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Abstract— Behavioural theory is typically developed on the
double time axis. On the other hand it is known that there
are intrinsic difficulties with double time axis theorems in the
input output context. This paper illustrates how the behavioural
approach avoids these intrinsic difficulties.

1. INTRODUCTION

In [3] it is shown that classical notions of stability and
causality lead to problematic inconsistencies when input-
output systems defined over a doubly infinite time axis are
considered. On the other hand, behavioural theory [5], [8],
[9], [10] has long been traditionally developed on the double
time axis. The purpose of this paper is to revisit the Georgiou-
Smith paradox from the vantage point of behavioural theory
to see how a consistent ‘double time axis’ theory can be
developed. In so doing, we will see that the behavioural
approach avoids the paradox due to the inclusion of the ‘free
response’ in the basic object of study (behaviours include
autonomous sub-behaviours, contrast to the graph object in
input-output theories which exclude ‘free responses’).

For concreteness, we include all the axiomatic definitions
used in the behavioural development; note that this trajectory
based treatment is deliberate and necessary: we want the
results to be applied to systems which cannot be described
by (finite dimensional) differential or difference behaviours as
is common in most behavioural approaches. Indeed the basic
example of study in this paper, namely the set of input/output
pairs specified by the operator (2.1) does not form a differ-
ential behaviour. From a behavioural point of view ([5], [8],
[9], [10]), the approach is especially fundamental. Much has
been made of the intrinsic nature of behavioural definitions
and the need for ‘representation free’ approaches.

2. THE INTRINSIC DIFFICULTIES OF THE DOUBLE TIME

AXIS

The paper [3] considered the following causal and unstable
systemPh : L2

loc(R) → L2
loc(R), defined by the convolution:1

Ph : u 7→ y : y(t) =

∫ ∞

−∞

h(t − τ)u(τ) dτ = (h ∗ u)(t),

(2.1)
whereh(t) = exp(t) for t ≥ 0 and 0 otherwise. This system
has transfer function 1

s−1 . The interconnection ofPh with
a controllerC implementing negative unity feedback with
gain greater than one as in Figure 1 was considered. It was
shown [3] that if such a closed loop is considered to be well
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1f ∈ L2

loc
(R) if for all compactΩ ⊂ R, f |Ω ∈ L2(Ω).

posed and stable (in the sense that the (single valued) map
Π: L2(R+) → L2(R+) defined by

Π:

(

u0

y0

)

7→

(

u1

y1

)

exists (and necessarily has finite induced norm)), then neces-
sarily the classicalL2(R) graph ofPh is closed. It was further
shown in [3] that the trajectories

ũ(t) =

{

exp(−t) t ≥ 0

0 t < 0
,

ỹ(t) =

{

− 1
2 exp(−t) t ≥ 0

− 1
2 exp(t) t < 0

,

can be obtained as the limit of a sequence of trajectories
lying in the L2(R) graph of Ph, which is a contradiction
since this solution does not satisfy the relation (2.1). This is a
contradiction, and hence one is led to the conclusion that this
system is not stabilizable under the conventional definitions.
Furthermore it can be shown [3] that ifw0 = (ũ, ỹ)T acts
as the disturbance to the closed loop[Ph, C], where C is
negative unity feedback in Figure 1, then there is no solution
w1 = (u1, y1)

T .
The approach considered in [6] identifies the operatorPh

defined by (2.1) with itsL2(R) closureP̄h. In this case, the
closure exists and is the (stable) anti-causal operatorP̄h =
Pg : L2(R) → L2(R), where

Pg : u 7→ y : y(t) =

∫ ∞

−∞

g(t − τ)u(τ) dτ = (g ∗ u)(t),

(2.2)
where g(t) = − exp(t) for t ≤ 0 and zero otherwise. In
[3], the identification of these two input-output systems is
interpreted as ‘more or less amount[ing] to abandoning any
notion of causality’, and it was stated that ‘this is not a natural
option, however, if the direction of time is well-defined’. It
has the additional problem that̄Ph is stable, whose response
on the bounded inputu(t) = 1 if 0 ≤ t ≤ 1, u(t) = 0
otherwise is the bounded output signal:

y(t) =











0 if t > 1,

1 − exp(1 − t), if 0 ≤ t ≤ 1,

exp(t) − exp(1 + t), if t < 0.

