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Abstract: The development of transformer models can be achieved based on experimental 

frequency response measurements providing access to the windings is available and the physical 

dimensions are known in order to calculate R, L and C parameter values.  Of interest are methods 

that allow the generation of a suitable model if the R, L and C parameters are unknown and access 

is restricted to the external terminals of the winding only.  Using a lumped parameter model and 

the measured frequency response across the whole winding, it is possible to estimate the 

intermediary winding responses.  Knowledge of the intermediary winding frequency responses 

facilitates the development of condition monitoring tools that are capable of locating the source of 

partial discharge activity or winding deformation within a faulty transformer [1].  This paper 

includes a full description of the developed modeling technique, along with experimental results 

from a model winding system that validates the proposed approach. 

 
 

1. INTRODUCTION 

Transformer modelling has been widely researched in 

order to understand transient behaviours.  A large 

number of transformer failures are due to high 

frequency transients that are unpredictable and may 

cause catastrophic failure during live operation.  The 

ability to estimate the effect of transients may assist in 

predicting transformer asset health and lifetime.    

The modelling of propagation of high frequency 

signals within a transformer winding may demonstrate 

attenuation or be loss free depending on the model 

adopted [2].  Prior to application of any modelling 

technique, experimental investigations can be 

undertaken to determine the most suitable model to be 

employed.   

The model and estimation technique described in this 

paper are employed based on a limited knowledge of 

winding dimension, which in turn, means that the 

resistance, inductance, capacitance and mutual 

inductance parameters are unknown and must be 

replaced by harmonic decay components in frequency 

domain [4].  By using a lumped parameter model along 

with the measured frequency response across the whole 

winding, it is possible to estimate the intermediary 

winding responses. 

2. THE TRANSFORMER EXPERIMENTAL 

MODEL 

The experimental transformer model used was 

developed and manufactured by Alstom and includes 

an interleaved disc winding and a plain disc winding. It 

has been further developed by the Tony Davies High 

Voltage Laboratory at the University of Southampton.  

One of its main characteristics is that it can see high 

voltages of up to 30kV without discharging. 

The structure of experimental model has two types of 

winding (interleaved and plain disc winding). Figure 

1(a) shows the half cross section view of the two 

windings wrapped around a central iron core.  The 

interleaved disc winding is above the plain disc 

winding.  The two windings have the same 

construction size and use identical materials.  Every 

pair of discs of either winding provides a terminal as a 

measurement point. A metal cylinder connected to 

earth is placed inside the windings to represent an iron 

core. 

2.1. Transformer equivalent circuit model 

In the transformer experimental model, both windings 

are disc-type and each winding includes 14 discs. A 

pair of discs is called a ’section’ where each section 

can be accessed externally with the direct connection 

from its terminals. The end connection of each winding 

are both connected to an end plate which noted as EP.  

Figure 1(a) also shows the arrangement of capacitance 

and inductance for both windings. 

At high frequency, the lumped parameter circuit model 

is a series connection of capacitances and inductances 

arranged in parallel and series respectively [3]. This is 

shown in Figure 1(b).  At high frequencies the voltage 

oscillations arising in a winding are damped by the 

winding resistance and the core losses. If the damping 

is also to be considered, the model of Figure 1(a) has to 

be completed with resistances.  The resistance of the 

winding is taken into account by a resistance put in 

series with the inductances, whereas the core loss is 

represented by a resistance connected in parallel with 

them. Cdx and Gdx are the series of capacitance and 

shunt conductance to model the damping behaviour 
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from winding to the ground. The relationship between 

each winding is modelled by its mutual inductance 

denoted  as a matrix of inductance [L]. A section of 

such model is shown in Figure 1(b), where r is the 

resistance of a section of unit length of the winding, 

and g is the conductance corresponding to the iron loss 

in a unit length section of the core [1, 2]. 

2.2. The Corresponding Equivalent Equation 

The lumped parameter circuit model consists of 

winding parameters which are simplified to derive a 

partial differential solution.  The usual procedure in 

solving a partial differential equation is to assume the 

form of the solution and try it by direct substitution in 

the differential equation and the boundary conditions.  

