Robust \mathcal{H}_∞ Control for Model-Based Networked Control Systems with Uncertainties and Packet Dropouts

Dongxiao Wu1, Jun Wu1, Sheng Chen2

1Institute of Cyber-Systems and Control
Zhejiang University

2School of Electronics and Computer Science
University of Southampton

International Conference on Automation & Computing, 2009
Outline

1. Motivations
 - Networked Control Systems
 - Our Novelty

2. Problem Formulation
 - NCS Configuration
 - NCS Dynamics

3. Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design

4. Example
 - Plant and Network
 - H_{∞} Control Solution

5. Conclusions
Outline

1 Motivations
 - Networked Control Systems
 - Our Novelty

2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics

3 Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design

4 Example
 - Plant and Network
 - H_{∞} Control Solution

5 Conclusions
An NCS is a control system in which the control loop is closed via a shared communication network.

The advantages:
- Low installation cost.
- Reducing system wiring.
- Easy maintenance.

The inherited problems:
- Packet dropout.
- Packet delay.
- Bandwidth constraint.
Robust \mathcal{H}_∞ control has been investigated for the NCS with delays [8,13–15].

Most of existing works use fixed controller.

In Model-based NCS, the network is only located between sensor and controller [16,17].
Motivations

- Networked Control Systems
- Our Novelty

Problem Formulation

- NCS Configuration
- NCS Dynamics

Main Results

- Robust Stochastic Stability
- Synthesis of Robust Stabilisation Control
- Robust H_∞ Control Design

Example

- Plant and Network
- H_∞ Control Solution

Conclusions
Our Novelty

- Study robust \mathcal{H}_∞ control for NCS with packet dropouts.
- Consider the generic MB-NCS
 - the plant has time-varying norm-bounded parameter uncertainties;
 - packet dropouts occur in both the S/C and C/A channels.
Outline

1. Motivations
 - Networked Control Systems
 - Our Novelty

2. Problem Formulation
 - NCS Configuration
 - NCS Dynamics

3. Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_∞ Control Design

4. Example
 - Plant and Network
 - H_∞ Control Solution

5. Conclusions
Model Based NCS

Figure: Networked control system \hat{P}_K.
Plant Description

The plant \hat{P}:

\[
\begin{cases}
 x(k + 1) = [A + \Delta A(k)]x(k) \\
 + [B + \Delta B(k)]u(k) + B_w w(k), & \forall k \in \mathbb{N}.
\end{cases}
\]

The states $z(k) = Cx(k) + Du(k)$, $\forall k \in \mathbb{N}$.

The time-varying parameter uncertainties satisfy:

\[
[\Delta A(k) \Delta B(k)] = M F(k) [N_a \ N_b].
\]

with $F^T(k)F(k) \leq I$.

\[\text{Motivations}\] \[\text{Problem Formulation}\] \[\text{Main Results}\] \[\text{Example}\] \[\text{Conclusions}\]
Network Assumptions

- Packet dropouts indicators:
 \[
 \begin{align*}
 \theta_{k+1}^s & \in \{0, 1\}, \quad \text{in S/C channel;} \\
 \theta_k^a & \in \{0, 1\}, \quad \text{in C/A channel.}
 \end{align*}
 \]

 Then the system index \(r_k = f(\theta_{k+1}^s, \theta_k^a) \in \mathcal{N} \triangleq \{1, 2, 3, 4\} \).

- \(r_k \) is driven by Markov chain.

- TCP-like protocol.
Controller is running as:

\[
\hat{x}(k+1) = \theta^s_{k+1} x(k+1) + (1 - \theta^s_{k+1})(A\hat{x}(k) + Bu(k))
\]

\[
= \begin{cases}
 x(k+1), & \theta^s_{k+1} = 1, \\
 A\hat{x}(k) + Bu(k), & \theta^s_{k+1} = 0.
\end{cases}
\]

where \(u(k) = \theta^a_k \hat{u}(k) \) with \(\hat{u}(k) = K_{r_k} \hat{x}(k), \ r_k \in \mathcal{N} \).

