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Abstract— A common problem in nonlinear control is the states that if the linearisation is stable, then the noaline
need to consider systems of high complexity. Here we con- plant is locally stable.

sider systems, which although may be low order, have high : : .
complexity due to a complex right hand side of a differential The approach we use is the grounded in the nonlinear gap

equation (e.g. a right hand side which has many terms — such Metric theory [1], [3], [7], [8]: this is utilised to providehe
systems arise from coordinate transformations in construtve  expliciter error bounds. Furthermore, Fréchet diffeiaatof
nonlinear control designs). This contribution develops a ¥s-  smooth co-prime factors provide good local approximants in
tematic method for the reduction of this complexity, complée  the gap metric. Bounding the gap between the polynomial

with error bounds. In the case when the underling nonlinear . : e
system input/output operator is stable and differentiable the system and the original nominal plant, sacrificing global

operator Taylor expansion, truncated after a finite number d stabil?ty for semi-global Stab.ility and ap_plying gap robus
terms, is taken as the approximation. If the nonlinear systmm  stability approaches should yield the desired resultsttogy
i/lo operator is not stable, but admits a coprime factorizatons, with estimations of the basin of attraction. It is anticigxht

g‘e Jaylo(;_ ap%oximatiog its madc;:h to b?th co_p:ime tfactors.d this will provide a systematic and theoretically grounded
y bounding the gap between the polynomial system an - :

the original nominal plant, and applying gap robust stability appr(_)ach to compIeX|t¥ reduction. .
approaches, it is proved that local stability of approximaion It is noted that Weierstrass theorem based polynomial

implies the local stability of the underlining nonlinear systems, ~approximations to general nonlinear operators have been
and explicit robust stability margins and performance bourds  studied in [9], [10], [11] and references therein, for which
obtained. For systems specified by a finite dimensional first the domain needs to be compact and the approximation is in

order differential equation, the first order approximant is the that t Lo ible t lculat
system linearisation and the higher order approximants hae a sense that system gain IS Impossibie 1o calculate.

greater state dimension but with polynomial right hand sides. In Section 2, we present with some preliminaries on signal
spaces and control systems. We also recall the definition of
1. INTRODUCTION Fréchet differentiability and some of its properties thait

In linear control, model order reduction plays an importanlrt’e used in this paper. In section 3, approximants and robust

role in reducing the complexity (e.g. order) of control de_stability margin for stable and differentiable i/o operatwill

signs. In nonlinear control the need for complexity redureti be discussed. When the operators are given by a differential

arises from both model order and the complexity of thgquation, the approximant is calculated explicitly in gt

nonlinear terms of the equations themselves. This task % where the result shows that the approximant is a system

concerned with the latter need. As motivation, observe thifcu"™>ve tllnear_tﬁ(iﬂtrol systetmt, for ;N.h'Ch deg.(;fh stetp IS ta
most constructive control designs (e.g. backstepping, [14 near system wi € same state matrix and ditterent sipu

feedback linearisation [13]) involve repeated partiafediin- onsisting of_polynomial_ com_binatio_ns of the control input
tiation of the right hand side of the system model to con$tru<?_nd state va_nables obtained in previous steps. Exa”?p“’es_ ar
a normal form, and consequently the number of terms in traven sh0W|r_lg the _adva_ntage of high qrder approximation
closed form expression for the control action (in the orédin over the traditional linearisation. In Section 6, we stukjy_t
system coordinates) grows exponentially with the order ffase when thg operatorg are unstable (even not differéytiab
the system. For systems of moderate order, it is necess have coprime factorisations.

to use computer algebra packages to calculate the closed

forms, and the resulting expressions can become unusable 2. PRELIMINARIES

for systems of quite low order, simply due to the number of

terms involved.

