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Abstract— A common problem in nonlinear control is the
need to consider systems of high complexity. Here we con-
sider systems, which although may be low order, have high
complexity due to a complex right hand side of a differential
equation (e.g. a right hand side which has many terms – such
systems arise from coordinate transformations in constructive
nonlinear control designs). This contribution develops a sys-
tematic method for the reduction of this complexity, complete
with error bounds. In the case when the underling nonlinear
system input/output operator is stable and differentiable, the
operator Taylor expansion, truncated after a finite number of
terms, is taken as the approximation. If the nonlinear system
i/o operator is not stable, but admits a coprime factorizations,
the Taylor approximation is made to both coprime factors.
By bounding the gap between the polynomial system and
the original nominal plant, and applying gap robust stability
approaches, it is proved that local stability of approximation
implies the local stability of the underlining nonlinear systems,
and explicit robust stability margins and performance bounds
obtained. For systems specified by a finite dimensional first
order differential equation, the first order approximant is the
system linearisation and the higher order approximants have
greater state dimension but with polynomial right hand sides.

1. INTRODUCTION

In linear control, model order reduction plays an important
role in reducing the complexity (e.g. order) of control de-
signs. In nonlinear control the need for complexity reduction
arises from both model order and the complexity of the
nonlinear terms of the equations themselves. This task is
concerned with the latter need. As motivation, observe that
most constructive control designs (e.g. backstepping [14],
feedback linearisation [13]) involve repeated partial differen-
tiation of the right hand side of the system model to construct
a normal form, and consequently the number of terms in the
closed form expression for the control action (in the original
system coordinates) grows exponentially with the order of
the system. For systems of moderate order, it is necessary
to use computer algebra packages to calculate the closed
forms, and the resulting expressions can become unusable
for systems of quite low order, simply due to the number of
terms involved.

In this paper, approximations based on Taylor expansions
of the i/o plant operator (based on Fréchet differentiation
of the i/o operator), are related to polynomial approximants
to the right-hand side of an ordinary differential system
describing the nominal plant. The first order approximation
of this type is well-known since linearisations of ordinary
differential systems correspond to the Fréchet operator differ-
ential of the associated i/o operator of the plant([12]), which
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states that if the linearisation is stable, then the nonlinear
plant is locally stable.

The approach we use is the grounded in the nonlinear gap
metric theory [1], [3], [7], [8]: this is utilised to providethe
expliciter error bounds. Furthermore, Fréchet differentials of
smooth co-prime factors provide good local approximants in
the gap metric. Bounding the gap between the polynomial
system and the original nominal plant, sacrificing global
stability for semi-global stability and applying gap robust
stability approaches should yield the desired results, together
with estimations of the basin of attraction. It is anticipated
this will provide a systematic and theoretically grounded
approach to complexity reduction.

It is noted that Weierstrass theorem based polynomial
approximations to general nonlinear operators have been
studied in [9], [10], [11] and references therein, for which
the domain needs to be compact and the approximation is in
a sense that system gain is impossible to calculate.

In Section 2, we present with some preliminaries on signal
spaces and control systems. We also recall the definition of
Fréchet differentiability and some of its properties thatwill
be used in this paper. In section 3, approximants and robust
stability margin for stable and differentiable i/o operators will
be discussed. When the operators are given by a differential
equation, the approximant is calculated explicitly in Section
4, where the result shows that the approximant is a system
recursive linear control system, for which each step is a
linear system with the same state matrix and different inputs
consisting of polynomial combinations of the control input
and state variables obtained in previous steps. Examples are
given, showing the advantage of high order approximation
over the traditional linearisation. In Section 6, we study the
case when the operators are unstable (even not differentiable)
but have coprime factorisations.

2. PRELIMINARIES

We first recall some notions on signal spaces and gap
metric theory, all can be found in [1], [3], [7]. LetX be
a nonempty set. For0 < ω ≤ ∞, let Sω denote the set of all
locally integrable functions from[0, ω) to X . For σ ∈ (0, ω)
andx ∈ Sω, let x|[0,σ) be the restriction ofx on [0, σ) and
define a truncation operatorTσ as follows:

Tσ : Sω → S∞, (Tσx)(t) =

{

x(t), for t ∈ [0, σ);
0, otherwise.

Let V ⊂ S∞ be a normed vector space. and the norm‖ ·‖ =
‖ · ‖V be defined for signals of the formTσ|[0,σ), v ∈ V .
We can define a norm‖ · ‖σ on Sσ by ‖v‖σ = ‖Tσv‖. We



associate spaces as follows:

V [0, σ) =
{

v ∈ Sσ : v = w|[0,σ), w ∈ V , ‖v‖σ < ∞
}

;
Ve =

{

v ∈ S∞ : ∀σ > 0, v|[0,σ) ∈ V [0, σ)
}

;
Vω =

{

v ∈ Sω : ∀σ ∈ (0, ω), v|[0,σ) ∈ V [0, σ)
}

;
Va = ∪ω∈(0,∞]Vω,

where σ, ω ≥ 0. Let U ,Y be two normed signal spaces
(such asLp(R+, Rn), 1 ≤ p ≤ ∞) with norm ‖ · ‖U , ‖ · ‖Y
respectively. If there is no ambiguous occur on the notation,
we will drop the subscripts. A mappingQ : Ua → Ya

is said to be causal if for anyx, y ∈ Ua and anyσ ∈
dom(x) ∩ dom(Qx), we have

x|[0,σ) = y|[0,σ) implies (Qx)|[0,σ) = (Qy)|[0,σ).