The partial differential equation of a winding section 

can be described as follows [1]:  

 

 

 

 

 

 

 

The above equation shows that the solution to the 

partial differential equation has a nonlinear relationship 

of parameter values and the distance x, where x is often 

referred to as the ratio of total length x/l of the winding. 

 

By solving Equation (1) and also considering the 

quarter range cosine series the complete solution 

becomes:  

 

 

 

(2) 

 

Where, As amplification factor, γs damping factor, ωs 

harmonic frequency, k harmonic order, x distance from 

neutral line, l total length of transformer winding, β 

fixed distribution factor, E input voltage, e voltage 

level at distance x,  and t the time vector.  

 

Equation 2 has two terms a fixed distribution and a 

harmonic damping equation.  The equation represents 

the high frequency oscillation at different points along 

the winding.   

 

2.3. General Solution for the Fixed Distribution 

Equation 

The fixed distribution equation can be written in 

general form as shown in Equation 3. 

 

 

 

 

 

Figure 1: (a) Crossection view of transformer winding and, (b) Its equivalent lumped parameter model
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where A is a constant, AP is the corresponding 

equivalent impedance coefficient at the end windings.  

Figure 2 shows the variation of fixed distribution curve 

with different parameter values of AP and α (with A is 

fixed).  In the case of real transformers, the only 

readily available terminals for measurement are at the 

bushing tap point and neutral to earth point.  The 

bushing tap point can be modelled as a capacitance 

between the bushing core bar and earth.   

 

2.4. The Solution in frequency domain. 

The focus of the study is to model the intermediary 

winding response.  The use of a frequency domain 

estimation was selected to determine values of the 

unknown parameters.  The performance of the system 

is easily interpreted using the frequency domain, which 

covers all possible sets of transient signals, and 

therefore is suitable for modelling PD propagation or 

transformer winding deformation.   

 

Therefore by considering only the available terminals, 

the neutral and the bushing, the frequency response 

between these two terminals may be measured and 

used as the basis for the estimation of the intermediary 

winding responses. Therefore, the following equation 

is derived to define any intermediary winding response 

at different x in frequency domain: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Transformer Distribution Curve (a) Fixed AP 

(b) Fixed α 

 

 

 

 

 

where  Hx(s) is the dB level at any distance x along the 

transformer windings, Fx(s) is the fixed distribution 

equation in (3), Gn is the constant gain, Am  

amplification factor function with respect to k 

(harmonic order), and Ac is the quarter range cosine 

series function with respect to to k and x. 

 

 

3.  FREQUENCY RESPONSE 

MEASUREMENT 

Frequency response measurements can be used as an 

alternative impulse response measurements [4].  The 

range of frequency under an ideal impulse test is 

infinite therefore it is of interest to obtain a frequency 

response measurement over the largest possible 

frequency range.     

The frequency range of the measurement is dependent 

on the measuring equipment.  The measurement was 

carried out using a network analyser, Agilent 4395A.  

It has a bandwidth frequency starting from 100Hz to 

500MHz range with a sample bandwidth of 30Hz.   

The measurement circuit is shown in Figure 3(a).  Due 

to limitations of the measurement device, the data was 

taken many times and resampled to further refine the 

complete frequency response which contains a total 

1400 sample points over range 100Hz to 500MHz.   

3.1. Winding Frequency Response 

The winding frequency response was measured for all 

7 sections where the terminals of the winding are 

accessible for measurement. The experiment setup 

immitates a real transformer winding in operation, for 

which the winding is not accessible from the outside.  

Hence it can be assumed that the frequency response 

data obtained are representative of a transformer 

winding.  Figure 4(a) and 4(b) show the corresponding 

frequency response and phase response for an 

increasing number of winding sections. 