In this paper, approximations based on Taylor expansio
of the i/o plant operator (based on Fréchet differentratio ) .
of the i/o operator), are related to polynomial approxirsantC2lly integrable functions fronft), ) to X' Foro € (0,w)
to the right-hand side of an ordinary differential systenfNd € S.. let zp ;) be the restriction ofi on [0, o) and
describing the nominal plant. The first order approximatioﬂef'ne a truncation operatd, as follows:
of this type is well-known since linearisations of ordinary 2(t), fort € [0,0);
differential systems correspond to the Fréchet operatfiard Ty : Sw — Soo, (Tox)(t) = { 0 ' otherwisé '
ential of the associated i/o operator of the plant([12])jclh ’

We first recall some notions on signal spaces and gap
rlilgetric theory, all can be found in [1], [3], [7]. LeY be
a nonempty set. Fdr < w < oo, let S, denote the set of all

LetV C S, be a normed vector space. and the ngrmm =
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associate spaces as follows: and define a paifw;,ws) € W, x W,, with domain

MR " B AT < S
Vez {UESOO ZVO’>O,U|[070) EV[0,0’)}; wo < Wy - Y p .

:jw :év eSS, {)VU S (O,w),vh()ﬂ) S V[O,U)}; HP,K W = W, x W, HP,KwO _ (w1,w2)-

a = Ywe(0,00] Yw>

where o,w > 0. Let ¢/,) be two normed signal spacesLet i Wa X Wa — W Pe the projection onto théth
(such asLP(R.,R"),1 < p < oc) with norm || - [lu, || - [|y component oV, x W, for i = 1,2. We define
respectively. If there is no ambiguous occur on the notation

II =1L H and 1II =1lbHpk.
we will drop the subscripts. A mappin@ : U, — Y, P//K PR K//P PK

is said to be causal if for any,y € U, and anyo € Definition 2.1: Let Q ¢ W. The closed-loop (2.1) is said
dom(z) N dom(Qx), we have to be:
zlj0.0) = Ylo,0)  iMplies (Qz)j0.0) = (QY)|[0.0)- « locally well posed onQ if it has the existence and

unigueness properties and the oper. : Q)
let P : U, — Y, and K : YV, — U, be two quw isE):aupsal- peratos k |o : € —

causal mappings representing the plant and the controller, globally well posed o if it is locally well posed and
respectively. We consider the system of equations Hp.x(Q) C W x W..

y1 = Puy, ug = Cys, Definition 2.2: Let 2 C W. The closed-loopP, K] given
Up = U1 + U2, Yo = Y1 + Yo, by (2.1) is said to be:

corresponding to the closed-loop feedback configuration in * Stableon Q if for any w € €, |

[P,C] : (2.1)

HP.,K'LU” < 00,

Figure 1, « gain stableon Q if it is globally well posed o) and
T.H
|Hp, k|| := sup {”Tiw',a >0,we N} < oo} .
Low n [ Tow]]
o O_ P When 2 is a (small) neighbourhood df, we also say the
_ system is locally (gain) stable.
C O Yo It is noticed that stability of P, K] is equivalent to the
U2 Y2 + same stability of eithellp, x or I, p since Hpx =
) (HP//K,HK//[_)) ande//K +HK//p = 1. So the stability
Fig. 1. The closed-loopP, C'. of control system P, K] depends on the the calculation of
the induced norm of operatdip,, . For robustness, given
Let W = U x Y with the product norm||(u,y)|w = P the nominal plant and® the perturbed plant, we aim to
max{||ullu, |ly|ly}- Let bound||IIp, ;¢ in terms of |11,k ||. Gap metric provides
u a practical way of doing so. A general gap metric is presented
graph(P) = {< Pu ) ruelU,Puc y}, in [7] by Georgiou and Smith using surjective mappings
between graphs of the plant and controllers:
Ky Definition 2.3: The gap metric distance between causal
h(K) = : . . .
graph(K) {< y ) Cyelye y} operatorsP, P, : U, — Y, is defined to be
be the graph of” and the graph of{, respectively. Suppose inface I(I — @) if © 0
both P andC are stabilizable, i.e. for allv = (u,y) € W, o(P, Py) = { ree |( el if © i 0
satisfying Pu = y (resp.Ky = u) and for allo > 0, there
existsw’ € graph(P) (resp.graph(K)) such thatw|j ,) =  With
w'[0,0)- d:(®) C i
: _ B _ : graph(P) — graph(P;) is a
For wg = (uo,y0) € W, a pairw; = (uy,y1),we = ©= {(I)' causal, gain stable and surjective mapping’