Let P : Ua → Ya and K : Ya → Ua be two
causal mappings representing the plant and the controller,
respectively. We consider the system of equations

[P, C] :
y1 = Pu1, u2 = Cy2,
u0 = u1 + u2, y0 = y1 + y2,

(2.1)

corresponding to the closed-loop feedback configuration in
Figure 1,
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Fig. 1. The closed-loop[P, C].

Let W = U × Y with the product norm‖(u, y)‖W =
max{‖u‖U , ‖y‖Y}. Let

graph(P ) =

{(

u
Pu

)

: u ∈ U , Pu ∈ Y

}

,

graph(K) =

{(

Ky
y

)

: Cy ∈ U , y ∈ Y

}

.

be the graph ofP and the graph ofK, respectively. Suppose
both P andC are stabilizable, i.e. for allw = (u, y) ∈ Wa

satisfyingPu = y (resp.Ky = u) and for allσ > 0, there
existsw′ ∈ graph(P ) (resp.graph(K)) such thatw|[0,σ) =
w′|[0,σ).

For w0 = (u0, y0) ∈ W , a pair w1 = (u1, y1), w2 =
(u2, y2) ∈ Wa is said to be a solution of the system if (2.1)
holds ondom(w1) ∩ dom(w2) which is an interval[0, ω)
or [0, ω] with ω > 0. Let Zw0 be the set of all solutions to
the system corresponding to the givenw0, which could be
empty. Assume that[P, K] has both existence property, i.e.
Zw0 6= for eachw0 ∈ W , and uniqueness property, i.e.

(w1, w2), (w̃1, w̃2) ∈ Zw0 implies

(w1, w2) = (w̃1, w̃2) on dom(w1, w2) ∩ dom(w̃1, w̃2).

Then, for eachw0 ∈ W , we define a numberωw0 by

(0, ωw0) = ∪(w̃1,w̃2)∈Zw0
dom(w̃1) ∩ dom(w̃2),

and define a pair(w1, w2) ∈ Wa × Wa, with domain
dom(w1, w2) = [0, ωw0), by the property(w1, w2)|[0,t) ∈
Zw0 for all t < ωw0 . This induces the system operator:

HP,K : W → Wa ×Wa, ΠP,Kw0 = (w1, w2).

Let Πi : Wa × Wa → Wa be the projection onto thei-th
component ofWa ×Wa for i = 1, 2. We define

ΠP//K = Π1HP,K , and ΠK//P = Π2HP,K .

Definition 2.1: Let Ω ⊂ W . The closed-loop (2.1) is said
to be:

• locally well posed onΩ if it has the existence and
uniqueness properties and the operatorHP,K |Ω : Ω →
Wa ×Wa is causal;

• globally well posed onΩ if it is locally well posed and
HP,K(Ω) ⊂ We ×We.

Definition 2.2: Let Ω ⊂ W . The closed-loop[P, K] given
by (2.1) is said to be:

• stableon Ω if for any w ∈ Ω, ‖HP,Kw‖ < ∞;
• gain stableon Ω if it is globally well posed onΩ and

‖HP,K‖ := sup

{

‖TσHP,Kw‖

‖Tσw‖
, σ > 0, w ∈ Ω} < ∞

}

.

When Ω is a (small) neighbourhood of0, we also say the
system is locally (gain) stable.

It is noticed that stability of[P, K] is equivalent to the
same stability of eitherΠP//K or ΠK//P since HP,K =
(ΠP//K , ΠK//P ) andΠP//K +ΠK//P = I. So the stability
of control system [P, K] depends on the the calculation of
the induced norm of operatorΠP//K . For robustness, given
P the nominal plant andP1 the perturbed plant, we aim to
bound‖ΠP1//C‖ in terms of‖ΠP//K‖. Gap metric provides
a practical way of doing so. A general gap metric is presented
in [7] by Georgiou and Smith using surjective mappings
between graphs of the plant and controllers:

Definition 2.3: The gap metric distance between causal
operatorsP, P1 : Ua → Ya is defined to be

~δ(P, P1) =

{

infΦ∈Θ ‖(I − Φ)|graph(P )‖ if Θ 6= ∅,
∞ if Θ = ∅

with

Θ =

{

Φ :
Φ : (Φ) ⊂ graph(P ) → graph(P1) is a
causal, gain stable and surjective mapping

}

.

