITIVES

We first examine the ineffectiveness of using single ECCé sasscHamming and BCH in the presence of high

error rates for different LUT sizes.

A. Hamming

Hamming is a single-error-correcting and double-errdedéng code i.e. the code is capable of correcting one
error and detecting two errors in a codeword. A typical Hamgrgode is (2'— 1, 2" —m-—1), in other words, for
2™ —m- 1 data bitsm parity bits need to be added for full protection.

To demonstrate the reliability improvement that can beeaad from the techniques discussed in this work, we
have performed experiments on randomly-generated syrnunetiTs where the probability of 0 and 1 are equal.
The LUTSs are of sizes ranging fron? 2 3 (3 inputs, 3 outputs) to®2 6 (6 inputs, 6 outputs). The circuit failure
probability Ry, resulting from randomly injectingn errors, is obtained by calculating the ratio of defectiveTisU
after decoding to the total number simulation iteratidns 5000. In this work, we assume that a nanodevice is
subject to both stuck-open and stuck-short defects witlalggrababilities. We also assume that errors are uniformly
distributed across the fabric where both physical and teabh®rrors are random and statistically independent. For
comparison purposes, we use the simple Hamming code [17tefer@nce point for the evaluation of our proposed
techniques.

Theoretically, the probability of a row of lengthhaving m defective bits is given by the following binomial

equation:

Pm) = () Pra-P) " @
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Fig. 2. Hamming - Failure rate obtained through simulation ety Fig. 3. Hamming - Effect of varying LUT size on failure rate

whereP is the error rate of the fabric. The probability that the Hamgnmdecoder fails to correctly decode an
erroneous codeword is equal to the probability of havingarban one error per row. Using equation (1), this is

given by the following equation:

r+Ipar I+ rpar
Prow = 22 ( k
k=

wherer andrpsr are the number of bits and number of parity bits in a row rethpelg. The failure rate of a

> Pk(lf P)I‘—Hpar—k (2)

LUT with ¢ columns is equal to the probability that at least one row fectere and it can be computed as:

¢ /c
Ptailure = Z ( )Prlgw(l—Prow)Ck 3)

&1 \K
In the case of 2x 4 LUT, equations (2) and (3) can be rewritten as:

437443
PrOW: Z ( Kk )Pk(lp)4+3_k
k=2

1 (16\ 16—k
Prailure = ) K Prow(1— Prow)
=1

Fig. 2 illustrates the failure rate obtained both theosdtjc(using equations 2 and 3) and through the above
simulation procedure. As can be seen, the two graphs arestlidentical, validating the derived theoretical
equations.

Fig. 3 shows the variation of failure rate with respect toesal/percentages of injected error rates for different
LUT sizes. For defect rates as small as 1%, the Hamming codectlg detects and corrects all faults for LUTs

of sizes smaller or equal to*X 4 as reported in [17]. However, it can be seen that even foral 4T size of
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23 x 3, and error rate greater than 5%, more than 10% of circuits\i&e can also observe that as the LUT size

increases, the fault tolerance of the circuit falls morddigpindicating the inefficiency of this scheme.

B. Bose-Chaudhuri-Hocquenghem (BCH)

In this section, we examine fault tolerant approach usimgngier BCH coding and evaluate its efficiency in
dealing with the high defect probabilities in nanoscale ISUBCH is a multilevel, variable length and easy to
decode ECC used to correct multiple random errors in a codbwidie simplest form of BCH codes is the single
error-correcting BCH(7,4,1) which is equivalent to Hamgaode. We first examine BCH [13] with 0% Don't Care
Conditions using BCH(15,7,2), which adds 8 parity bits inlerto detect and correct 2 errors in the codeword.
The required word length is 7 bits; however the size of eadtyén our LUT is only 4-bits in the case of*Z 4
LUT. Therefore, we need to pad the data bits with the necedsts so that it is equal to the required data word
size, as shown in Fig. 4.