(u2,y2) € W, is said to be a solu.tion_of the_ system if (2.1) | emma 2.4:Let [P, K] be globally well-posed|[P;, k]|
holds Ondom(wl) n dom(wg) which is an lntervaI[O,w) be Iocally WeII-posed,HRK be bounded onS, and

or [0,w] with w > 0. Let Z,, be the set of all solutions to ITTp)/kls.|| < p. Suppose that there exists a mapping

the system corresponding to the given, which could b_e . E,, = graph(K) NS,, — graph(Kk,) such that

empty. Assume thatP, K| has bpth existence property, Le. @~ T)|s,.|| = ¢ < 1/p and T,(® — DIlp) ks, is

Zu, # for eachw, € W, and uniqueness property, i.e.  continuous, compact. Thelip, f is globally well-posed and
(wy,ws), (1 ,12) € Zy, implies is bounded orS(; ) and

(’LU1, ’LUQ) = (U~)1, 1D2) on dOIIl(’LUl7 ’LUQ) n dOIIl(’LI)l, 'LDQ) p(l + q)

||HP1//K|5(1—pq)r|| S 1— q .
At the end of this section, we recall the notion of Fréchet
(0, Wwo) = Ui, iin) e 2., dom (1) N dom(w2), differentiability.

Then, for eachuy € W, we define a numbey,,, by



Let G : U — Y be an operator. For any, € U, G is said Let P : U, — ), be the input to output operator of a
Fréchet differentiable at, if there exists a bounded linear control system witl/,) two given normed signal spaces,

operatorG’(ug) : U — Y such that and let K : Y, — U, be a controller. Suppos® has
I e e continuous Fréchet denvgtlves up to orderat O_. Let P,
o IG o +v) ”v(|u0) (uo)v] =0. denote the Taylor expansion of orderat O, that is

1 1
The linear operato6’(uo) is called the derivative o6 at ~ Pnu = P(0) + P'(0)u + = P"(0)u? + - -- + = P"™ (0)u"
. 2 n!
uo and also denoted b§<|,_,,. In the case wheré€ is a

multi variable operator, its partial derivativews is denoted Here we identifyu™ with the vector(u, ---,u) of n com-
by 25 [0, ponents.
If G'( ) exists on a neighbourhood af, and the op- For anyu € U, define two graph mappings, as below:
eratoru — G'(u) is differentiable atu,, we sayG is u u
second order differentiable aty, and denote byG” (ug) ‘1)< Pu ) = ( Pou ) 3.1)
the second order derivative. Similarly, the derivativentif
order can be defined, denoted W™ (uo). In general, and
G™ (ug) can be identified as a boundedlinear operator of v Y v 3.2
from U™ to Y, that is for eachi = 1,...,n, the oper- Pu )\ Pu |’ (3:2)
ator v; — G (ug)(vy,---,vi,---,v,) iS bounded and _
linear, and there exists a constahf — M,(ug) > 0 Since eachP®) is a bounded operator frov* to Y,
such that| G (ug) (v, -+ ,vp)|| < M|Jvr]| - - - ||vn]| for all dom(P,) = U and P, is global stable. As assumed®, is
(vi,-- ,vp) € U™ also stable. Hence we have
The Frechet derivative has the following properties ([5], Lémma 3.1:Under the assumptions above, both :
6]): graph(P) — graph(P,) and ¥ : graph(P,) — graph(P)
Lemma 2.5:i) If G is n times Fréchet differentiable at &€ Surjective.
o, then In the case wherP is only locally stable, i.e.||Pu|| < oo

for ||u|| < r with r > 0, then¥ mapsgraph NS, into
GOV (W) wn, -+ vms) [[u] psgraph(F,)