Lemma 2.4:Let [P, K] be globally well-posed,[P1, K]
be locally well-posed,HP,K be bounded onSr and
‖ΠP//K |Sr

‖ ≤ p. Suppose that there exists a mapping
Φ : Epr := graph(K) ∩ Spr → graph(K1) such that
‖(Φ − I)|Spr

‖ = q < 1/p and Tσ(Φ − I)ΠP//K |Sr
is

continuous, compact. ThenHP1,K is globally well-posed and
is bounded onS(1−pq)r and

‖ΠP1//K |S(1−pq)r
‖ ≤

p(1 + q)

1 − pq
.

At the end of this section, we recall the notion of Fréchet
differentiability.



Let G : U → Y be an operator. For anyu0 ∈ U , G is said
Fréchet differentiable atu0 if there exists a bounded linear
operatorG′(u0) : U → Y such that

lim
‖v‖→0

‖G(u0 + v) − G(u0) − G′(u0)v‖

‖v‖
= 0.

The linear operatorG′(u0) is called the derivative ofG at
u0 and also denoted bydG

du |u=u0 . In the case whereG is a
multi-variable operator, its partial derivative atu0 is denoted
by ∂G

∂u |u=u0 .
If G′(u) exists on a neighbourhood ofu0 and the op-

erator u 7→ G′(u) is differentiable atu0, we say G is
second order differentiable atu0 and denote byG′′(u0)
the second order derivative. Similarly, the derivative ofnth
order can be defined, denoted byG(n)(u0). In general,
G(n)(u0) can be identified as a boundedn-linear operator
from Un to Y, that is for eachi = 1, . . . , n, the oper-
ator vi → G(n)(u0)(v1, · · · , vi, · · · , vn) is bounded and
linear, and there exists a constantM = Mn(u0) > 0
such that‖G(n)(u0)(v1, · · · , vn)‖ ≤ M‖v1‖ · · · ‖vn‖ for all
(v1, · · · , vn) ∈ Un.

The Fréchet derivative has the following properties ([5],
[6]):

Lemma 2.5:i) If G is n times Fréchet differentiable at
u0, then

G(n)(u0)(v1, · · · , vn) =
dG(n−1)(u)(v1, · · · , vn−1)

du
vn|u=u0 ;

∂G(n)(u0)(v1, · · · , vi, · · · , vn)

∂vi
w

= G(n)(u0)(v1, · · · , vi−1, w, vi+1, · · · , vn);

∂G(n)(u0)v
n

∂v
w =

n−1
∑

i=0

G(n)(u0)v
iwvn−i−1.

ii) If G is n-times differentiable atu0 and the derivatives
up to the ordern − 1 are continuous, then

∥

∥

∥

∥

∥

∥

G(u0 + u) − G(u0) −
n−1
∑

j=1

1

j!
G(j)(u0)u

j

∥

∥

∥

∥

∥

∥

≤
‖u‖n

n!
sup

z∈[u0,u0+u]

‖G(n)(z)‖.

If, in addition, u 7→ G(n)(u) is continuous, then for any
ε > 0, there existsδ > 0 such that

∥

∥

∥

∥

∥

∥

G(u0 + u) −
n

∑

j=0

1

j!
G(j)(u0)(u, · · · , u)

∥

∥

∥

∥

∥

∥

≤ ε‖u‖n

for all u ∈ U and‖u‖ ≤ δ.

3. APPROXIMATION OF STABLE OPERATORS

In this section, we consider the approximation of BIBO
stable operators, that is operators for which finite inputs
yield finite outputs. Since the resulting notion of robust
stability will be local, the operators it will suffice to consider
operators which are only locally stable.

Let P : Ua → Ya be the input to output operator of a
control system withU ,Y two given normed signal spaces,
and let K : Ya → Ua be a controller. SupposeP has
continuous Fréchet derivatives up to ordern at 0. Let Pn

denote the Taylor expansion of ordern at 0, that is

Pnu = P (0) + P ′(0)u +
1

2
P ′′(0)u2 + · · · +

1

n!
P (n)(0)un.

Here we identifyun with the vector(u, · · · , u) of n com-
ponents.

For anyu ∈ U , define two graph mappings, as below:

Φ

(

u
Pu

)

=

(

u
Pnu

)

(3.1)

and

Ψ

(

u
Pnu

)

=

(

u
Pu

)

. (3.2)

Since eachP (k) is a bounded operator fromUk to Y ,
dom(Pn) = U and Pn is global stable. As assumed,P is
also stable. Hence we have

Lemma 3.1:Under the assumptions above, bothΦ :
graph(P ) 7→ graph(Pn) and Ψ : graph(Pn) 7→ graph(P )
are surjective.
In the case whenP is only locally stable, i.e.,‖Pu‖ < ∞
for ‖u‖ ≤ r with r > 0, thenΨ mapsgraph(Pn) ∩ Sr into
graph(Pn). This is will be enough for local robustness.