The graph shown in Fig. 5 represents the failure rate actiiegéng the 2-bit error-correction BCH and in the
absence of DCCs. The fault tolerance obtained from the sitionl results revealed a performance very similar to
Hamming. The reason behind this is that even though the B&R() code can tolerate more errors than single
error correction techniques, there is a higher probabdfterrors per codeword in LUTs. The padded bits and the
redundant bits added to the data word doubles the prohabflifaults in each entry of the LUT. The codeword is
15-bit long for the 2-bit error-correction BCH which is twidonger than the 7-bit long codeword for the single
error correcting Hamming code. Hence, strong ECCs have dpahility of tolerating more errors at the cost of
more parity bits added to the codeword, which in turn makestimore vulnerable to higher fault rates; and hence
a rapid drop in their efficiency as the fault rate increaseth@LUTSs.

Instead of coding row entries in LUTSs, we use stronger ECCh a8 BCH codes to encode columns. BCH(31,16,3)
for example can detect and correct 3 errors per column, kheatost of adding 15 parity bits. The results obtained
from simulations are shown in Fig. 5. For low error rates, B&thibits a better performance than Hamming. At
5% of errors, we can notice a 70% improvement in failure ratr étlamming. However, when errors exceed 10%,

this coding technique completely fails.

Ill. PROPOSEDFAULT TOLERANCE TECHNIQUES
In this section, we present two different hybrid fault talet techniques to address the high fault rates in nano-
LUTs. As we have seen earlier, single error correction s@seprove to be inefficient in dealing with such high
error rates. The first proposed approach combines Hammith@®&i to target higher error rates (greater than 5%),

while the second technique combines Hamming with Bad Linelusion to address error rates as high as 20%.
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A. Combined Two-Dimensional Coding : Technique 1

To reduce the failure rate for fault rates exceeding 5%, wplémented a two-dimensional coding technique
based on Hamming and BCH codes (also knowmprmasluct codg20] [21]). The idea is to encode both rows and
columns in LUTs as shown in Fig.6(a). In [21], the authorsposed a Hamming-based two-dimensional coding
scheme to tolerate the occurance of random and burst errars-chip interconnects. The single error correction
Hamming code is used for both row and column encoding. In eopgsed technique Hamming code is used to
encode data bits in each row of the LUT, and then a stronger B@d¢ is used to encode each column. The
choice of BCH for column encoding is due to its ability to tale more errors in a codeword and given the size
of columns which is B, this choice seems appropriate. Retrieving data from tlwedsd LUT comprises of two
decoding steps. In the first step, columns are first decoded tiee BCH decoder. This step will allow the detection
and correction of the biggest portion of errors because efctpability of the BCH decoder to correct more errors
in the codeword than the Hamming decoder. Then, in the sedendding step, the Hamming decoder is used to
remove the remaining faults.

We can further improve the fault tolerance of this techniyeaising systematic BCH code along witheck bits
as illustrated in Fig.6(b). In systematic block codes, déitsremain unchanged in the codeword, and the parity bits
are attached to the end of the data bit sequence. We expéofath that the number of 1's in any wrong decoded
word will most probably be different from the number of 1'stire expected correct word. Therefore, we use check
bits to store the number of 1's of each column after all rowiestof LUT are encoded using Hamming. If the
number of faults per column exceeds the error correctingluiify limit of Systematic BCH, the BCH decoder
will generate the wrong output and hence cause the entihmitgee to fail. Therefore, to avoid failure, the check

bits are always compared with the number of 1's of the outpB@H decoder, if they are not equal, the codeword
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Fig. 7. Flow chart to illustrate the multiple-step decodinggess of the proposed 2D coding technique

remains unchanged and all the faults in the first 16 bits otttireesponding column are left to the second iteration
of decoding to be corrected using the Hamming decoder. Thedhart in Fig. 7 illustrates the decoding process
to retrieve rowM from a LUT of size 2 x N.