G (o) (v, -+, vp) = Unluuy; 8YaPh(Pn). This is will be enough for local robustness.
du ’ We next use these two graph mappings to evaluate the
(n) gap distance betwee® and P,, and then to establish
G (uo)(v1, -+, Vi, - a”n)w robust stability. Since the well-established gap metraotly
v; requires P0 = 0 though there are publications ([4], [8])
= G (ug)(v1, -, Vi1, W, Vi1, 5 U); considering the biased case, the assumpfitif)) = 0 is
DG (ug) o™ n—1 imposed in the rest of this section. However this it is not
— =Y GO (gt wen L necessary to assume thaf0) = 0 in the calculation ofP,
ov i=0 as shown in later sections.
ii) If G is n-times differentiable at, and the derivatives  Theorem 3.2:Supposen > 1,7 > 0, k, = kn(r) > 0, P
up to the ordem — 1 are continuous, then is continuously differentiable up ta times on an open set
containing the disc centered at 0 with radiuand
Gluo + u) Z 1 1P ()| < by forallue X, Jul <r.  (3.3)
= J!
. B Let [P, K] be globally well-posed|P,, K] be locally well-
< ] sup  [|GU(2)]. posed, and|Ilp,/k|s,.|| < p with p > 0. Let (¢ —
n! efuo,uotul DIlp,/k|s, be continuous, compact. Then, for any €
If, in addition, u — G (u) is continuous, then for any (0,7) such that
0, there existsy > 0 such that ntly
i XISt =0 su q:= P 1k <1, pri <, (3.4)
n (n+1)!
G(ug + u) FG cu)| < ellull™ Hp,  is globally well-posed and bounded & )., ,
7=0
p(1+q)
for all w € U and ||ul| < 4. /5l S pam | < e (3.5)
3. APPROXIMATION OF STABLE OPERATORS where .
In this section, we consider the approximation of BIBO q= P 'kn

stable operators, that is operators for which finite inputs .o According to Lemma 2.5 (jii) and our assump-
yield finite outputs. Since the resulting notion of robust;,.«

stability will be local, the operators it will suffice to cdder

_ n+1
operators which are only locally stable. 1P — Poul| < ]

kn
(n+1)!



for all uw € X with |lu| < r. Letr; > 0 satisfy (3.4). Then |IIp,/kls.|| < p. Let (& — I)Ilp/ k|s, be continuous,

for any (u, Pu) € graph(P) with ||(u, Pu)|| < pr1, we have compact. Then, for ang > 0 there existsr; € (0,r)

| Toul < ||ul| <pri <r.So such thatHp, k is globally well-posed and is bounded on
Sa- where
kn, " (1—pg)r1°
|[PTou— Py Toul| < (n+1) | T+ q= EpnT?_l.
< ﬁanTguH, The same conclusion holds B, is the nominal plantP
(n+1)! is the perturbed plant and local stable, ainds replaced by
for all o > 0. Considering the mapping given in (3.1), Y.
which mapsgraph(P) into graph(F,). Since Proof: Lete > 0 be given. According to Lemma 2.5

(iii), there existso > 0 such that

we see

u
T,(® — 1) ( o ) H = ||IT,(Pu— Pou)|
= ||T,(PTyu — P, Tyu)|,

[Pu— Pyull < effu"

for all w € U with [Ju|| < 4. Letr; € (0,7) be such that

Py ri <46 and eprml< 1.
@ = Dls,, I < gyt i P
si Then for any(u, Pu) € graph(P) with ||(u, Pu)| < pry,
ince P Pl we havel|ju|| < pr; < 4. So, for allo > 0,
1 1
—kyp= ——k, < 1,
(n+1)! (n+1)! | PTyu — P, Toul| < e||Toul|™ < ep™ r7 Y| Thul.

by Lemma 2.4[P,, K] is globally well posed and boun:led This shows

oN S(1—pg)r, With ¢ = %kn.
In the above proof, the order d? and P, plays no role (@ —1)s,, || < epm LT
since only the input: and the differentiability of P are .
crucial. So replacing® by ¥ and using the same proof, we Since
have the following theorem. ep" Tt T lp = epmr T < 1,
Theorem 3.3:Supposek,,,r > 0, P is continuously
differentiable up ton times on an open set containing the
disc centered at 0 with radiusand suppose condition (3.3) ON S(1—pg)rs - o
holds. Let[P,, K] be globally well-posed,P, k] be locally The second part of the theorem can be proved similarly.
well-posed, P is local stable and|Ilp,,/x|s,|| < p with u
p>0.Let(Y—I)Ip,,/xl|s, be continuous, compact. Then
for any r, € (0,r) satisfying (3.4),Hp i is globally well-
posed and is bounded &), _,,),,, whereq is the same as  In this section, we investigate the approximation operator

