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Abstract—In this paper we propose a tracking system for
wireless sensor networks, which operates on accumulated ranging
data from a number of anchor sensor nodes in order to infer the
trace and other kinematic characteristics of a mobile target. The
nonlinear nature of the “tracking with range-only measurements”
problem yields significant challenges. In the proposed system,
this problem is modeled as a discrete-time state estimation
problem. To achieve tracking of manoeuvring targets, adaptive
estimation algorithms and a multi-modal approach to describe
the development of the target’s state in time are utilized. To
solve the estimation problem we employ a Particle Filter based
algorithm. We present simulation results, which demonstrate
the ability of the proposed system not only to effectively track
manoeuvring targets but also to perform accurately under heavy
clutter.

Index Terms—Wireless Sensor Networks, Tracking, Particle
Filters

1. MOTIVATION

Wireless Sensor Networks (WSNs) have received and con-
tinue to receive significant research interest. The flexibility
they offer, resulted in an escalating research effort for em-
ploying this novel technology in a number of applications.
WSNs provide a new approach to interact with the physical
world through the amount of information they collect. As
research in minimizing the size and increasing the available
computational power in WSNs continues, so will research on
possible solutions they can offer in a number of existing and
challenging problems. One of the areas where WSNs play a
key role is in tracking mobile objects. The ability of WSNs to
obtain a vast amount of information in a distributive manner
renders them suitable for tracking applications [1]. Locating
personnel in industrial infrastructures, wildlife monitoring and
vehicle tracking are some examples where tracking of ground
targets is desirable. WSNs offer a great alternative to existing
tracking technologies such as cameras, micro-RADARS or
GPS based systems.

This paper discusses a tracking system intended for deploy-
ment in WSNs. Two novel, Particle Filter inspired, tracking
algorithms were designed to achieve online tracking of mobile
targets based on a batch of range measurements provided
from the wireless sensors. In general, the target’s dynamics
are inferred by processing a specific modality associated with
the target’s kinematic variables. The proposed system utilizes
range measurements between the target and a number of

anchor nodes to infer the desired kinematic characteristics
of the target. Other such modalities that can be exploited
in tracking systems are bearing and velocity. However, the
acquisition of such modalities requires additional hardware
like RADARS to be attached to the nodes and additional
energy and process power to be consumed. On the other
hand, ample ranging estimation between wireless nodes can
be achieved using a variety of techniques which are relatively
energy efficient and do not require any additional hardware.
Examples include Received Signal Strength Indication (RSSI)
[2] and Time of Flight (ToF) ranging schemes [3].

The major challenge of this work is twofold. Since WSNs
nodes are devices with limited energy supply and process-
ing power, the range estimates acquired by the system will
inherently contain significant amount of noise. Subsequently,
robustness becomes a necessity. Moreover the system is in-
tended to be as generic as possible. Generic “in terms of a
tracking system” means being able to track targets moving at
a range of speeds and also include support for manoeuvring
targets, which is the case in most real-world scenarios.

The remainder of the paper is organized as follows. The
next section discusses similar work carried out in the area.
In Section IIT an overview of the proposed tracking system
is provided, followed by the formulation of the tracking
problem in mathematical terms. The developed algorithms are
analyzed in Section V and simulations evaluate the system’s
performance in the sequel. Concluding remarks and future
work are discussed in the final section of this paper.

II. RELATED WORK

Locationing and tracking of ground targets using WSNs has
long been an active area of research [4],[5]. A number of
research approaches stem from military surveillance scenarios
[6],[71,[8],[9]. The focus of such systems is to effectively
monitor an area and detect intruders breaching the perimeter
coverage. Another important operation, is to successfully clas-
sify the intruding target to one of the categories considered.
A soldier tracking system is presented by Chen et. al [10].
In this system, a two stage procedure is employed to refine
PIR sensor reports, produced by a dense, large-scale WSN,
and estimate the target’s position[11]. The aforementioned
systems, focus primarily on the intruder detection mission
they are intended to. Due to the fact that WSNs are ideal for



positioning and tracking problems significant research effort in
the WSN community was devoted to develop locationing and
tracking algorithms for WSNs [12]. A collaborative processing
scheme for tracking with WSNss is presented in [13], [14]. An
algorithm to estimate the number of multiple present targets
using a wireless network of PIR sensors is presented in [15].
PIR sensors are also considered for tracking by Shrivastava et.
al. [16]. The above approaches although provide significant
results consider a relatively simple motion model. In addition,
PIR sensors can provide support for detection schemes, how-
ever the lack of information related to the target’s kinematics
makes them unsuitable, particularly for tracking manoeuvring
targets. Another disadvantage of PIR sensors is that good
accuracy requires a dense large-scale deployment of sensors. A
different approach is followed by Zhong et. al., as they propose
the use of node sequences to perform tracking in WSNs[17].

