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Abstract— Behavioural theory is typically developed on the posed and stable (in the sense that the (single valued) map
double time axis. On the other hand it is known that there T17. L*(R,) — L%*(R.) defined by
are intrinsic difficulties with double time axis theorems in the
input output context. This paper illustrates how the behavoural I ( Uo ) s ( U1 >
approach avoids these intrinsic difficulties. ‘ Y0 Y1

1. INTRODUCTION exists (and necessarily has finite induced norm)), thensece
In [3] it is shown that classical notions of stability andSarily the classical?(R) graph of P, is closed. It was further

causality lead to problematic inconsistencies when inpu?—hoWn in [3] that the trajectories

output systems defined over a doubly infinite time axis are ~ exp(—t) t>0

considered. On the other hand, behavioural theory [5], [8], (t) = 0 t <0’

[9], [10] has long been traditionally developed on the deubl

time axis. The purpose of this paper is to revisit the Geargio R —Lexp(—t) t>0

Smith paradox from the vantage point of behavioural theory gt) = —Lexp(t) <0’

to see how a consistent ‘double time axis’ theory can be 2 P

developed. In so doing, we will see that the behaviourdlan be obtained as the limit of a sequence of trajectories

approach avoids the paradox due to the inclusion of the ‘fréging in the L?(R) graph of P, which is a contradiction

response’ in the basic object of study (behaviours includgince this solution does not satisfy the relation (2.1)sTisia

autonomous sub-behaviours, contrast to the graph objectQﬁntradiCtion, and hence one is led to the conclusion thst th

input-output theories which exclude ‘free responses’). system is not stabilizable under the conventional defindtio
For concreteness, we include all the axiomatic definitionSurthermore it can be shown [3] that ify = (@, )" acts

used in the behavioural development; note that this trajgct as the disturbance to the closed lo@p,, C], where C' is

based treatment is deliberate and necessary: we want figgative unity feedback in Figure 1, then there is no satutio

results to be applied to systems which cannot be described = (u1,y1)".

by (finite dimensional) differential or difference behawieas ~ The approach considered in [6] identifies the operdtpr

is common in most behavioural approaches. Indeed the basiefined by (2.1) with itsL.?(R) closureP,,. In this case, the

example of study in this paper, namely the set of input/autp§losure exists and is the (stable) anti-causal opergjor-

pairs specified by the operator (2.1) does not form a diffe’?; : L*(R) — L*(R), where

ential behaviour. From a behavioural point of view ([5],,[8]

[9], [10]), the approach is especially fundamental. Muck ha Pg: u—y : y(t) = / g(t = T)u(r) dr = (g *u)(t),

— 00

been made of the intrinsic nature of behavioural definitions (2.2)

and the need for ‘representation free’ approaches. where g(t) = —exp(t) for t < 0 and zero otherwise. In
[3], the identification of these two input-output systems is
interpreted as ‘more or less amount[ing] to abandoning any

AXIS i . . L
. . notion of causality’, and it was stated that ‘this is not aunal
The paper [3] considered the following causal and unstablg i “however, if the direction of time is well-definedt. |

systemp, : L, (R) — Lf;.(R), defined by the convolutioh: 155 the additional problem thé, is stable, whose response
o0 on the bounded input(t) = 1if 0 <t < 1, u(t) =0
Prru—y @oy(t) = /_OO h(t = 7)u(r) dr = (h*u)(t),  otherwise is the bounded output signal:

2.1)
whereh(t) = exp(t) for t > 0 and O otherwise. This system ]
has transfer functionl;. The interconnection o, with y(t) = 41 —exp(l — 1), ifo<t<1,
a controllerC' implementing negative unity feedback with exp(t) —exp(1+1t), ift<0.

gain greater than one as in Figure 1 was considered. It W@&, yiew this as problematic, sind@, itself is defined as an
shown [3] that if such a closed loop is considered to be WereratorLg(R) — L2 (R), with the following unbounded

loc

output response to the above input:

oo

2. THE INTRINSIC DIFFICULTIES OF THE DOUBLE TIME
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loc



setting, the class of such transfer functions has beensglgci interval V' of length greater thady, w1|y = ws|y implies
characterised in [4] as the class of all Smirnoff functioas; wi|r = wa|r.

class which includes all causal stable operators and egslud Non-autonomy of a behaviour with finite memory is thus
all causal unstable operators (as in the example consigerejdst the existence of a trajectory in the behaviour whose
thus indicating that intrinsic difficulties with the inpotstput  support has complement containing an interval of length
theory overR. greater thariy, eg. a compactly supported trajectory.

The paradox can therefore be summarized as the inability
to consider the system defined by the operd®ras both
causal and stabilizable. Using the conventional definition Stability is determined by the signal spaces involved. We
one is limited to considering operators with causal closure will consider the space”(7,R") with 0 < p < oco. In

We now consider a behavioural approach to this problenthe case wherr” = R, it is the standard? spaces such as
seeking an alternative way to naturally define a system froh®(R,R™) and L>(R,R™) for continuous-time signals. In
the underlying operatoP,, which in turn does permit us to the case wher¥ = Z, it becomes the standaid spaces
consider the system to be both causal and stabilizable.  used for discrete signals.