by Lemma 2.4]P,, K] is globally well posed and bounded

" 4. SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS

in Theorem 3.2, and P,, given thatP is the input-to-output operator of control
system:
p(1+49)
Weymclsopor |l = 55 (39) 2 (6) = F(a(0) ult)), 2(0) = @ @)
The robust margin corresponds to f[ﬁwe largest tolerable N ’ ’ e '
gap between nominal and perturbed systems. In the above y(t) = Cx(t) + Cru(t) (4.2)

two theorems, the gap is bounded 1)1)!]{"' If k, has in the L>°(R*) setting, whereF : R™ x R™ — R™ s
certain power growth with respect to such that%kn in general a nonlinear functior; : R™* — R™3 andC; :
tends to zero asm — oo, then, the higher the order R™2 — R™: are linear or nonlinear functions, representing
of the approximation is, the larger the robust margin wilthe output matrix and feed-through matrix respectively.
be, which explains the necessity of considering high order Let F : v — z andC : z — y be the operators determined
approximation. Later on, we will use concrete examples tpy
illustrate this. Secondly, it also shows that, in the caserwh
or |Tp, ks, || (resp|Tip, / ks, |) is large, we need larger ~ F :u—x,  a'(t) = F(a(t),u(t)), x(0) =0, (4.3)
n So that assumption (3.4) holds.
In Theorems 3.2 and 3.3, condition (3.3) is necessary. Crium xy, x1(t) = C1ult)),
But as the expression for the derivative becomes more
complicated as the order goes large, it is not easy to firehd
the upper bounds, particularly for operators with memory.
In this situation, we have the following alternative. C:zy, y(t) =Ce®), (4.4)
Theorem 3.4:SupposeP is continuously differentiable respectively. Then
up to n times at0. Let [P, K] be globally well-posed,
[P,, K] be locally well-posedH p x be bounded orS, and Pu=CFu+Ci(u)



and, provided derivatives of each order exist and forj =2,--- ,n—1,

P'(uo)v = C'(F(uo)) o F'(uo)v + Ci(uo)v,
P"(ug)v® = C"(F (ug)) o (F'(ug)v)?

+ +C'(F(ug)) o F" (uo)v? + C (uo)v?,
P///( )v *CW( ( ))O(]_—/(UO) )3 i 8Gj71/2i_"_(9Gj'71/21_|_8ijlv7 (4.6)

+ 3C"(F(u0)) o (F (uo)v, (F(uo)0)?) 20t o

+C(F () o (" u0)s® + 7' (o)

U=Uug

G; = Gj(zj, 21, m,u,v) = F(z,u)z;

each derivative ofG; is in the function level, e.g%f1 =
0G1(z1(t),z(t),u(t), v(t))
dz1(t)
So the approximation system is governed by the approxima- Proof: The subscriptiorj,—., will be omitted in the
tions of memory operataF and the memoryless operatorsProof.
C and(;s. As supposed

Let'’s first consider the derivatives of memoryless opera-
tors. It is known that for a general nonlinear memoryless t
operator (say)C between functions over infinite time in- a(t,u) = o +/O F(z(s,u), u(s))ds,
terval, even assuming' continuously differentiable is still
not sufficient to ensure the differentiability ¢f. However, go
memoryless operators generated by most basic functions are

differentiable, such as, in the scalar case: o td
| o st = [ S Pla(s ), u(s)os)ds
1) linear operators: ifC' is linear, thenC’(uo) = C and ou o du
C*) (ug) =0 for k > 2; b, o)
2) ponnomiaI operators: iy = u”, thenC(k>(u0) _ = ; |:F1($(87U)au(8))%$(sau) U(S)dS
g for k> 1; ¢
3) delay operators. iCu(t) = u(t — 7) for somer > 0, +/ [Fy(x(s,u),u(s))] v(s)ds
thenC’(uo)v(t) = v(t—7) andC™ (ug) = 0 for k > 0
2.

and
In this paper, we suppose that any memoryless opergtors

andC; generated by function§' and C; are differentiable d /o 0
as many times as required. I a_x(tv“)”(t) = Fy(a(t, ), “(t))%x(tvu)v
To study the approximation of, we let functionF'(z, u) + Fl(x(t, u), u(t))v(t).

be Fréchet differentiable up ta times with respect to
each variable and let the partial derivatives be denoted
Fl(x,u), Fj(z,u), F{i(z,u), F5(z,u),--- respectively.
For anyu € U, we letz(t,u) be the solution to Equation
(4.1). Then we have