State feedback gain matrices \(K_i, \ i \in \mathcal{N} \), but only \(K_3 \) and \(K_4 \) are needed, as \(\theta^a_k = 0 \) for \(i = 1, 2 \).
Motivations

1. Networked Control Systems
2. Our Novelty

Problem Formulation

2.1 NCS Configuration
2.2 NCS Dynamics

Main Results

3.1 Robust Stochastic Stability
3.2 Synthesis of Robust Stabilisation Control
3.3 Robust H_∞ Control Design

Example

4.1 Plant and Network
4.2 H_∞ Control Solution

Conclusions
NCS Dynamics

The NCS \hat{P}_K in the form of Markovian jump linear system:

$$
\begin{bmatrix}
\bar{x}(k + 1) \\
z(k)
\end{bmatrix} =
\begin{bmatrix}
\bar{A}_{r_k}(k) & \bar{B}_{r_k} \\
\bar{C}_{r_k} & 0
\end{bmatrix}
\begin{bmatrix}
\bar{x}(k) \\
w(k)
\end{bmatrix},
\quad r_k \in \mathcal{N}
$$

where $e(k) = x(k) - \hat{x}(k), \quad \bar{x}(k) \triangleq [x^T(k) \ e^T(k)]^T$.
NCS Dynamics

\[\overline{A}_i(k) = \Phi_i + \overline{M} \overline{F}(k)\Gamma_i, \quad i \in \mathcal{N}, \text{ where} \]

\[
\Phi_i = \begin{bmatrix}
A + \theta^a_k B K_i & -\theta^a_k B K_i \\
0 & (1 - \theta^s_{k+1}) A
\end{bmatrix},
\]

\[
\Gamma_i = \begin{bmatrix}
N_a + \theta^a_k N_b K_i & -\theta^a_k N_b K_i \\
(1 - \theta^s_{k+1})(N_a + \theta^a_k N_b K_i) & -(1 - \theta^s_{k+1})\theta^a_k N_b K_i
\end{bmatrix}.
\]

\[\overline{M} = \text{diag}\{M, M\}, \quad \overline{F}(k) = \text{diag}\{F(k), F(k)\}. \]

Only \(K_3 \) and \(K_4 \) are needed, as \(\theta^a_k = 0 \) for \(i = 1, 2 \).
Outline

1 Motivations
 - Networked Control Systems
 - Our Novelty

2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics

3 Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_∞ Control Design

4 Example
 - Plant and Network
 - H_∞ Control Solution

5 Conclusions
Robust stability

Theorem 1: The NCS \hat{P}_K with $w(k) \equiv 0$ and driven by the Markov chain $r_k \in \mathcal{N}$ is robustly stochastically stable if there exist scalars $\epsilon_i > 0$ and matrices $X_i > 0$ for $i \in \mathcal{N}$ such that $\forall i \in \mathcal{N}$

$$
\begin{bmatrix}
-X_i & X_i \Phi_i^T W_i & X_i \Gamma_i^T \\
* & \epsilon_i W_i - X & 0 \\
* & * & -\epsilon_i I
\end{bmatrix} < 0,
$$

where \overline{M}, Φ_i and Γ_i are given by the NCS dynamics, while

$$W_i = \begin{bmatrix}
\sqrt{\rho_{i1}} I & \sqrt{\rho_{i2}} I & \sqrt{\rho_{i3}} I & \sqrt{\rho_{i4}} I
\end{bmatrix},$$

$$\overline{W}_i = W_i^T \overline{M} \overline{M}^T W_i,$$

$$X = \text{diag}\{X_1, X_2, X_3, X_4\}.$$
Motivations

- Networked Control Systems
- Our Novelty

Problem Formulation

- NCS Configuration
- NCS Dynamics

Main Results

- Robust Stochastic Stability
- Synthesis of Robust Stabilisation Control
- Robust H_{∞} Control Design

Example

- Plant and Network
- H_{∞} Control Solution

Conclusions
Robust Stabilisation Control

Theorem 2: The NCS \hat{P}_K with $w(k) \equiv 0$ and driven by the Markov chain $r_k \in \mathcal{N}$ is robustly stochastically stable if there exist $\epsilon_i > 0$, $Q_i > 0$ and Y_i for $i \in \mathcal{N}$ such that $\forall i \in \mathcal{N}$

$$
\begin{bmatrix}
-\tilde{Q}_i & \tilde{\Phi}^T_i W_i & \tilde{\Gamma}^T_i \\
* & \epsilon_i W_i - \tilde{Q} & 0 \\
* & * & -\epsilon_i \mathbf{I}
\end{bmatrix} \triangleq \Theta_i < 0,
$$

where $\tilde{Q}_i = \text{diag}\{Q_i, Q_i\}$, $\tilde{Q} = \text{diag}\{\tilde{Q}_1, \tilde{Q}_2, \tilde{Q}_3, \tilde{Q}_4\}$,

$$
\tilde{\Phi}_i = \begin{bmatrix}
A Q_i + \theta^a_k B Y_i & -\theta^a_k B Y_i \\
0 & (1 - \theta^s_{k+1})A Q_i
\end{bmatrix},
$$

$$
\tilde{\Gamma}_i = \begin{bmatrix}
N_a Q_i + \theta^a_k N_b Y_i & -\theta^a_k N_b Y_i \\
(1 - \theta^s_{k+1})(N_a Q_i + \theta^a_k N_b Y_i) & -(1 - \theta^s_{k+1})\theta^a_k N_b Y_i
\end{bmatrix}.
$$