We view this as problematic, sincePh itself is defined as an
operatorL2(R) → L2

loc(R), with the following unbounded
output response to the above input:

y(t) =











exp(t) − exp(1 + t) if t > 1,

1 − exp(t), if 0 ≤ t ≤ 1,

0, if t < 0.

These problems are only avoided in the case whereby the
input-output operator has causal closure. In the discrete



setting, the class of such transfer functions has been precisely
characterised in [4] as the class of all Smirnoff functions;a
class which includes all causal stable operators and excludes
all causal unstable operators (as in the example considered);
thus indicating that intrinsic difficulties with the input-output
theory overR.

The paradox can therefore be summarized as the inability
to consider the system defined by the operatorPh as both
causal and stabilizable. Using the conventional definitions,
one is limited to considering operators with causal closure.

We now consider a behavioural approach to this problem:
seeking an alternative way to naturally define a system from
the underlying operatorPh, which in turn does permit us to
consider the system to be both causal and stabilizable.

3. BEHAVIOURAL DEFINITIONS

In this section we follow the development of [1] where this
approach was used to produce a trajectory level behavioural
approach to the gap metric and robust stability (see also [2]).
Let T denote the time set, taken throughout to be eitherZ or
R, and letT+ = N if T = Z andT+ = R+ if T = R. For
n ≥ 1, an n-valued behaviourB is a subset of the set of all
mapsT 7→ R

n, i.e. B ⊂ {w : T → Rn}. The shift operator
σt, t ∈ T is defined:σtw(·) = w(· + t).

Definition 3.1: Let B be a behaviour. Then:

1) B is said to be linear ifB is a vector space.
2) B is said to be shift invariant (time invariant) ifw ∈ B

implies σtw ∈ B for all t ∈ T .
Smooth differential behaviours are linear, shift invariant,

continuous-time behaviours which can be expressed as the
kernel of a differential operator, ie. those for which there
exists a polynomial valued matrixR s.t. that

B =

{

w ∈ C∞ | R

(

d

dt

)

w = 0

}

. (3.3)

Observe that in this note we will be interested in non-
differential/difference behaviours, for example, systems in-
corporating a time delay.

Definition 3.2: A behaviourB is said to have memoryl ≥
0 if for any w1, w2 ∈ B with w1|[a,a+l] = w2|[a,a+l] and
a ∈ T , the trajectory

w3(t) =

{

w1(t) if t ≤ a,

w2(t) if t ≥ a,

also lies inB.
If a behaviour has memory0 ≤ l < ∞ it is said to have

finite memory, ifl = 0 then it is memoryless. Note that a non-
memoryless continuous time differential behaviour has finite
memory, andl > 0 can be taken to be arbitrarily small; a
discrete time behaviour also has finite memory, and herel ≥ 0
depends on the system order. The minimal memoryl0 ≥ 0 of
a behaviourB is the largest number s.t.B has memoryl for
all l > l0. Note that the minimum is not necessarily attained.

The standard definition of autonomy is that behaviourB is
said to be autonomous if for anyw1, w2 ∈ B, w1|(−∞,0] =
w2|(−∞,0] implies w1 = w2. We relax this definition as
follows:

Definition 3.3: A behaviourB with minimal memoryl0 ≥
0 is said to be autonomous if for anyw1, w2 ∈ B, and any

interval V of length greater thanl0, w1|V = w2|V implies
w1|T = w2|T .

Non-autonomy of a behaviour with finite memory is thus
just the existence of a trajectory in the behaviour whose
support has complement containing an interval of length
greater thanl0, eg. a compactly supported trajectory.

4. STABILITY

Stability is determined by the signal spaces involved. We
will consider the spacesLp(T , Rn) with 0 ≤ p ≤ ∞. In
the case whenT = R, it is the standardLp spaces such as
L2(R, Rn) and L∞(R, Rn) for continuous-time signals. In
the case whenT = Z, it becomes the standardlp spaces
used for discrete signals.