Theorem 4.1:For anyn > 1, F(" (u)v™ is the solution  21() = Fi (2(t, u), u)z1(t) + Fy(a(t, u), w)v,  21(0) = 0.

bI;fﬂs shows thatz (t) = %x(t,u)v is the solution to the
equation:

to the system of equations (4.7)
2L (8) = Fl(2(t, uo), uo(t))zn () Similgrly, sinqe Gl(zll,x,u) = F/(z,u)z1 + FQI(:’L',U)U,
o omitting the time variables, we have (note thatis also
ZaGn 1 aG"_lzl(t) dependent ofy):
821 1 817 B
6Gn_ ’ o) ‘d
+ St @) =)= goal= [ ECirzuuds
«(0)=0, / F{(x,u)29ds
where 0
— ds.
; (t ) /0 [&CG (z1,7,u)z1 + auGl(zl,:zr u)v|ds
X u
21(t (1),
)= S Ou lu=u ) Hence, our claim holds forn = 1, 2.

G1 = Gi(z1,2,u,0) = Fi(z,u)z + Fy(,u)v Suppose our claim holds fon = k&, ie. z(t) =



f(f Gr(zk, -+ ,21,2,u)ds with Gy, as given by (4.6). Then P’(0), P”(0), P"’(0) are, respectively:
P0):v—Cz :

Z41(t) _62% / du k(2ks e 21,2, u)vds 2 = f(0)z1 + g(0)v,  2(0) =0, (4.9)
P'0): v Czo:
_/ [8Gk 3Zk Z < 9Gh, 0z } 2 = [(0)z2 + f"(0)27 +2¢'(0)z10,  (4.10)
o LOz ou " 0z; Ou
z(0) =0,
+/ [3Gk Oz "t 3Gkv} s P"(0): v+ Czy:
Jo L 0w ou” " du 2y = f'(0)zs + "(0)2} + 3¢"(0)2Fv
= [ Fl(z,u)zpi1ds +3£"(0)z122 4 3¢'(0) 220, (4.11)
0
z(0) = 0.
t okl Gy, 0G}, 0Gy, v
+ : [j_l a—zjzjﬂ + oz + u ! v|ds, Therefore the approximation operator of order 3

1 1
y = P3u= P'(0)u+ =P"(0)u? + = P"(0)u?
which shows the claim holds for = & + 1. 2 6

By induction, the proof is completed. is given by the system of equations (4.9),(4.10),(4.11) and

u z=z1+ 12'2 + lz?,, (4.12)

It is noted that Formula (4.5) is recursive, each is 2 6
given by a linear system with multi-inputandz1, - - - , 2,1 y=Cz (4.13)
obtained in previous steps. In each step, the partial de/®va  \we now look at a concrete case whetz) = —z —

F{ is the state matrix and if it is (gain) stable, the approxs;3 .g(z) =1andC =1, i.e. whenP is given as
imation system will be (gain) stable globally. For example, , 5
F"(up)(v,v) is the solution to the equation Piu—uaz, o' =—z—12"+u,z(0) = 0.
For anyu such thatu|| < r < 1, we letx,, = Pu. It can be
25(t) =Fj (x(t, uo), uo(t))22(t) + Fyy (x(t, uo), uo(1))21(t)  shown||z, || + [lzul* < u| which gives

(
+ Fyp(@(t, uo), uo(t))z1 (t)u(t) 2]l < 0.7]full < 0.7, zu|® < 0.35]ull.  (4.14)
+ Fy (2(t,u0), uo(t))v(t) 21 (¢)
()v?

The derivatives ofP(u) are, respectively

+ 3o (@(t, uo), uo(t))v™ (1), (4.8)
2(0) =0 Pl)som 21 2 = —(14 322 40 5(0) =0
P'(u) 1w 29 2h = —(1 + 322) 29 — 61,27,

with z; as obtained in (4.7), an@®) (ug) (v, v, v) is the so- 22(0) =0
lution to the equation (we omit the variables(t, ug), uo(t)) P"(u) v zg: 25 = —(1+ 322) 23 — 1832129 — 627,
for each derivative of")