Bayesian Estimation theory and particularly Kalman Filters
provide the background of modern tracking systems [18].
Hence, they are extensively investigated for tracking in WSNss.
Kusy et. al. propose a Kalman Filter derivative for locating
mobile nodes based on range estimates using RF-Doppler
shifts [19]. However, the inherent inability of Kalman Filters
(KF) to deal with nonlinear systems, resulted in a number of
alternative approaches like Particle Filters to be investigated
in order to provide sufficient support for nonlinear systems
[20]. Particle Filters (PF) are a class of recursive Bayesian
Estimation techniques inspired from Monte Carlo Integration
methods [21]. PF have been extensively investigated in ar-
eas like navigation and tracking producing promising results
[20],[22]. In the WSNs community, a number of approaches
for applying PF in tracking with WSN has been presented.
Coates et. al propose a distributed PF tracking algorithm for
WSNs [23], [24]. Borkar et.al consider a network of Direction
of Arrival (DOA) sensors and Range-Doppler sensors and a
PF algorithm performs the estimation [25]. A distributed PF
for tracking in sensor networks is also analyzed in [26], where
acoustic sensors are proposed. Recently Ma et.al combine a
Particle Filter and a Probabilistic Data Association Filter to
form a hybrid algorithm intended for tracking in WSNs [27].
These approaches either consider only a linear (constant ve-
locity) model to describe the target’s kinematics [26],[27],[25],
or consider two or more types of available measurements to
the system (range, bearing and velocity) in order to provide
support for manoeuvring targets. The system, proposed in this
paper operates on range-only measurements both for non-
manoeuvring (linear state modelling) and manoeuvring targets
(nonlinear state modelling). By utilizing ranging estimates
from a number of anchor nodes, support for manoeuvring
targets is provided, without the need to add power consuming
bearing sensors to the available hardware.

III. SYSTEM OVERVIEW

The proposed system performs tracking of ground mobile
targets based on range estimations from a number of anchor
nodes, positioned in known locations. Knowing the location of
anchor nodes can be achieved either by pre-defined positioning

of the anchor nodes or with ad-hoc deployment and self-
locationing. Self-locationing schemes in WSNs is an active
research area [28], [3]. A deployment of our proposed system
is illustrated in Figure 1. For ground targets at least three
anchor nodes must provide range measurements. A central
node receives information from the anchor nodes and employs
the tracking algorithm. As mentioned previously two widely
known techniques able to provide accurate-enough ranging are
RSSI and ToF. These approaches require that an RF transceiver
or an additional node, to be strapped to the target, to enable
communication with the anchor nodes. By employing ranging
techniques, an estimation of the range between the mobile
node strapped to the target and the static anchor nodes is
produced.

Y - AXIS

(x1,y1)

X~ AXIS

Fig. 1. Tracking System Overview

IV. PROBLEM FORMULATION

In order to best describe the target’s movement and since
only range measurements are considered, we model our
system using a nonlinear discrete-time state-space approach.
We provide two options for modeling the state evolution in
time, a single-modal and a multi-modal approach. We opt to
use a multi-modal approach in order to successfully capture
the development of the state vector in time when manoeu-
vring targets are considered. Prior knowledge regarding the
target’s movement pattern, points on which approach will
better describe the dynamics of the target. Although additional
complexity is added to the system when the multi-modal state
equation is in use, the application demands on accuracy as
well as the available energy and computational power will
determine which of these models shall be used, to achieve the
optimum trade-off between accurate performance and energy

consumption.

Tracking is conducted for a defined amount of time denoted
as T'. The sampling period T defines the number of sampling
steps. At each time step k the state vector comprises of the
planar coordinates and two axis velocity of the mobile object.
Thus:

x=[zy v vy}T(T here denotes transpose) 6]



A. Measurement model

A number of N anchor nodes provide range estimates of
the target’s two-dimensional Euclidean distance to them; hence
the measurements vector z,, ;, at time step k is formed as :

Vyk —y1)? + (zr — 21)?
V(yk — y2)? + (z — 2)?
V(yk — y3)? + (zr — x3)?