Given a general normed signal space (say)Y of signals
from T or T+ to R

n, the corresponding extended spaceYe is
defined as:

Ye = {y : I → R
n : Tτy ∈ Y for all τ ∈ I+},

whereI = T or T+ subject to on which set the spaceY is
defined, andTτ is the truncation operator, that is(Tτy)(t) =
y(t) for t ≤ τ and 0 fort > τ .

Since this section, the behaviours considered will be re-
stricted to be within the extended signal spacesLp

e :=
Lp

e(T , Rn), 1 ≤ p ≤ ∞, i.e., Lp behaviours or subsets
of Lp

e. As a shorthand we denote byX = Lp(T+) =:
Lp(T+, Rn), 1 ≤ p ≤ ∞. So Xe = Lp

e(T+). We remark that
when the results do not need a normed structure on the signal
spaces, our discussions and definitions also remain valid for
C∞ behaviours (withX = C∞(T+)).

Recall that an operatorP : Xe → Ye is said stable is
P (X) ⊂ Y . P is called causal ifTτPu = TτPTτu for all
τ ≥ 0 andu ∈ Xe, givenXe, Ye two signal spaces.

We generalise the standard behavioural definition of stabil-
ity for autonomous systems as follows:

Definition 4.1: An autonomous systemBaut is said to be
X-stable if for anyw ∈ Baut, w|[0,∞) ∈ X .

For non-autonomous systems, we adopt the following sta-
bility concept for behaviours with i/o partition (see [5]),which
captures the notion of ‘whatever the past, given a bounded
future input, the future output is bounded’:

Definition 4.2: A behaviourB with i/o partitionu|y is X-
stable if for all(u, y) ∈ B with u|T+

∈ X we havey|T+
⊂ X .

WhenX is given, throughout the paper we refer to the notion
of ‘X-stability’ simply as ‘stability’.

We now introduce a notion of uniform stability, which
captures the property that in addition to stability, there is
a uniform gain between future inputs and outputs when the
past is zero. This notion of stability is closely related to the
dissipativity descriptions of stability in [11], [7].

Definition 4.3: A linear behaviour with i/o partitionu|y is
uniformly stable if

1) B is stable.
2) There exists a bounded operatorΨ: X → X such that

for all (u, y) ∈ B such thatu|T+
∈ X , (u, y)|T

−

= 0 it
follows thaty = Ψ(u).

Definition 4.4: A behaviourB is said to be stabilizable
if for all w1 ∈ B, there existsw2 ∈ B s.t. w1|(−∞,0] =
w2|(−∞,0] andw2|[0,∞) ∈ X .



5. INTERCONNECTIONS

We are primarily interested in the standard feedback inter-
connections shown in Figures 1 and 2.

u0

u1 y1

P

C y0

u2 y2

−

+

+

−

Fig. 1. The closed-loop.

BP

BC

w0

w1

w2

Fig. 2. The interconnected behaviours:wi = (ui, yi)T , i = 0, 1, 2.

Definition 5.1: Given a plant behaviourBP , a controller
behaviourBC and interconnection behaviourBI :

BI = {(w0, w1, w2)
T ∈ Xe | w0 = w1 + w2} (5.4)

we define the closed loop behaviourBP∧IC as follows:

BP∧IC = {(w0, w1, w2)
T ∈ BI | w1 ∈ BP , w2 ∈ BC}.

To ensure uniqueness of solutions of the closed loop
(modulo the autonomous part of the behaviour) we adopt the
following definition:

Definition 5.2: The extended graphGB of B is defined to
be

ZB := {w ∈ B|R+
| v ∈ B, w|R+

= v|R+
, v|(−∞,0] = 0}.

Definition 5.3: Given a plant behaviourBP , a controller
behaviourBC and interconnection behaviourBI (5.4), the
behaviourBP∧IC is said to be well posed if

Xe = ZBP ⊕ZBC (5.5)
This captures the idea that for the interconnection of

behaviours with zero past, ‘w0 is an input, and for any input
w0, there exist unique internal signalsw1, w2’.

Definition 5.4: A controller behaviourBC is said to be a
stabilizing controller for a plant behaviourBP if BP∧IC is
stable.