23(0) =0

PO () v 240 2y = —(14 322)24 — 24wy 2123

z3(t) =Fz3(t) + Fiy21(t)22(t) + 2F) z0(t) 21 (1)
+ Fyza(t)o(t) + Fyjo(t)za(t) + Fyy 22(t)v(t)
+ F{1, 23 (t) + Fily23 (to(t)

— 36zfz2 — 18xuz§, 24(0) =0

+ Bl 21 (0 v(t) 21 (1) + Fyy 21 (102 (t) It can be proved that
+ Fyiio(t)25 (1) + Fyiyo(t)z (t)o(t) [zu]l < [loll, [lz2]l < 6lzull[lo]l?,
111 111
Bt (Oa(t) + Fp’(t) lzall < 6@zl + VoI, llzall < 6(7lzall + 6)]1o]*
and therefore
wherezy, zo are as obtained in (4.7),(4.8) respectively. [P (w)]| <1, [|P"(w)|| <6z < 4.2,
Example 4.2:Suppose thaP : u — y is the input-output P (u)]| < 18.6 |\P(4)(u)|| < 66

operator of the one dimensional system
According to Theorem, an upper bound for each of the gaps
t) = f(x) + g(x)u, x(()) =0, 5(P, Pl) and&(P, P3) is
)= Calt) A(PP1)<p2—1><42—21p7’1,
with f, g both continuously differentiable to any order as - (pr1)3 )
required, f(0) = 0 and C' a bounded linear operator, then O(P, Py) < =7 x 66 < 2.6(pr1)pr1.




If pry < 0.8, then the above estimation shows that the thirdV,,, D,,) is not necessarily the coprime factorisation/f,
order approximatiorP; will give a better robust margin than we cannot have the same graph representation. However, the

the linearisationP;. definitions of P, and[D,,]~! shows the following inclusion
D,v D,v
5. APPROXIMATION OF UN-STABLE OPERATORS graph(P,) = N |VE VecC Ny )iVE U

In this section, we study the complexity reduction folynere, 7 is the subset such thab,|~! = [D,|v]~ L.

un-stable operators which has co-prime factorisations, thn the case wherD,, is invertible, the inclusion becomes
operators is even not necessarily differentiable as long @8ual. This shows that the mappifigdefined by
the co-prime factors are. Recall that a causal oper&tor

U, — Y, is said to admit a (right) coprime factorization if o < Dnu > = ( Du ) (5.3)
and only if there exist causal stable operatbrsdom(D) C Nru Nu
U—-YVCclandN :V CU — Y such that mapsgraph(P,,) into graph(P). Moreover

(i) D is causally invertible withlom(D~!) = dom(P),

K D,u (D — Dy)u
(i P:ND._1 and _ (\IJ_I)< N,u ) _‘ < (N — N,)u >‘
(iii) there exists a causal stable mappihg 4 x Y — U

such thatL(D, N)T = 1I. Note, by the definitions of coprime factorisaton and dif-
ferentiability, bothN, D and N,,, D,, are stable.

In the case wherD, N are coprime factorisation aP, we ; ; . . . .
write P = ND~'. Sufficient conditons for the existence of #'9aiN. as in Section 3, in the rest of_th|§ section, we
co-prime factorisations to differential systems can bentbu supp_oseNO = 0 and DO = 0 for the applications of gap
in [2]. metric theory.

Now, supposeP = ND-! with D, N stable Fréchet Theorem 5.1:Let [P,, K] be globally well-posed|P, K|

differentiable, D! is not necessarily stable nor differen-Pe locally well-posed, andllp, //cls, || < p with ,p > 0.
.guppose botlv and D are continuously differentiable up to

n times on an open set containing the disc centered at 0 with

directly to P, but can be applied to botV and D) to radiusr and there exist numbeét(pr) > 0 and functions

obtain approximationsv,, and D,, respectively. IfD,, has
an “inverselD,,| 1, then we treaiV,,[D,,]~! as the approx- kn,c: [0, 00] — [0, 00]
imation to P. This is the idea of this section.
Let such that
INCFD @) < kn(R), 1D (u)]| < ka(R)  (5.4)

1 1 i <
Noti = Nug + N’ (o) + EN”(Uo)UQ T —'N(")u" for all w € U with |lu|| < R, and