Assuming the same error probabiliB for each bit, the probability of havingh defective bits in a column of
length (c+ cpar) follows the binomial distribution given in equation (1). &iefore, the probability that the BCH

decoder fails to correct a column because the number ofsfexiteeds its correction capabilibgh err is given

by:

August 27, 2009 DRAFT



1.0 2 1.0
09| 2*xaLuT 09| 2*xaLuT
0.8
0.7 r
Q Q
E § 0.6
o Qost
= =
s T o4r
03t . .
O Row Coding: Hamming
0.2 J Column Coding: BCH
A 2D Coding: Hamming - BCH
O Theoretical 0.1f < 2D Coding: Hamming
_ [ Simulation 0.0 ) ] - Sys BCH with check bits
0.0 05 0.1 0.15 0.2 0.25 0.3 0.0 0.05 0.1 0.15 0.2
Error rate Error rate

Fig. 8. 2D Coding - Failure rate obtained through simulatind theory Fig. 9. Failure rate comparison betweeen 1D and 2D codingigebs

C+Cpar ctc
Po= S (e )PP @
k=bch err+1

wherec andcpar are the number of bits and number of parity bits in a columpeesvely.
The BCH correction of columns reduces the probability of ableing erroneous by a factor &. Therefore,
the remaining faults which are randomly distributed over tbws will have a new error probabilitgney that is

given by the following equation:

Prew= P x Pl %)

Using this new error rate, the failure rate for each row aftamming decoding is obtained using equation (2),

as follows:

I+ par r +rpar
PrOW: % < Kk
k=

Hence, the final failure probability of our combined 2D caglitechnique is computed as:

) P L — Prew) FrarK (6)

F)failure =1- (1— F>row)r (7)
For the example used in Fig. 6, equations (4), (6) and (7)cedo:

16415 716+ 15
PCO| — Z ( k ) Pk(l— P)16+157k
k=31

443 <4+3

Prow = ng Kk
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Pfailure =1- (1* Prow)16

Fig. 8 shows the failure rate obtained both theoreticayifre) and through simulation in the case of 24
LUT. As we can see, there is an excellent correlation betveagerimental and theoretical results.

The plots for simulation results of the circuit failure rdte Hamming (7,4,1), BCH (31,16,3) and 2D coding
techniques are shown in Fig. 9. It can be seen that for ertes iemaller than 15% 2D coding technique (without
check bits) exhibits better tolerance than both Hamming B@#H. For example, when the percentage of injected
faults is 5%, 2D coding perfectly detects and corrects gdldted faults, whereas Hamming code achieves a failure
rate of approximately 45%. However, as the fault rate inseeabeyond 15%, this technique completely fails. This
improvement in reliability is achieved at the cost of a highamber of parity bits which will result in additional
area and energy overhead.

Fig. 9 also illustrates the enhancement achieved in faldfraoce by incorporating the check bits into the
technique. 2D coding with check bits achieves significaltlyer failure rates for error rates greater than 5% and
upto 10% as compared to basic 2D coding technique resutiag improvement of 37% in fault tolerance. As can
be seen, using check bits will improve the fault-tolerantew combined 2D coding technique. However, the need
to store the number of 1's in a highly-reliable memory (itere at most approximateyog, (numows) X NUMolumng
bits in a CMOS memory) will incur an extra area and delay ogaththat need to be evaluated based on practical
IC designs as explained in Section IV.

Next we examine the effect of varying LUT size on circuit abliity. As can be seen in Fig. 10, the failure rate
increases rapidly for bigger LUTs. For a fault density of 10%e failure probability to successfully instantiate a
LUT on the defective nanofabric increases from 5% in the cd<?® x 3 LUT to complete failure for 2x 6 LUT.
Comparing the results of Fig. 10 with Fig. 3, we can obsenat tombined 2D coding technique outperforms
single dimensional coding in terms of fault tolerance desipé insufficiency in coping with fault rates higher than
10% and bigger LUT sizes. In the case 26 LUT, we can observe a nearly 0% failure rate at 5% error rate,
whereas Hamming completely fails.