In this case, state feedback gain matrices $K_i = Y_i Q_i^{-1}$, $i = 3, 4$.
Outline

1 Motivations
 • Networked Control Systems
 • Our Novelty

2 Problem Formulation
 • NCS Configuration
 • NCS Dynamics

3 Main Results
 • Robust Stochastic Stability
 • Synthesis of Robust Stabilisation Control
 • Robust H_{∞} Control Design

4 Example
 • Plant and Network
 • H_{∞} Control Solution

5 Conclusions
Robust H_∞ Control

Theorem 3: Given a scalar $\gamma > 0$, the NCS \hat{P}_K driven by the Markov chain is robustly stochastically stable with disturbance attenuation level γ, if there exist scalars $\epsilon_i > 0$, matrices $Q_i > 0$ and Y_i for $i \in \mathcal{N}$ such that $\forall i \in \mathcal{N}$

$$
\begin{bmatrix}
-\tilde{Q}_i & 0 & \tilde{\Phi}_i^T W_i & \tilde{\Gamma}_i^T & \tilde{C}_i^T \\
* & -\gamma^2 I & B_i^T W_i & 0 & 0 \\
* & * & \epsilon_i W_i - \tilde{Q} & 0 & 0 \\
* & * & * & -\epsilon_i I & 0 \\
* & * & * & * & -I
\end{bmatrix} < 0,
$$

where $\tilde{C}_i = \begin{bmatrix} CQ_i + \theta_k^a D Y_i & -\theta_k^a D Y_i \end{bmatrix}$, W_i, \overline{W}_i, \tilde{Q}_i, \tilde{Q}, $\tilde{\Phi}_i$ and $\tilde{\Gamma}_i$ are given before.

In this case, state feedback gain matrices $K_i = Y_i Q_i^{-1}$, $i = 3, 4$.
Outline

1 Motivations
 • Networked Control Systems
 • Our Novelty

2 Problem Formulation
 • NCS Configuration
 • NCS Dynamics

3 Main Results
 • Robust Stochastic Stability
 • Synthesis of Robust Stabilisation Control
 • Robust H_∞ Control Design

4 Example
 • Plant and Network
 • H_∞ Control Solution

5 Conclusions
Plant and Network

- Unstable uncertain NCS of $x(t) \in \mathbb{R}^3$, $u(t) \in \mathbb{R}^2$, $z(t) \in \mathbb{R}$ and $w(t) \in \mathbb{R}$, with

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0.4 & 0.6 & 0.2 \\ 1 & 0.2 & -1.1 \end{bmatrix}, \quad B = \begin{bmatrix} 0.5 & 1 \\ 0.5 & 0.2 \\ 1 & 0.4 \end{bmatrix}, \quad B_w = \begin{bmatrix} 0.1 \\ 0.1 \\ -0.2 \end{bmatrix},$$

$$M = \begin{bmatrix} 0.1 \\ -0.1 \\ 0.2 \end{bmatrix}, \quad C = \begin{bmatrix} 0.2 & 0.3 & 0.3 \end{bmatrix}, \quad D = \begin{bmatrix} 0.7 & 0.9 \end{bmatrix},$$

$$N_a = \begin{bmatrix} 0.5 & 0.2 & 0.3 \end{bmatrix}, \quad N_b = \begin{bmatrix} 0.1 & 0.2 \end{bmatrix}.$$
Outline

1. Motivations
 - Networked Control Systems
 - Our Novelty

2. Problem Formulation
 - NCS Configuration
 - NCS Dynamics

3. Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_∞ Control Design

4. Example
 - Plant and Network
 - H_∞ Control Solution

5. Conclusions
Give disturbance attenuation level $\gamma = 0.45$.

According to Theorem 3, we can obtain ϵ_i and Q_i, $1 \leq i \leq 4$, as well as Y_3 and Y_4.

Thus, derive state feedback gain matrices

$$K_3 = \begin{bmatrix} 0.0004 & 0.0170 & 0.0331 \\ -0.0707 & -0.0964 & -0.1062 \end{bmatrix},$$

$$K_4 = \begin{bmatrix} -0.5959 & -0.1417 & 0.4485 \\ 0.3396 & -0.3326 & -0.5625 \end{bmatrix},$$

as the solution of robust H_∞ control problem.
We have studied a generic class of model-based NCSs, where

- the plant has time-varying norm-bounded uncertainties;
- both the sensor-to-controller and controller-to-actuator channels experience random packet dropouts.

We have derived sufficient conditions, in the form of LMIs, for

- guaranteeing the robust stochastic stability;
- synthesising the stochastic stabilisation controller;
- designing the H_∞ controller.