(5.1) [ Dull > e(||ul]) forall u e U, (5.5)
' Lpr 2 L pm £y — @it < implies t < b 5.6
Dynu = Dug+ D (uo)u+§D (ug)u +...+—'Dnun_ c(t) CE] < pr impliest < h(pr). (5.6)
n. .
(5.2)

If 7. (V—1)llp,,/cls,. is continuous, compact for atl > 0

For eachv from the range ofD,,, we choose an arbitrary and

u € U such thatD,,u = v and denoted by pkn(h(pr))
b(n+1)! = ku(h(pr))
whereb = inf{c(t)/t" ™! : t € (0,h(pr)]}, then Hp x is

In other word,[D,,] ! is the inverse ofD, |, with V c U  globally well-posed and gain stable &i,_,,), and

0<

<1, (5.7)
[D,] 1o = .

a subset such that
p(1+q)
I, //cls o | < g
D, : V — RangéD,,) is one-one. pq
where
Note, if D,, is invertible, then[D,,]~! is the inverse ofD,,. g= kn (h(pr))

b(n + 1)! = Ky (h(pr)) .
Proof: Let ¢ > 0. Apply the same procedure in
P, = No[D,]~ . Theorem 3.2 taV and D, respectively, to obtain
kn(||u

It is known that an operator may have more than than ond (N = Nu)Toull, [|(D — Dp)Toul| < (n(J'r 1|)), | Tl
coprime factorisations([1]), therefore the approximatfor '
unstable systems defined in this way is not unique.

Since (N, D) is a right coprime factorization of, we
have

We now define the approximation &f as

for all w € U. Let uw € U such that||(D,u, N,u)||
pr. Then | T,DT,ul| — ||To(DT,u — D,T,u)l
|T> D, Tou|| < pr and therefore

graph(P) = {< ﬁz ) Tu € U} . c(|| Toul|) — %HTUUM“ < pr.

INIA



By (5.6), it follows || T, u| < ||u|| < h(pr). Hence —2x +sin(z) + v, 2(0) = 0. Using the conclusions obtained
1T (% = Ds. | in Section 4, we see that the first order approximations for
o - Spr

D and N are
Dyu
‘Ta(\lj—[) ( Nnu )H D/(O) PV, Z/ =—z+0v, Z(O) = O’ U= —2Z+1},
= sup N@0):v—y, 2=-z2+v, 2(0)=0, y==z

ueV Dnu
(D, o) | <pr ‘Td< Nou )‘

e (h(pr) | Toul "1/ (n + 1)

and the inverse oD’(0) is

< / -1 . ! _ —
= b dllTul) = k) [Ta ey POF ey S= st 20} =20, v =2
lull<h(pr) Hence, the first order approximation &fis given as
_ Ky (h(pr)) /
b(n+ 1)! — kn(h(pr)) P:iu—y, ¢’ =x+4+u, 2(0)=0, y=uz.
By assumption (3.4) and Lemma 2.4, the proof is com- 6. CONCLUSION
pleted. u We have presented results which permit the systematic

This is a local stability result, but conditions (5.4) andreqyction of nonlinear systems to a series of simpler approx
(5.5) are made globally. However, as assumed, there is fidants. Linearisation is the simplest case, and theretifeer
specific conditions imposed fg, or ¢, so we can choose the technique can be considered to be introducing higher order
two functions piecewisely based on their local behaviour. ¢orrections to the linearisation to improve accuracy. Ehes

For local stability, requiring (5.4)-(5.5) to hold forall€ - pproximations are derived in a principled manner based on
Ulis a b|t. strict. If the coercive condition is |mpqseqm, an input/output perspective, and give rise to systems of a
this restriction can be weakened. The proof is similar asarticular structure: namely recursive linear systemsh wi

above. inputs constructed by polynomial combinations of the earli
Theorem 5.2:Let [P, K] be globally well-posedP, K] recursively constructed states and the actual input. We hav
be locally well-posed, andllp, ;/k|s, || < p With r,p > 0. jjystrated the technique with simple examples for clarity

Suppose bothV and D are continuously differentiable up powever, the complexity reduction itself arrives when the

to_ n tim_es on an open se_t containing the disc centered atthhnique is applied to more complex systems; since the
with radiusr and there exist constants ¢ > 0 andk, >0 pyig up of the polynomial terms in the approximants is

such that independent of the underlying system.
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