Boolean functions are defined by their On-set, OFF-set ardt DCC-set [17]. If an entry in a LUT is a
DCC, the output can be either 0 or 1. We examine the impact c€£6n our 2D coding technique. In order to
theoretically calculate the circuit failure rate given thercentage of DCCs in the LUT, we first need to calculate
the failure probability of the BCH decoder and the new erede rafter decoding which are given by equations (4)
and (5). After column decoding, the probability that the Hiaimg decoder fails to correctly detect and correct all
errors does not only depend on the number of faults per eaghlbnat also on the number of erroneous bits in
the output of the decoder. Therefore, the probability thgivan number of bits are erroneous in the output of the
decoder, denoted &, assuming a number of errors in the codeword has to be estimeteren is smaller or
equal to the number of bits of the decoded word. Fof & 2 LUT, the values 0Pt are shown in table I.

The failure rate of correctly decoding a row using the Hangrdecoder is obtained using the following equation:
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number of errors in a codeword
Pnbit
2 3 4 5 6 7
P1pit 0.4306 | 0.1952 | 0.3639 | 0.1415 | O 0
Popit 0.4287 | 0.4274 | 0.4335 | 04271 | O 0
P3pit 0.1407 | 0.3774 | 0.2026 | 0.4314 | O 0
Papit 0 0 0 0 1 1
TABLE |
HAMMING DECODER: DISTRIBUTION OF ERRONEOUS BITS IN THE OUTPUT WORD2* x 4 LUT
I+Ipar r+ rpar K K r n n
/ I 41 par— mpn—m
PTOW: z ( k >Pnem)(1PnEW) par—= x Z [P(n)bit Z <m) (17PDCC) F’DCC} (8)
k=2 n=1 m=1
The total failure probability is computed as:
I:)failure =1- (1* Pr/ow)r (9)

Fig. 11 presents the failure rate obtained theoreticaligeld on the previously outlined equations, and using the
simulation procedure in the presence of 50% DCCs. The twphgrgerfectly match each other which validates
our theoretical predictions.

Fig. 12 shows the results obtained before and after injgdBiP% of Don’t Cares in ®x 4 LUTs. As can be
observed, the optimum improvement is recorded at 10% eater where the failure rate is reduced from nearly
50% to 37%.
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B. Hamming with Bad Line Exclusion : Technique 2

ECCs are usually preserved for the suppression of tranfsiahs to enhance computational reliability. However,
the high defect densities in future nano-circuits [2] diesainvolving coding techniques at the initial repair ofdhar
errors to minimize the required amount of redundant regsurAs can be seen from Fig. 9, ECCs alone are not
able to address the issue of high defect rates induced dorargfacturing. Hence it is imperative to use ECCs in
conjunction with other techniques in order to detect andemriarger portions of physical defects (up to 20%).

To deal with higher defect rates, we have combined Hammirmg aoith Bad Line Exclusion technique. This
technique requires allocating enough redundant rows fohn €T to be repaired. The use of redundant wires to
tolerate physical defects was presented in [16] and [22]wiisbe shown, the amount of spare rows depends on
two main factors: the defect rate of the fabric and the siz¢hef LUT. Repair consists of two phases: a must-
repair phase and a final-repair phase. In the must-repagephme exclusion is applied only in one dimension
where the defective rows are excluded and replaced withespmavs if the number of defects per row exceeds
the correction capability of Hamming. Therefore, defeatrtters for the faulty rows are required during the initial
testing process of the nanofabric. It is worth mentionirag the configuration process is performed only once during
the manufacturing phase (i.eff-line configuratiof and hence the area of the configuration logic is not added to
the CMOS area overhead of this technique. In the final-rgplaérse, the Hamming decoder detects and corrects
the remaining defects as shown in Fig. 13. During the indialysis of the fabric, the bad rows are detected and
their physical address is used to create a special table potiheacontinuous logical address to the actual physical
location of defect-free rows. Such a mapping table has totdwed in a highly-reliable memory implemented in
CMOS. The physical implementation of this logical-to-picgs mapping table is beyond the scope of this work

and is not included in the area overhead estimation of tluisnigue in the next section.
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To obtain the probability of failure, we first calculate thelpability Poy Of a row of lengthl being excluded.