+ i (@)

Z, =

vV (k= yNs)2‘+ (T — zN,)?

o where time index k: is discrete: k =1,2,..., K
e Vvyi: represents the additive measurement noise distribution

B. State Evolution

As mentioned previously two approaches (single-modal,
multi-modal) are used to model the development of the state
in time. The state vector evolves in time according to the
following equation.

xp =Fxp_1 4+ Twi 3)
e where,
TZ/2 0
| o 12
I'= T, 0 4)
0 T

o T is the sampling period,
e Wy_1 represents the state noise distribution
« and xy, is the state vector, defined in Eq. 1

Matrix F is defined in two ways:

1) The Single-Modal Approach: In this case the Constant
Velocity (CV) model is used to model the state evolution.
According to the CV model, matrix F is given as:

1 T

F= 5)

SO~ O
»—l@ﬁ@

0 0
0 1
0 0
2) Multi-Modal Approach: The multi-modal approach is
proposed to provide support when a manoeuvring target is the
object of interest. In this case our system is modeled using
multiple switching dynamic models. The dynamic models we
consider are, the CV model described previously and two
coordinated turn models. The model’s measurement equation
is the same as discussed in Section IV-A, while the evolution
of the state in time is modeled with the following nonlinear
equation:
X = F(I‘k)xk,1 + I'wg_1 (6)
o where ry is the regime variable and indicates which model is
in use during the sampling period from (¢x_1,t%]. The regime
variable is modeled as a time homogenous three-state first-order

Markov chain with transitional probability matrix given by the
following relationship:

mi; 2 P{ry =j|rp_1 =i} @)
The state transition matrix F, at time k is defined according

to the value of the regime variable r; (F,,_) and is given as:
o The CV model - Similar to the single-model approach

10 T, 0
o1 0 T
F=100 1 o0 ®)
00 0 1

o First Coordinated Turn model

1 0 sin(wTs)/w (cos(wTs) — 1) /w
F— 0 1 (1-—cos(wTy))/w sin(wTs)/w ©)
— 10 0 cos(wTs) —sin(wTs)
0 0 sin(wTs) cos(wTs)
o Second Coordinated turn model
1 0 sin(wTs)/wTs (cos(wTs) —1)/w
F— 0 1 (1-cos(wTs))/w sin(wTs)/w
~ 10 0 cos(wTs) —sin(wTs)
0 0 —sin(wTs) cos(wTs)
(10

o where 75 is the sampling period and,
e where w is the turn rate in radians

Although the complexity of the system increases with the use
of a multi-modal approach, as the state update equation also
becomes nonlinear, manoeuvring targets require to be modeled
in such a way in order for the system to cope with abrupt
changes regarding the amplitude and direction of the velocity
vector.

V. TRACKING ALGORITHMS

This section provides insight regarding the algorithms de-
veloped to infer the state of the target at each time step.
Specifically, an estimate of the state x at time k is produced
based on the sequence of measurements Zj up to that time
instance. To calculate a state estimate, the posterior probability
density function (pdf) p(xy, | Z) should be constructed. After
obtaining the posterior pdf p(xy | Zx), an estimation of the
actual state can be produced, using a certain criterion, like
the Minimum Mean Square Error (MMSE). Particle Filter
algorithms rely upon representing the required pdf with a set
of particles and their corresponding weights. Particles are sam-
pled from a proposal distribution and then weighted properly
to represent the state’s pdf. Let’s denote the evolution of the
state vector up to time k as X = {x; : j = 1,2,...,k}.
Similar to this, the measurements made available up to time
k, are denoted as Zy = {z; : j = 1,2,...,k}. The pdf
p(xx | Zy) is approximated by a set of N particles denoted as
X, and their corresponding weights, w;,. An approximation
of the state pdf at time k is given from the following:

N
P(Xk | Zr) =D wid(Xe — Xj)

i=1

an

where ¢ is Dirac’s delta function. )

As mentioned previously, particles X; are sampled from

a proposal distribution ¢(X|Zy). The importance weight

for each particle is computed according to the following
relationship: _

i p(X? | Zk)

RRTE Ay

PF usually suffer from the degeneracy problem. In practical
terms, after a number of iterations all but one particle have
negligible weights. Thus, a substantial amount of computation
is devoted in updating particles with minimal contribution to
the approximation of the pdf. To avoid the effects caused
by degeneracy in PF, a measure, called effective sample size
Neyy, is introduced and defined as follows:

_
S (w)?

(12)

Negs = (13)



A resampling step is carried out whenever N.ys is found
to be smaller than a pre-defined threshold Ny;,.. Resampling
eliminates samples with low importance weights and multi-
plies samples with high importance weights.