6. THE DOUBLE TIME AXIS PARADOX IN THE

BEHAVIOURAL CONTEXT

Let us consider the simplest behaviour associated with the
operator (2.1):

Bio =

{(

u

y

)

∈ L2
loc(R) × L2

loc(R) : y = Phu

}

. (6.6)

By linearity the input-output model (2.1) enforcesu = 0
implies y = 0, henceBio has no non-trivial autonomous
sub-behaviour. By the natural inclusion of such autonomous
sub-behaviours, and with the corresponding relaxations ofthe
notions of causality, well-posedness and stability, the example
can be reconsidered as follows.

Let BPh denote the smallest differential behaviour contain-
ing Bio. It can be observed thatBPh can be expressed by the
following (minimal) kernel representation:

BPh =
{

w ∈ L2
loc(R) | [−1 s − 1] w = 0

}

,

wheres = d
dt

, where solutions are interpreted in the weak
sense inL2

loc(R) (rather thanL2
e(R)) to avoid any possible

implicit imposition of a time-direction. For anyy0 ∈ R, u ∈
L2

loc(R), write

L(y0, u) = y0 exp(t) +

∫ t

−∞

exp(t − τ)u(τ) dτ.

The behaviourBPh can be explicitly expressed as:

BPh =

{

(

u

y

)

∈ L2
loc(R)

∣

∣

∣

∣

∣

u ∈ L2
loc(R), y0 ∈ R,

y = L(y0, u)

}

.

In terms of the definitions given in this paper, this behaviour
is indeed stabilizable, and negative unity feedback with a gain
greater than one provides a well-posed stabilizing intercon-
nection: if

BC = {w ∈ L2
e(R+) | w = (u, y)T , u(t) = −ky(t)}

thenBPh∧IC is (uniformly) stable fork > 1. It is important
to observe that

(

ũ

ỹ

)

=

(

ũ

exp(t) +
∫ t

−∞
exp(t − τ)ũ(τ) dτ

)

∈ BPh ∩ L2(R),

since (ũ, ỹ)T can be explained by the sum of the unforced
solution

(0, exp(·))T

and the forced solution

(ũ,

∫ t

−∞

exp(t − τ)ũ(τ) dτ)T .

It is important to observe that the approach developed in
this paper provides an alternative approach to addressing the
classical problems of doubly infinite time axis. The approach
taken here is perhaps half way between a double and a half
line time axis, in that signals are defined over the whole ofR,
but stability notions are related boundedness of signals when
restricted toR+. Only in the case of uniform stability do we
consider an induced norm and a zero past. The notion of well-
posedness again restricts attention to the sub-behaviour with
a zero past, and importantly does not impose uniqueness of
solutions:(w0, w1, w2), (w0, v1, v2) ∈ BPh∧C does not imply
(w1, w2) = (v1, v2) in general.

In common with these other approaches to resolving the so-
called ‘Georgiou-Smith’ paradox, the procedure of identifying
the convolution system (2.1) with the smallest differential



behaviour containing the same input-output pairs also iden-
tifies the same behaviourBP = BPh = BPg to the anti-
causal input-output system (2.2) as it is easily verified that
BP contains all trajectories(u, y) ∈ L2

loc satisfying (2.2)2.
However, the consideration ofBP permits us to maintain a
sensible notion of causality as follows:

Definition 6.1: A behaviourB with input-output partition
(u, y) is said to be causal if

Tτu1 = Tτu2 =⇒ TτBu1
= TτBu2

whereBu = {w ∈ B | ∃y s.t. w = (u, y) ∈ B}.
This can be interpreted as stating that the set of all past

trajectories which can be generated from a particular past
input cannot be affected by changing the future input, and
represents a generalisation of the notion of a causal operator
(where the non-uniqueness of the output given the input
is suitably accounted for). We can now observe thatBP

indeed preserves causality, and we have thus arrived at a
position whereby we can consider a suitable treatment of
the system (2.1) in which the physical object under study
can be thought of as causal and stabilizable. We find the
explanation of trajectories of the system as a combination of
an autonomous unforced sub-behaviour and a causal input to
be more in line with physical thinking than the interpretation
of the trajectories arising from a non-causal input to a single
valued operator.
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