Pow is equal to the probability of having more than one bad bithiatt row given by:

Fou= 3 (()Pa-p) (10)

wherel is the number of bits in a row including the parity bits dads defect probability of each bit. Therefore,
the probability of failure to instantiate a LUT on the fabgiven the original number of romsand upper limit of

spare rowgs, can be computed as:

Psailure =

Mo /r 4y
( Jrk Sp) PK (1 — Prow) Tsp K (11)

k=rsp+1

In the case of 2x 4 LUT and 25% spare rows, equations (8) and (9) can be rewritte
7

Pow=Y (D PX(1-P)7k

k=2

16+4 /1644
Pfailure: Z K
k=4+1

Fig. 14 shows the failure rates for 4 24 LUT for different error rates in the presence of various anis of

) Prléw<1 _ Prow) 16+4—k

spare rows. As can be seen, this technique is capable ohtiolgran unprecedented percentage of defects when
compared to the Hamming alone and combined 2D coding tesarstjown in Fig 9. This is demonstrated by a
failure rate of nearly 0% for up to 20% of injected faults imamdomly generated*3< 4 LUT.

To further our analysis, we examine the effect of variatiomimber of spare rows on the failure rate for different
LUT sizes. Fig. 15 demonstrates that as the error rate isesganore spares are needed to keep the level of fault
tolerance close to 0%. In the case 624 LUT for instance, only 25% of spare rows are needed i.e. &£mows,
to completely tolerate up to 10% of faults rates. And as morere are injected into the LUT, more spares should
be allocated and hence decreasing the useful bit densityedfabric. It can also be observed that as the LUT size
increases, the percentage of spares also increases tweathie failure rates. For example® 2 6 LUT requires
twice its original size to tolerate 20% defect rate. Howewe can minimize such high redundancy by adopting a
more powerful ECC such as BCH instead of Hamming.

While the authors in [17] assumed 50% don't care condition€QR our results have shown remarkable
improvement in fault tolerance even with zero percent DC&she LUT implementation. However, it can be
seen from Fig. 16 that the fault tolerance of this technigusignificantly improved when we assume some of the
entries in the implementation as DCCs as compared to outltsaaurFig. 14.

The existence of DCCsPfcc) in LUTs significantly reduce the bit failure rate as outtinen the following
equation:

P'=Px (1-Pocc) (12)
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fault tolerance by almost two times.

The new probability of a row being excluded after injectingm Cares is obtained by replacing the fault rate

P with the new fault raté® in equation (8) as follows:

Plow = klé (L) PK1—P)k (13)
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Fig. 17 illustrates the failure rate obtained both theoedy using equations 11 and 13 and through simulations.
As can be observed, there an identical match between the taghg indicating the correctness of our derived

mathematical equations.

IV. IMPLEMENTATION

The realisation of fault tolerance in nano/CMOS nanoetgitrarchitecture will incur area, energy and operational
latency overhead in CMOS domain [15]. Such overhead mustkamntinto account when investigating and evaluating
hybrid CMOS/nanodevice fault tolerant architectures. Tigh reliability decoders are implemented in CMOS and
therefore incur an increase in the area and energy consamimpared to the denser and low energy nano-LUTSs.
Additional clock cycles are also lost in decoding and cdingccodewords which cause latency overhead.

In order to obtain an estimate of the area, latency and eregrheads per codeword, the corresponding decoders
were designed in VHDL and thoroughly tested through sinmtedising the appropriate test benches. Both Hamming
and BCH decoders are serial i.e. they receive 1-bit inputgererate a 1-bit output per clock cycle, therefore, the
decoding latency is proportional to the codeword lengthingyshe 0.12uim CMOS standard cell library, the area
overhead of the Hamming decoder is §@6 and decoding one 7-bit long codeword requires 13 clock syatel an
energy overhead of approximatelpyMHz. The BCH decoder incurs higher overhead due to its high cexitgl
an area overhead of 91327, a latency of 69 clock cycles and an energy overhead op28@Hz However, this
need to be further studied in the context of optimum desigatexjy where we negotiate the advantage of higher
density and low power dissipation against increased delayhead.