A. Range only Tracking Particle Filter Algorithm ROT-PF

The algorithm described in this section is intended for a
tracking scenario which follows the state-space model ana-
lyzed in Section IV-B1. To begin with, we considered that both
the state and measurements noise follow known distributions
that can be sampled. The transitional prior p(xp|xp_1) is
chosen as the importance density function to sample particles
from. To sample a particle xj, from p(x|xp_1), a process
noise sample wj,_, is generated from the noise distribution p,,,
and then passed in Eq.3 to produce x} . Initial particles (at time
t = 0) are drawn from a distribution p?xo) which represents the
system’s prior knowledge regarding the target’s initial state.
Upon receiving a new set of measurements the weight for
each particle is computed. Because of the transitional prior
being the importance density function, Eq.12 simplifies to
wj, o p(zk|x},). For this, every particle xj, is passed through
Eq.2 to produce a predicted observation z;, which is compared
to the real observation and used at the calculation of the
likelihood function p(z|x},). In simple terms, at every time
step k the weights are equal to the likelihood of the real-world
observation zy, given a realization of the predicted observation
z;, based on the sampled particle x}. Thus the importance
weights for each particle are calculated from the following:

N
W, = L(zi|z),) = Z exp((—0.5# (2 — 21.) * (2 — 21,)") /morm
i=1

(14)
where norm is a normalising constant which depends on
the measurements noise. The final step involves resampling,
whenever Ny is found to be smaller than Nyj,.. A single
iteration of the ROT-PF algorithm is given in Algorithm 1.

Algorithm 1 :ROT-PF Algorithm
Initialize
- Draw Initial Particles
for i =1to N do
xg ~ p(xo), (~ : denotes sampling from)
end for
Sequential Importance Sampling Step
- Sample Particles and Calculate Weights
for i =1to N do
Xj, ~ p(T|Tr—1)
wy, = p(zx|x},) (according to Eg.14)
end for
- Calculate total weight
t= Zfil d)lk
- Normalize weights
for i =1 to N do
wi =t 1wl
end for
Resampling Step
if Nefr < Nipr then
- Resample with replacement to obtain N new particles dis-
tributed according to p(zx|Zo.x)
end if

B. Range only Tracking Multiple Model Particle Filter Algo-
rithm ROT-MMPF

To estimate the state vector in the switching dynamical
model presented in Section IV-B2, a multiple model PF
algorithm is employed. The state vector in the multi-modal
case is an augmented state vector which contains both the state
X and the regime variable r;. The augmented state vector is
denoted as, y; = [xi rg]. Initial particles are drawn from two
distributions p(rg) and p(xo) which represent the system’s
initial knowledge regarding the system’s state. Particles for
the state xj are sampled from the transitional prior, in the
same way as in the ROT-PF case, while particles for the
regime variable are sampled according to the transitional
probability matrix II = [m,,]. The rule that is followed
is that, if ri_, = m, then 7} should be set to n with
probability m,,,. Similar to the ROT-PF algorithm, when a
new measurement vector becomes available the corresponding
weights for each particle x}, are computed using the likelihood
function p(zy | x%,ri).

The final step of the ROT-MMPF algorithm includes the
resampling step whenever this is necessary. An iteration of
the ROT-MMPF algorithm is given in Algorithm 2.

Algorithm 2 :ROT-MMPF Algorithm
Initialize
- Draw Initial Particles
for i =1to N do
ry ~ p(ro) (~: denotes sampling from)
xp ~ p(zo)
end for
Sequential Importance Sampling Step
- Sample Particles and Calculate Weights
for i =1to N do
r, ~ Tij
i, ~ p(aalwi 1)
wy, = p(zx|xy, r1,) (according to Eg.14)
end for
- Calculate total weight
t= Zf\]:l ﬁ)i
- Normalize weights
for i =1 to N do
wh =t 1wl
end for
Resampling Step
if Nefr < Nipr then
- Resample with replacement to obtain N new particles dis-
tributed according p(yx|Zo:x)
end if

VI. SIMULATION - RESULTS

Both the ROT-PF and the ROT-MMPF algorithms were
simulated in different conditions to evaluate their performance
in terms of tracking accuracy and robustness. In the simula-
tions conducted a single ground mobile target is the object
of interest. To acquire a range estimate from each of the
anchor nodes, the target should be within the communica-
tion reach of the anchor nodes. In practice, processing the
ranging measurements and inferring an estimation regarding



the target’s position requires a certain amount of time to be
devoted to that process. By reducing the time that the system
requires to infer an estimate, faster targets can be considered
for tracking. For the technology considered, the nodes are
able to communice within a range of 250m. As fas as the
the object’s maximum velocity is concerned, the upper bound
depends on the required time to gather and fuse the range
estimates from the anchor nodes and also the execution time
of the algorithm. However for the purposes of simulation, the
ranging estimates are considered to be instantly acquired.