We next use these two graph mappings to evaluate the
gap distance betweenP and Pn, and then to establish
robust stability. Since the well-established gap metric theory
requiresP0 = 0 though there are publications ([4], [8])
considering the biased case, the assumptionP (0) = 0 is
imposed in the rest of this section. However this it is not
necessary to assume thatP (0) = 0 in the calculation ofPn

as shown in later sections.
Theorem 3.2:Supposen > 1, r > 0, kn := kn(r) > 0, P

is continuously differentiable up ton times on an open set
containing the disc centered at 0 with radiusr and

‖P (n+1)(u)‖ ≤ kn for all u ∈ X, ‖u‖ ≤ r. (3.3)

Let [P, K] be globally well-posed,[Pn, K] be locally well-
posed, and‖ΠP//K |Sr

‖ ≤ p with p ≥ 0. Let (Φ −
I)ΠP//K |Sr

be continuous, compact. Then, for anyr1 ∈
(0, r) such that

q :=
pn+1rn

1

(n + 1)!
kn < 1, pr1 < r, (3.4)

HPn,K is globally well-posed and bounded onS(1−pq)r1
,

‖ΠPn//K |S(1−pq)r1
‖ ≤

p(1 + q)

1 − pq
, (3.5)

where

q =
pnrn

1

(n + 1)!
kn.

Proof: According to Lemma 2.5 (iii) and our assump-
tions

‖Pu − Pnu‖ ≤
kn

(n + 1)!
‖u‖n+1



for all u ∈ X with ‖u‖ ≤ r. Let r1 > 0 satisfy (3.4). Then
for any(u, Pu) ∈ graph(P ) with ‖(u, Pu)‖ ≤ pr1, we have
‖Tσu‖ ≤ ‖u‖ ≤ pr1 < r. So

‖PTσu − PnTσu‖ ≤
kn

(n + 1)!
‖Tσu‖n+1

≤
pnrn

1

(n + 1)!
kn‖Tσu‖,

for all σ > 0. Considering the mappingΦ given in (3.1),
which mapsgraph(P ) into graph(Pn). Since

∥

∥

∥

∥

Tσ(Φ − I)

(

u
Pu

)∥

∥

∥

∥

= ‖Tσ(Pu − Pnu)‖

= ‖Tσ(PTσu − PnTσu)‖,

we see
‖(Φ − I)|Spr1

‖ ≤
pnrn

1

(n + 1)!
kn.

Since
pnrn

1

(n + 1)!
knp =

pn+1rn
1

(n + 1)!
kn < 1,

by Lemma 2.4,[Pn, K] is globally well posed and bounded
on S(1−pq)r1

with q =
pnrn

1

(n+1)!kn.
In the above proof, the order ofP andPn plays no role

since only the inputu and the differentiability ofP are
crucial. So replacingΦ by Ψ and using the same proof, we
have the following theorem.

Theorem 3.3:Supposekn, r > 0, P is continuously
differentiable up ton times on an open set containing the
disc centered at 0 with radiusr and suppose condition (3.3)
holds. Let[Pn, K] be globally well-posed,[P, K] be locally
well-posed,P is local stable and‖ΠPn//K |Sr

‖ ≤ p with
p ≥ 0. Let (Ψ−I)ΠPn//K |Sr

be continuous, compact. Then,
for any r1 ∈ (0, r) satisfying (3.4),HP,K is globally well-
posed and is bounded onS(1−pq)r1

, whereq is the same as
in Theorem 3.2, and

‖ΠP//K |S(1−pq)r1
‖ ≤

p(1 + q)

1 − pq
, (3.6)

The robust margin corresponds to the largest tolerable
gap between nominal and perturbed systems. In the above
two theorems, the gap is bounded by(pr)n

(n+1)!kn. If kn has

certain power growth with respect ton such that (pr)n

(n+1)!kn

tends to zero asn → ∞, then, the higher the order
of the approximation is, the larger the robust margin will
be, which explains the necessity of considering high order
approximation. Later on, we will use concrete examples to
illustrate this. Secondly, it also shows that, in the case whenp
or ‖ΠP//K |Sr

‖ (resp‖ΠPn//K |Sr
‖) is large, we need larger

n so that assumption (3.4) holds.
In Theorems 3.2 and 3.3, condition (3.3) is necessary.

But as the expression for the derivative becomes more
complicated as the order goes large, it is not easy to find
the upper boundK, particularly for operators with memory.
In this situation, we have the following alternative.

Theorem 3.4:SupposeP is continuously differentiable
up to n times at 0. Let [P, K] be globally well-posed,
[Pn, K] be locally well-posed,HP,K be bounded onSr and

‖ΠP//K |Sr
‖ ≤ p. Let (Φ − I)ΠP//K |Sr

be continuous,
compact. Then, for anyε > 0 there existsr1 ∈ (0, r)
such thatHPn,K is globally well-posed and is bounded on
S(1−pq)r1

, where

q = εpnrn−1
1 .

The same conclusion holds ifPn is the nominal plant,P
is the perturbed plant and local stable, andΦ is replaced by
Ψ.

Proof: Let ε > 0 be given. According to Lemma 2.5
(iii), there existsδ > 0 such that

‖Pu − Pnu‖ ≤ ε‖u‖n

for all u ∈ U with ‖u‖ ≤ δ. Let r1 ∈ (0, r) be such that

pr1 < δ and εpnrn−1
1 < 1.