The CMOS components as well as the redundant parity bits pade sows in our techniques will reduce the
useful bit density offered by nanodevices. Therefore, lmgotiesign parameter calledea per useful bitatio is
used to compare the efficiency of the various techniquesa Awer useful bit(a) reflects the area necessary to
achieve certain useful bit capacity and is obtained by digdhe total area of the fabric by the number of useful
bits in the LUT.

The total area of the fabric comprises of the area of nanodsvand that of CMOS subsystems. We adopt a
model presented in [14] to estimate the area of nanoscaleomyefBach bank in the memory is composed of a set
of crossed nanoscale wires supported by a set of interfacesaiale wires. For a nano-circuit of thputs andm

outputs, the area can be estimated as shown in [17]:

A= (\Mith (n+logam) +Wnan02n) . (With n+ m\/\ﬁanozn) (14)

The main parameters in the model are the number of rdlwan® columnam. The area of the nano-memory is
dominated by the address lines which are microwivdg, = 1051mis the wire pitch of the lithographic address
wires andWhano= 10nmis the pitch for the nanoscale wires. For instance, in the cisa 2 x 4 LUT, the area of
the nano-LUT before encoding isS@iunt?.

Table 1l compares the area overhead of the proposed teahniih the earlier approaches. While we have

seen that Hamming in combination with bad line exclusionieas much better failure rates as compared to error
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Technique Total Area | Area/Useful
(u?) bit (un?/bit)
Hamming alone [17] 907 14
BCH alone [13] 9133 142
Hamming & Bad Line Excl.| 908 14
(proposed)
TABLE Il

AREA/USEFUL BIT OF THE PROPOSED TECHNIQUES

correcting schemes such as Hamming or BCH, this improveindatlure rate is achieved with little or no increase
in area overhead when compared with the simplest corretgidmique proposed in [17]. It should be noted that
BCH has the highest area overhead due to the complexity afei®ding circuitry. Table Il also shows the area
per useful bit ratio for a 2x 4 LUT implemented using the three techniques.

While significant area improvement can be achieved over ou@OS for high density fabrics using hybrid
nano/CMOS architecture [13], it can be shown that furtheprimmement in terms of useful bit density can be
achieved by sharing the decoders by multiple LUTs using timtiplexing strategy as outlined in [17]. Another
way to minimise the CMOS area overhead is to synthesisedbgircuits into smaller LUTs because the size of the
decoder increases proportionally with the size of the LUDBrdbver, as shown in the experimental results (Fig. 10

and Fig. 15), using smaller LUTs allows achieving higheels\of fault tolerance at the cost of low area overhead.

V. CONCLUSION

In this paper we investigated a promising look-up table Basgplementation of Boolean logic functions in
heterogeneous CMOS/nanodevice architectures. Our stgliewed that single error correcting codes such as
Hamming or BCH prove their insufficiency in tolerating higtrar rates. We presented two hybrid fault-tolerance
techniques that address faults caused due to physicaltsiefied transient faults. In the first technique, we encoded
both rows and columns of LUTs (using Hamming and BCH codegemsvely) to target higher number of faults.
This technique significantly improves the fault toleranaghwespect to single error correction schemes for error
rates greater than 5%. In the second technique, we comptechelamming with bad line exclusion. This technique
results in remarkable improvement of failure rate againstulstantial fraction of bad nanodevices (up to 20%).
This is achieved at the cost of minimal increase in area @agttcompared with Hamming, yet with much higher
efficiency in tolerating errors. Based on our studies thehméque is very effective for LUT-based Boolean logic
architectures. We have also shown that the presence of darét conditions in LUTs can significantly improve
circuit failure rates when we combine coding with bad linelegion. Finally, we investigated the impact of these
techniques in terms of area, latency and energy overheallshemved that improved fault tolerance can be achieved

using the proposed techniques with little overheads coetpty previous coding techniques.
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