 

 

Figure 3: Frequency Response Measurement Circuit 

diagram. 
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3.2. Transformer Winding Distribution from 

Frequency Response Measurement 

Figure 2 shows the theoretical gain along the 

transformer winding by only considering the fixed 

distribution equation.  Whereas Figure 5 shows the 

gain of winding sections at different frequencies noted 

by vertical straight lines.  The gain of the winding 

frequency response of the first section is represented by 

the ‘black’ curve and the ‘blue’ curve represents the 

whole 7 Sections.  Figure 6 shows the distribution level 

in dB versus the length of the transformer winding 

derived from Figure 5. 

 

4. NONLINEAR LEAST SQUARE 

TECHNIQUE 

The nonlinear least squares estimation technique is 

used to model a nonlinear set of unknown parameters 

ak, k = 1,2, …, M to a predicted model with a known 

equation.  The model predicts a functional relationship 

between the measured independent and dependant 

variables, 

 

where the dependence on the parameters is indicated 

explicitly on the right hand side.  The objective of the 

technique is to minimize Equation (6)  

 

 

 

Figure 4: (a) The Frequency Response (b) The Phase Response

(a) 

(b) 

)...;()( 1 Maaxyxy = (5) 
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Figure 5: Frequency Response Measurement and corresponding gain for winding sections at specific frequencies. 

 

Figure 6: Gain Level Distribution at different 

Frequency extracted from Figure 5 starting from 

0.41kHz to 4.7MHz. 

  

 

 

 

4.1. Chi-Square Function 

By using the chi-square function, the minimization of 

the model can be explained as follows: 

The model to be fitted is  

 

and the χ2
 function is 

 

 

the calculation of the gradient of the χ2
 with respect to 

ak… aM has components: 

 

 

 

and by taking the second derivative: 

 

 

  

 

Rewriting terms in equation (9), results as follows:  

 

 

A set of linear equations can be constructed to model 

the fitting technique;  

 

 

From which the minimization process is possible to 

estimate for the value of parameter ak by using 

equation: 

 

 

4.2. The Levenberg-Marquardt method 

The Levenberg-Marquardt method makes the 

minimization technique more robust and efficient 

through the use of a fast gradient descent technique.  
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The technique introduces a variable learning rate.  If λ 

is defined as a constant learning rate such that: 

 

          or    

by letting the new diagonal parameter to be:  

 

 

and replacing the above definition into equation (12) a 

new linear equation will result as follows: 

 

 

4.3. The Fitting Results 

Figures 7 to 10 show Fitting Results of the transformer 

modeling and parameter estimation in frequency 

domain.  The overall performance results in an average 

error of less than 0.02dB rms.  Note that during the 

initial iterative procedure the performance gradient was 

unstable due to the sudden jump of the constant value 

of λ which was quickly recovered by the power of 

fitting algorithm (Figure 8b, 9b, 10b).   

For the fitting process, Equation 4 is the model of 

equation to be fitted with unknown parameter values 

Gn, k, A and AP.  Equation 4 is used for this estimation 

as it has simplified unknown parameters and can be 

further simplified to have linear relationship that easily 

modelled using the fitting process.  The unknown 

parameters matrix in this case is [a1 a2 a3 a4] = [Gn k A 

AP].  In Figure 7 to 10 the parameter values obtained 

for each frequency are defined. 

 

5. CONCLUSION 

There are two main factors that need to be considered 

that influence the accuracy of the technique proposed.  

First is the choice of theoretical model to be used 

which consequently determines the model accuracy of 

the fitting process.  The possibility of fitting failure 

will occur if the initial model does not adequately 

represent the winding frequency response 

measurement. 

The second factor, is the numerical solution of the 

fitting technique.  Since there exists a nonlinear 

relationship of parameters to the fitting model, the 

derivation of the first order derivative and the second 

order derivative may be difficult to achieve.  Therefore, 

the authors have overcome this problem by using a 

finite difference technique.     

The results have shown that it is possible to model a 

transformer winding at high frequencies. This 

facilitates the estimation of the behaviour of a transient 

signal generated within a high voltage transformer.  

Moreover, with the assistance of a robust estimation 

technique, the proposed method can be further 

developed to assist in predicting and locating any 

arbitrary partial discharge that may occur within a 

transformer winding. 
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