Then for any(u, Pu) ∈ graph(P ) with ‖(u, Pu)‖ ≤ pr1,
we have‖u‖ ≤ pr1 < δ. So, for allσ > 0,

‖PTσu − PnTσu‖ ≤ ε‖Tσu‖n ≤ εpn−1rn−1
1 ‖Tσu‖.

This shows

‖(Φ − I)|Spr1
‖ ≤ εpn−1rn−1

1 .

Since
εpn−1rn−1

1 p = εpnrn−1
1 < 1,

by Lemma 2.4,[Pn, K] is globally well posed and bounded
on S(1−pq)r1

.
The second part of the theorem can be proved similarly.

4. SYSTEMS GOVERNED BY DIFFERENTIAL EQUATIONS

In this section, we investigate the approximation operator
Pn, given thatP is the input-to-output operator of control
system:

x′(t) = F (x(t), u(t)), x(0) = x0, (4.1)

y(t) = Cx(t) + C1u(t) (4.2)

in the L∞(R+) setting, whereF : R
m1 × R

m2 → R
m1 is

in general a nonlinear function,C : R
m1 → R

m3 andC1 :
R

m2 → R
m3 are linear or nonlinear functions, representing

the output matrix and feed-through matrix respectively.
Let F : u 7→ x andC : x 7→ y be the operators determined

by

F : u 7→ x, x′(t) = F (x(t), u(t)), x(0) = x0, (4.3)

C1 : u 7→ x1, x1(t) = C1(u(t)),

and

C : x 7→ y, y(t) = C(x(t)), (4.4)

respectively. Then

Pu = CFu + C1(u)



and, provided derivatives of each order exist

P ′(u0)v = C′(F(u0)) ◦ F
′(u0)v + C′

1(u0)v,

P ′′(u0)v
2 = C′′(F(u0)) ◦ (F ′(u0)v)2

+ +C′(F(u0)) ◦ F
′′(u0)v

2 + C′′
1 (u0)v

2,

P ′′′(u0)v
3 = C′′′(F(u0)) ◦ (F ′(u0)v)3

+ 3C′′(F(u0)) ◦ (F ′(u0)v, (F ′′(u0)v)2)

+ C′(F(u0)) ◦ (F ′′′(u0)v
3 + C′′′

1 (u0)v
3

· · ·

So the approximation system is governed by the approxima-
tions of memory operatorF and the memoryless operators
C andC1.

Let’s first consider the derivatives of memoryless opera-
tors. It is known that for a general nonlinear memoryless
operator (say)C between functions over infinite time in-
terval, even assumingC continuously differentiable is still
not sufficient to ensure the differentiability ofC. However,
memoryless operators generated by most basic functions are
differentiable, such as, in the scalar case:

1) linear operators: ifC is linear, thenC′(u0) = C and
C(k)(u0) = 0 for k ≥ 2;

2) polynomial operators: ifCu = un, then C(k)(u0) =
n!

(n−k)!u
n−k
0 for k ≥ 1;

3) delay operators: ifCu(t) = u(t − τ) for someτ ≥ 0,
thenC′(u0)v(t) = v(t− τ) andC(k)(u0) = 0 for k ≥
2.

In this paper, we suppose that any memoryless operatorsC
and C1 generated by functionsC and C1 are differentiable
as many times as required.

To study the approximation ofF , we let functionF (x, u)
be Fréchet differentiable up ton times with respect to
each variable and let the partial derivatives be denoted by
F ′

1(x, u), F ′
2(x, u), F ′′

11(x, u), F ′′
12(x, u), · · · respectively.

For anyu ∈ U , we let x(t, u) be the solution to Equation
(4.1). Then we have

Theorem 4.1:For anyn ≥ 1, F (n)(u0)v
n is the solution

to the system of equations

z′n(t) = F ′
1(x(t, u0), u0(t))zn(t)

+

[

n−1
∑

i=2

∂Gn−1

∂zi−1
zi(t) +

∂Gn−1

∂x
z1(t)

]

u=u0

+
∂Gn−1

∂u
v(t)

∣

∣

∣

u=u0

(4.5)

zn(0) = 0,

where

z1(t) =
∂x(t, u)

∂u

∣

∣

∣

u=u0

v(t),

G1 = G1(z1, x, u, v) = F ′
1(x, u)z1 + F ′

2(x, u)v

and forj = 2, · · · , n − 1,

zj(t) =
∂zj−1(t)

∂u

∣

∣

∣

u=u0

v(t),

Gj = Gj(zj , · · · , z1, x, u, v) = F ′
1(x, u)zj

+

j−1
∑

i=2

∂Gj−1

∂zi−1
zi +

∂Gj−1

∂x
z1 +

∂Gj−1

∂u
v, (4.6)

each derivative ofGj is in the function level, e.g.∂G1

∂z1
=

∂G1(z1(t),x(t),u(t),v(t))
∂z1(t)

.

Proof: The subscription|u=u0 will be omitted in the
proof.