A. Evaluating the ROT-PF algorithm

1) First Scenario: This section presents simulation results
of the ROT-PF algorithm. A wireless network consisting of
four anchor nodes is considered to be deployed. The coor-
dinates of the anchor nodes are, s; = [40m 60m],sy =
[40m 140m], s3 = [100m 60m], s4 = [100m 140m]. The state
vector of the target evolves in time as defined in Eq.5, while
the measurements are associated to the target’s state according
to Eq.2. The sampling period is set to Ty = lsec and the
system evolves for T' = 50sec. In the implementation of the
ROT-PF tracking algorithm N = 500 particles were used. The
measurements and state noise sources are considered to follow
zero mean Gaussian distributions. Specifically:

Wi & N(O, 0.312)
Vi & N(O, 0.414)

where I is the identity matrix. The target’s initial state is
xg = [0m Om 2m/s 4m/s]. Initial particles are sampled
from a Gaussian distribution with zero mean and covariance
matrix Sg = I4. The above system was simulated for a total
of L = 100 times and the root mean square error (RMSE) for
the position was calculated at each execution. The RMSE for
position is defined as follows:

T
1
RMSE =, | - ; (T — Test)? + (Y — Yest)? (15)

In Figure 2 and Figure 3 results from executing a single
run of the above system are presented. The RMSE for the
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Fig. 2. True and Filtered target trajectory - ROT-PF Scenario 1

exemplar run was calculated, RMSE = 0.9056m. The RMSE
for the total of 100 runs is illustrated in Figure 4(a). Only
in four runs the RMSE increases into unsatisfactory levels
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(a) x-axis velocity estimation
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y-axis velocity
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(b) y-axis velocity estimation

Fig. 3. Two-axis velocity estimation - ROT-PF Scenario 1

RMSE > 100m. In the majority of the executions, the RMSE
remains low (RMSE < 20m) which reveals the robustness of
the tracking system. The RMSE error can be further decreased
if the uncertainty of the system regarding the target’s initial
state is reduced. In Figure 4(b) the same system is simulated
for 100 runs, only this time initial particles are drawn from a
Gaussian distribution, with the same covariance matrix Sy but
with mean po = xo +N(0, 1.5%). The substantially improved
RMSE is due to the fact that the system has better knowledge
over the target’s initial condition.

2) Second scenario: A scenario of high initial uncertainty
and heavy clutter is considered. Figure 5 depicts the ability
of the ROT-PF algorithm to perform accurately under such
conditions. The anchor nodes are positioned in the same
coordinates as previously also the same number N = 500
of particles was used. The rest of the parameters for this case
are given in the following table:

Parameters
Wi N(O, 212)
Vi ./\/’(07 214)
mo | [0000]
Py I
To [2m 1m 2m/s 5m/s]
T 100 steps
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(a) RMSE for 100 simulation runs - po =0

Root Mean Square Error
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(b) RMSE for 100 simulation runs - uo = o + AN(0,1.52)

Fig. 4. RMSE for 100 simulation runs of the ROT-PF - Scenario 1
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Fig. 5. True and Filtered Trajectory - ROT-PF Scenario 2 - RMSE=2.22m

B. Evaluating the ROT-MMPF algorithm

In this section results from simulating two different sce-
narios with the ROT-MMPF algorithm are provided. The aim
of this algorithm is to enable our system to keep track of
manoeuvring targets which is usually the case in real-world
applications. The three-state model we employ in this case is
sufficient to provide adequate support for manoeuvring targets.