Given a general normed signal space (s&Eypf signals
from 7 or 7, to R™, the corresponding extended spageis

In this section we follow the development of [1] where thisdefined as:
approach was used to produce a trajectory level behavioural "
approach to the gap metric and robust stability (see algo [2] Ye={y: I -R":TrycYforallr e},

Let 7 denote the time set, taken throughout to be either \whereZ = 7 or 7, subject to on which set the spateis

R, and let7y =N if 7 =Z andT, = Ry if 7 =R. For defined, andr}, is the truncation operator, that (§.y)(t) =
n > 1, ann-valued behaviouB is a subset of the set of all (1) for ¢ < + and 0 fort > r.

maps7 — R", i.e. B C {w: 7T — R"}. The shift operator  gince this section, the behaviours considered will be re-

4. STABILITY

3. BEHAVIOURAL DEFINITIONS

v, t €T is definedioyw(-) = w(- +1). stricted to be within the extended signal spadgs :=
Definition 3.1: Let 5 be a behaviour. Then: LP(T,R"),1 < p < oo, i.e., L? behaviours or subsets
1) B is said to be linear i3 is a vector space. of L2. As a shorthand we denote h¥ = LP(7;) =:
2) B is said to be shift invariant (time invariant)dif ¢ B LP(7,,R"),1 < p < 00. S0 X, = LP(7}). We remark that
implieso;w € B forall t € 7. when the results do not need a normed structure on the signal

Smooth differential behaviours are linear, shift invatjan spaces, our discussions and definitions also remain valid fo
continuous-time behaviours which can be expressed as the° behaviours (withX = C>°(7,)).
kernel of a differential operator, ie. those for which there Recall that an operatoP : X, — Y. is said stable is

exists a polynomial valued matrik s.t. that P(X) CY. P is called causal ifl; Pu = T, PT,u for all
d >0 andu € X,, given X., Y, two signal spaces.
B = {w €C”|R (E) w= 0} - (3.3) We generalise the standard behavioural definition of stabil

ity for autonomous systems as follows:

Observe that in this note we will be interested in non- Definition 4.1: An autonomous syster,.; is said to be
differential/difference behaviours, for example, system- X _stable if for anyw € Baut, Wo.00) € X.

corporating a time delay. For non-autonomous systems, we adopt the following sta-
Definition 3.2: A behaviour is said to have memory>  pility concept for behaviours with i/o partition (see [5)hich
0 if for any wi,ws € B With w1l(,a41) = w2|jaatyy @A captures the notion of ‘whatever the past, given a bounded
a € T, the trajectory future input, the future output is bounded:
wi(t) ift<a Definition 4.2: A behaviour with i/o partitionu|y is X-
ws(t) = { o stable if for all(u, y) € B with u|7, € X we havey|r, C X.
wa(t) ift>a, When X is given, throughout the paper we refer to the notion
also lies inB. of * X -stability’ simply as ‘stability’.

If a behaviour has memorty < I < oo it is said to have We now introduce a notion of uniform stability, which
finite memory, ifl = 0 then it is memoryless. Note that a non-captures the property that in addition to stability, these i
memoryless continuous time differential behaviour hageini @ uniform gain between future inputs and outputs when the
memory, and > 0 can be taken to be arbitrarily small; aPast is zero. This notion of stability is closely related he t
discrete time behaviour also has finite memory, and her@  dissipativity descriptions of stability in [11], [7].
depends on the system order. The minimal menigey 0 of Definition 4.3: A linear behaviour with i/o partition|y is
a behaviour is the largest number sB has memory for ~ uniformly stable if
all [ > ly. Note that the minimum is not necessarily attained. 1) 5 is stable.

The standard definition of autonomy is that behaviBus 2) There exists a bounded operator X — X such that
said to be autonomous if for any;,ws € B, w1|(—oc,0] = for all (u,y) € B such thatu|7, € X, (u,y)|7. =0t
Wa|(—oo,0) iIMplies wy = wz. We relax this definition as follows thaty = ¥ (u).
follows: Definition 4.4: A behaviour 5 is said to be stabilizable

Definition 3.3: A behaviour3 with minimal memoryl, > if for all w; € B, there existswy € B S.t. wi|(—oo,0 =
0 is said to be autonomous if for any;, w, € B, and any ws|(—s,0) andws|jp,oc) € X.