As supposed

x(t, u) = x0 +

∫ t

0

F (x(s, u), u(s))ds,

so

∂

∂u
x(t, u)v =

∫ t

0

d
du

F (x(s, u), u(s))v(s)ds

=

∫ t

0

[

F ′
1(x(s, u), u(s))

∂

∂u
x(s, u)

]

v(s)ds

+

∫ t

0

[F ′
2(x(s, u), u(s))] v(s)ds

and

d
dt

(

∂

∂u
x(t, u)v(t)

)

= F ′
2(x(t, u), u(t))

∂

∂u
x(t, u)v

+ F ′
2(x(t, u), u(t))v(t).

This shows thatz1(t) = ∂
∂ux(t, u)v is the solution to the

equation:

z′1(t) = F ′
1(x(t, u), u)z1(t) + F ′

2(x(t, u), u)v, z1(0) = 0.
(4.7)

Similarly, since G1(z1, x, u) = F ′
1(x, u)z1 + F ′

2(x, u)v,
omitting the time variables, we have (note thatz1 is also
dependent ofu):

z2(t) =
∂

∂u
z1(t)v =

∫ t

0

d
du

G1(z1, x, u)vds

=

∫ t

0

F ′
1(x, u)z2ds

+

∫ t

0

[ ∂

∂x
G1(z1, x, u)z1 +

∂

∂u
G1(z1, x, u)v

]

ds.

Hence, our claim holds forn = 1, 2.

Suppose our claim holds forn = k, i.e. zk(t) =



∫ t

0
Gk(zk, · · · , z1, x, u)ds with Gk as given by (4.6). Then

zk+1(t) =
∂zk(t)

∂u
v =

∫ t

0

d
du

Gk(zk, · · · , z1, x, u)vds

=

∫ t

0

[∂Gk

∂zk

∂zk

∂u
v +

k−1
∑

j=1

∂Gk

∂zj

∂zj

∂u
v
]

ds

+

∫ t

0

[∂Gk

∂x

∂x

∂u
v +

∂Gk

∂u
v
]

ds

=

∫ t

0

F ′
1(x, u)zk+1ds

+

∫ t

0

[

k−1
∑

j=1

∂Gk

∂zj
zj+1 +

∂Gk

∂x
z1 +

∂Gk

∂u
v
]

ds,

which shows the claim holds forn = k + 1.
By induction, the proof is completed.

It is noted that Formula (4.5) is recursive, eachzn is
given by a linear system with multi-inputv andz1, · · · , zn−1

obtained in previous steps. In each step, the partial derivative
F ′

1 is the state matrix and if it is (gain) stable, the approx-
imation system will be (gain) stable globally. For example,
F ′′(u0)(v, v) is the solution to the equation

z′2(t) =F ′
1(x(t, u0), u0(t))z2(t) + F ′′

11(x(t, u0), u0(t))z
2
1(t)

+ F ′′
12(x(t, u0), u0(t))z1(t)v(t)

+ F ′′
21(x(t, u0), u0(t))v(t)z1(t)

+ F ′′
22(x(t, u0), u0(t))v

2(t), (4.8)

z2(0) =0

with z1 as obtained in (4.7), andF (3)(u0)(v, v, v) is the so-
lution to the equation (we omit the variables(x(t, u0), u0(t))
for each derivative ofF )

z′3(t) =F ′
1z3(t) + F ′′

11z1(t)z2(t) + 2F ′′
11z2(t)z1(t)

+ F ′′
12z2(t)v(t) + F ′′

21v(t)z2(t) + F ′′
21z2(t)v(t)

+ F ′′′
111z

3
1(t) + F ′′′

112z
2
1(t)v(t)

+ F ′′′
121z1(t)v(t)z1(t) + F ′′′

122z1(t)v
2(t)

+ F ′′′
211v(t)z2

1(t) + F ′′′
212v(t)z1(t)v(t)

+ F ′′′
221v

2(t)z1(t) + F ′′′
222v

3(t),

z3(0) =0

wherez1, z2 are as obtained in (4.7),(4.8) respectively.
Example 4.2:Suppose thatP : u 7→ y is the input-output

operator of the one dimensional system

x′(t) = f(x) + g(x)u, x(0) = 0,
y(t) = Cx(t)

with f, g both continuously differentiable to any order as
required,f(0) = 0 and C a bounded linear operator, then

P ′(0), P ′′(0), P ′′′(0) are, respectively:

P ′(0) : v 7→ Cz1 :

z′1 = f ′(0)z1 + g(0)v, z(0) = 0, (4.9)

P ′′(0) : v 7→ Cz2 :

z′2 = f ′(0)z2 + f ′′(0)z2
1 + 2g′(0)z1v, (4.10)

z(0) = 0,

P ′′′(0) : v 7→ Cz3 :

z′3 = f ′(0)z3 + f ′′′(0)z3
1 + 3g′′(0)z2

1v

+ 3f ′′(0)z1z2 + 3g′(0)z2v, (4.11)

z(0) = 0.

Therefore the approximation operator of order 3

y = P3u = P ′(0)u +
1

2
P ′′(0)u2 +

1

6
P ′′′(0)u3

is given by the system of equations (4.9),(4.10),(4.11) and

z =z1 +
1

2
z2 +

1

6
z3, (4.12)

y =Cz (4.13)

We now look at a concrete case whenf(x) = −x −
x3, g(x) = 1 andC = I, i.e. whenP is given as

P : u 7→ x, x′ = −x − x3 + u, x(0) = 0.