1) First Scenario: Four anchor nodes are considered, po-
sitioned at the following coordinates s; = [0m Om], sy =
[200m Om],s3 = [0m — 80m],s4 = [200m — 80m]|. The
simulation time is set to T" = 80sec, the sampling period to
T, = 1sec and the turning rate to w = 7 /4 rad/s. The number
of particles used in the implementation of the algorithm is
N = 1000. The noise sources are modeled as zero mean
additive Gaussian noise with distributions:

wy, o N(0,0.115)
Vi & ./\/-(07 14)

The regime variable is defined as a first order homogenous
Markov chain with transition probability m = 0.5 thus the
transition probability matrix is,

0.5 0.25 0.25

P(r¢|ri—1) = 0.25 0.5 0.25 (16)
0.25 0.25 0.5
The target’s actual initial state vector is xXg =

[0m Om 0.03m/s 0.04m/s]. Initial particles for the regime
variable ry are sampled with equal probability Py =
[0.333 0.333 0.333] (which is = 1/3 because there are
three possible regimes), while initial particles for the state xy
are drawn from a Gaussian distribution with zero mean and
covariance matrix:

001 0 0 0
0 001 0 0

So=19 0 0001 o0 an
0O 0 0 000l

The results from a single run of the above scenario are
illustrated in Figure 6 for the target’s trajectory and in Figure
7 for the target’s two-axis velocity. The RMSE was calculated

Target Trajectory
T T

y - coordinate (m)

#  Sensor Positions
real trajectory
<o filter estimate
@ initial position

-100

_120 | . . . . .
oo -50 0 50 100 150 200 250
X - coordinate (m)

Fig. 6. True and Filtered trajectory - ROT-MMPF Scenario 1

RMSE = 9.2992m.

2) Second Scenario: For this scenario the anchor nodes
are positioned at s; = [10m Om], sy = [50m Om],s3 =
[10m 25m], s4 = [50m 25m]. The duration of the simulation
is T = 80sec, the sampling period is Ts; = lsec and the
turning rate w = /3 rad/s. The number of particles used
in this scenario is the same as previously N = 1000. The
noise sources follow identical Gaussian distributions with zero
mean and covariance o,, = 0, = 0.1. The regime variable is
defined in a similar way as in the previous scenario, thus the
same transition matrix applies here and the target’s initial state
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(a) x-axis velocity estimation
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Fig. 7. Two-axis velocity estimation - ROT-MMPF Scenario 1

is 29 = [0m Om 3m/s 4m/s|. Finally, initial particles for
the state vector xj; are sampled from a zero mean Gaussian
distribution with covariance matrix;

01 O 0 0

(18)

Trajectory results from the simulation of this scenario are
illustrated in Figure 8, while velocity estimation is depicted in
Figure 9.

This scenario is also simulated for a total of 100 executions
and the RMSE is calculated in every run. In 61 of the exe-
cutions the RMSE remains below 100m, while 78 executions
demonstrate RMSE below 1000m. However in some occasions
the RMSE increases in high levels RMSE > 103m where
tracking is considered failed. Similar to the ROT-PF algorithm,
the RMSE in the ROT-MMPF algorithm can be reduced
by minimizing the uncertainty of the system regarding the
target’s initial state. The RMSE from a similar scenario, but
with initial particles drawn from a Gaussian distribution with
mean 1o = xg + N (0,1) and the same covariance matrix as
previously. The RMSE from 100 executions of this system is
presented in Figure 10(b). In 98 of the executions the RMSE
is calculated to be smaller than 1000m and in 92 execution
the RMSE is smaller than 100m.
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Fig. 8. True and filtered trajectory - ROT-MMPF Scenario 2
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Fig. 9. Two-axis velocity estimation - ROT-MMPF Scenario 2

VII. CONCLUSIONS AND FUTURE WORK

The prominent outcomes obtained from simulating the sys-
tem for a number of different scenarios indicate that accurate
tracking of manoeuvring ground targets can be achieved with
range-only measurements using WSNs. In the majority of
the simulations the RMSE is small proving the accuracy of
the tracking algorithm. Simulation results also indicate that
a factor which affects the accuracy of our system is the
system’s knowledge regarding the object’s initial state. In
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Fig. 10. RMSE for 100 simulation runs of the ROT-MMPF

addition, accuracy can be amended by employing a bigger
number of particles, subsequently increasing the computational
demand. The number of required particles in the proposed
system is kept small compared to other approaches. Different
to other approaches the proposed system does not require any
additional type of measurements in order to track manoeuvring
targets. As hardware becomes smaller in size and easier to
obtain, more challenges regarding commercial use of WSNs
will arise. Our future plans comprise of conducting research
along the direction of implementing a real-world, online track-
ing system. Specifically, our own laboratory experiments have
proved that ranging with up to 1m accuracy between two nodes
can be achieved with ToF techniques. Since accurate ranging
is feasible, integrating the algorithms and implementing the
tracking operation on WSNs hardware will be the evolution
of the work presented in this paper.
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