5. INTERCONNECTIONS By Iinearity the input-output model (2.1) enforces= 0
We are primarily interested in the standard feedback intet?plies y = 0, henceB;, has no non-trivial autonomous
connections shown in Figures 1 and 2. sub-behaviour. By the natural inclusion of such autonomous
sub-behaviours, and with the corresponding relaxatioribef
notions of causality, well-posedness and stability, thengxe
can be reconsidered as follows.
+ W hn Let B+ denote the smallest differential behaviour contain-

i O P ing Bi.. It can be observed th#™ can be expressed by the
- following (minimal) kernel representation:
- B ={we L} (R)| [-1s—1Jw=0},
C O Yo
s ye  + where s = dt, where solutions are interpreted in the weak
sense inLi (R) (rather thanL?(R)) to avoid any possible
implicit imposition of a time-direction. For anyy € R, u €
Fig. 1. The closed-loop. leoc(R)' write
t
IE L(yo,u) = yoexp(t) + / exp(t — 7)u(r) dr.
w The behaviou3™ can be explicitly expressed as:
1
O«—— wo BPh' _ < > cl R u € LlOC(R)’yO € Ra )
{ y loc( ) Y= L(yo,U)
w2
In terms of the definitions given in this paper, this behawiou
B¢ is indeed stabilizable, and negative unity feedback withia g
greater than one provides a well-posed stabilizing interco
Fig. 2. The interconnected behaviouts; = (u;,v;)T, i =0,1,2. nection: if
- | _ C={we LIRy)|w=(uy)", ult) = —ky(t)}
Definition 5.1: Given a plant behaviouB”, a controller _ ) o
behaviourBS and interconnection behaviois!: then BP»"1¢ s (uniformly) stable fork > 1. It is important
; - to observe that
B = {(wo,wl,wg) e X, | wo = wy + ’wg} (54) _ a
u
we define the closed loop behavioBf"'¢ as follows: ( 7 ) = ( exp(t) + [ exp(t — r)i(r) dr )
BPMC = {(wo, wy, wz)T € B | wy € BY, wy € BC}. € BP N L2(R),

To ensure uniqueness of solutions of the closed loop
(modulo the autonomous part of the behaviour) we adopt tisnce (,7)” can be explained by the sum of the unforced
following definition: solution

Definition 5.2: The extended grapfs of B is defined to (0, exp(:))”
be

and the forced solution

Zi —{U)EB|R+|’U€B ’LU|R+—’U|R+, IS_ .

Definition 5.3: Given a plant behaviouB", a controller (ﬁ’/ exp(t — 7)ii(r) dr)T.
behaviourB¢ and interconnection behaviow#’ (5.4), the —o0

O s e \
behaviourB™" ™ is said to be well posed if It is important to observe that the approach developed in

X, = Zgr ® Zpo (5.5) this paper provides an alternative approach to addressig t
This captures the idea that for the interconnection dflassical problems of doubly infinite time axis. The apploac
behaviours with zero pastw} is an input, and for any input taken here is perhaps half way between a double and a half
wyp, there exist unique internal signals , ws’. line time axis, in that signals are defined over the whol®& pf
Definition 5.4: A controller behaviou3€ is said to be a but stability notions are related boundedness of signanwh
stabilizing controller for a plant behavio##” if B”"C is restricted toR . Only in the case of uniform stability do we
stable. consider an induced norm and a zero past. The notion of well-
posedness again restricts attention to the sub-behaviithur w
6. THE DOUBLE TIME AXIS PARADOX IN THE . : .
a zero past, and importantly does not impose uniqueness of
BEHAVIOURAL CONTEXT P AC .
solutions:(wo, wy, ws), (wo, v1, v2) € B¢ does not imply
Let us consider the simplest behaviour associated with ttvgjl ws) = (v1,v2) in general.
operator (2.1): In common with these other approaches to resolving the so-
called ‘Georgiou-Smith’ paradox, the procedure of ideyirif)
Bio = {( y ) € Lige(®) x Lino(R) = y = Phu}' 66)  the convolution system (2.1) with the smallest differentia



behaviour containing the same input-output pairs also-iden
tifies the same behavious” = B = Bfs to the anti-
causal input-output system (2.2) as it is easily verified tha
BT contains all trajectoriegu,y) € L2 . satisfying (2.2).

loc

However, the consideration &” permits us to maintain a
sensible notion of causality as follows:

Definition 6.1: A behaviour8 with input-output partition
(u,y) is said to be causal if

Trui = Trus — T.,-Bul = TTBU2

whereB, = {w € B| Jy s.t. w = (u,y) € B}.

This can be interpreted as stating that the set of all past
trajectories which can be generated from a particular past
input cannot be affected by changing the future input, and
represents a generalisation of the notion of a causal aperat
(where the non-uniqueness of the output given the input
is suitably accounted for). We can now observe tidt
indeed preserves causality, and we have thus arrived at a
position whereby we can consider a suitable treatment of
the system (2.1) in which the physical object under study
can be thought of as causal and stabilizable. We find the
explanation of trajectories of the system as a combinatfon o
an autonomous unforced sub-behaviour and a causal input to
be more in line with physical thinking than the interpregati
of the trajectories arising from a non-causal input to alsing
valued operator.
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2Importantly howeverB” also includes unbounded trajectories such as
(0,exp(+))T which are neither of the forngu, Pnu)T nor (u, Pyu).