For anyu such that‖u‖ ≤ r ≤ 1, we letxu = Pu. It can be
shown‖xu‖ + ‖xu‖

3 ≤ ‖u‖ which gives

‖xu‖ ≤ 0.7‖u‖ ≤ 0.7, ‖xu‖
3 ≤ 0.35‖u‖. (4.14)

The derivatives ofP (u) are, respectively

P ′(u) : v 7→ z1 : z′1 = −(1 + 3x2
u)z1 + v, z1(0) = 0

P ′′(u) : v 7→ z2 : z′2 = −(1 + 3x2
u)z2 − 6xuz2

1 ,

z2(0) = 0

P ′′′(u) : v 7→ z3 : z′3 = −(1 + 3x2
u)z3 − 18xuz1z2 − 6z3

1 ,

z3(0) = 0

P (4)(u) : v 7→ z4 : z′4 = −(1 + 3x2
u)z4 − 24xuz1z3

− 36z2
1z2 − 18xuz2

2 , z4(0) = 0

· · · · · ·

It can be proved that

‖z1‖ ≤ ‖v‖, ‖z2‖ ≤ 6‖xu‖‖v‖
2,

‖z3‖ ≤ 6(3‖xu‖ + 1)‖v‖3, ‖z4‖ ≤ 6(7‖xu‖ + 6)‖v‖4

and therefore

‖P ′(u)‖ ≤ 1, ‖P ′′(u)‖ ≤ 6‖xu‖ ≤ 4.2,

‖P ′′′(u)‖ ≤ 18.6, ‖P (4)(u)‖ ≤ 66.

According to Theorem, an upper bound for each of the gaps
~δ(P, P1) and~δ(P, P3) is

~δ(P, P1) ≤
pr1

2
× 4.2 = 2.1pr1,

~δ(P, P3) ≤
(pr1)3

4!
× 66 ≤ 2.6(pr1)

2pr1.



If pr1 ≤ 0.8, then the above estimation shows that the third
order approximationP3 will give a better robust margin than
the linearisationP1.

5. APPROXIMATION OF UN-STABLE OPERATORS

In this section, we study the complexity reduction for
un-stable operators which has co-prime factorisations, the
operators is even not necessarily differentiable as long as
the co-prime factors are. Recall that a causal operatorP :
Ua → Ya is said to admit a (right) coprime factorization if
and only if there exist causal stable operatorsD : dom(D) ⊂
U → V ⊂ U andN : V ⊂ U → Y such that

(i) D is causally invertible withdom(D−1) = dom(P ),
(ii) P = ND−1 and
(iii) there exists a causal stable mappingL : U × Y → U

such thatL(D, N)⊤ = I.
In the case whenD, N are coprime factorisation ofP , we
write P = ND−1. Sufficient conditons for the existence of
co-prime factorisations to differential systems can be found
in [2].

Now, supposeP = ND−1 with D, N stable Fréchet
differentiable,D−1 is not necessarily stable nor differen-
tiable. The discussion in the last sections cannot be applied
directly to P , but can be applied to bothN and D to
obtain approximationsNn and Dn respectively. IfDn has
an “inverse”[Dn]−1, then we treatNn[Dn]−1 as the approx-
imation toP . This is the idea of this section.

Let

Nnu = Nu0 + N ′(u0)u +
1

2
N ′′(u0)u

2 + · · · +
1

n!
N (n)un,

(5.1)

Dnu = Du0 + D′(u0)u +
1

2
D′′(u0)u

2 + · · · +
1

n!
D(n)un.

(5.2)

For eachv from the range ofDn, we choose an arbitrary
u ∈ U such thatDnu = v and denoted by

[Dn]−1v = u.

In other word,[Dn]−1 is the inverse ofDn|V with V ⊂ U
a subset such that

Dn : V → Range(Dn) is one-one.

Note, if Dn is invertible, then[Dn]−1 is the inverse ofDn.
We now define the approximation ofP as

Pn = Nn[Dn]−1.

It is known that an operator may have more than than one
coprime factorisations([1]), therefore the approximation for
unstable systems defined in this way is not unique.

Since (N, D) is a right coprime factorization ofP , we
have

graph(P ) =

{(

Du
Nu

)

: u ∈ U

}

.

(Nn, Dn) is not necessarily the coprime factorisation ofPn,
we cannot have the same graph representation. However, the
definitions ofPn and [Dn]−1 shows the following inclusion

graph(Pn) =

{(

Dnv
Nnv

)

v ∈ V

}

⊂

{(

Dnv
Nnv

)

: v ∈ U

}

whereV ⊂ U is the subset such that[Dn]−1 = [Dn|V ]−1.
In the case whenDn is invertible, the inclusion becomes
equal. This shows that the mappingΨ defined by

Ψ

(

Dnu
Nnu

)

=

(

Du
Nu

)

(5.3)

mapsgraph(Pn) into graph(P ). Moreover
∥

∥

∥

∥

(Ψ − I)

(

Dnu
Nnu

)
∥

∥

∥

∥

=

∥

∥

∥

∥

(

(D − Dn)u
(N − Nn)u

)
∥

∥

∥

∥

.

Note, by the definitions of coprime factorisaton and dif-
ferentiability, bothN, D andNn, Dn are stable.

Again, as in Section 3, in the rest of this section, we
supposeN0 = 0 and D0 = 0 for the applications of gap
metric theory.

Theorem 5.1:Let [Pn, K] be globally well-posed,[P, K]
be locally well-posed, and‖ΠPn//C |Sr

‖ ≤ p with r, p ≥ 0.
Suppose bothN andD are continuously differentiable up to
n times on an open set containing the disc centered at 0 with
radiusr and there exist numberh(pr) > 0 and functions

kn, c : [0,∞] → [0,∞]

such that

‖N (n+1)(u)‖ ≤ kn(R), ‖D(n+1)(u)‖ ≤ kn(R) (5.4)

for all u ∈ U with ‖u‖ ≤ R, and

‖Du‖ ≥ c(‖u‖) for all u ∈ U, (5.5)

c(t) −
kn(t)

(n + 1)!
tn+1 ≤ pr implies t ≤ h(pr). (5.6)

If Tτ (Ψ−I)ΠPn//C |Spr
is continuous, compact for allτ ≥ 0

and

0 <
pkn(h(pr))

b(n + 1)! − kn(h(pr))
< 1, (5.7)

where b = inf{c(t)/tn+1 : t ∈ (0, h(pr)]}, then HP,K is
globally well-posed and gain stable onS(1−pq)r and

‖ΠPn//C |S(1−pq)r
‖ ≤

p(1 + q)

1 − pq
,

where

q =
kn(h(pr))

b(n + 1)! − kn(h(pr))
.

Proof: Let σ > 0. Apply the same procedure in
Theorem 3.2 toN andD, respectively, to obtain

‖(N − Nn)Tσu‖, ‖(D − Dn)Tσu‖ ≤
kn(‖u‖)

(n + 1)!
‖Tσu‖n+1

for all u ∈ U . Let u ∈ U such that‖(Dnu, Nnu)‖ ≤
pr. Then ‖TσDTσu‖ − ‖Tσ(DTσu − DnTσu)‖ ≤
‖TσDnTσu‖ ≤ pr and therefore

c(‖Tσu‖) −
kn(‖Tσu‖)

(n + 1)!
‖Tσu‖n+1 ≤ pr.



By (5.6), it follows ‖Tσu‖ ≤ ‖u‖ ≤ h(pr). Hence

‖Tσ(Ψ − I)|Spr
‖

= sup
u∈V

‖(Dnu,Nnu)‖≤pr

∥

∥

∥

∥

Tσ(Ψ − I)

(

Dnu
Nnu

)∥

∥

∥

∥

∥

∥

∥

∥

Tσ

(

Dnu
Nnu

)∥

∥

∥

∥

≤ sup
u∈U

‖u‖≤h(pr)

kn(h(pr))‖Tσu‖n+1/(n + 1)!

c(‖Tσu‖)− kn(h(pr))‖Tσu‖n+1/(n + 1)!

=
kn(h(pr))

b(n + 1)! − kn(h(pr))

By assumption (3.4) and Lemma 2.4, the proof is com-
pleted.

This is a local stability result, but conditions (5.4) and
(5.5) are made globally. However, as assumed, there is no
specific conditions imposed tokn or c, so we can choose the
two functions piecewisely based on their local behaviour.

For local stability, requiring (5.4)-(5.5) to hold for allu ∈
U is a bit strict. If the coercive condition is imposed toDn,
this restriction can be weakened. The proof is similar as
above.

Theorem 5.2:Let [Pn, K] be globally well-posed,[P, K]
be locally well-posed, and‖ΠPn//K |Sr

‖ ≤ p with r, p ≥ 0.
Suppose bothN and D are continuously differentiable up
to n times on an open set containing the disc centered at 0
with radiusr and there exist constantsα, c > 0 andkn ≥ 0
such that

‖Dnu‖ ≥ c‖u‖α for all u ∈ U, ‖u‖ ≤ r, (5.8)

and

‖N (n+1)(u)‖ ≤ kn, ‖D(n+1)(u)‖ ≤ kn (5.9)

for all u ∈ U, ‖u‖ ≤ pr/c. If Tτ (Ψ − I)ΠPn//K |Sr
is

continuous, compact and

pkn

c(n + 1)!

(pr

c

)
n−α

α

< 1, (5.10)

then HP,K is globally well-posed and is bounded on
S(1−pq)r , where

q =
kn

c(n + 1)!

(pr

c

)
n−α

α

.

Let’s consider an example where the operatorP :
L∞(R+) → L∞(R+) is given by

P : u 7→ y, x′ = x2 + sin(x) + u, x(0) = 0, y = x.

ThenP = ND−1 with

D : v 7→ u, x′ = −2x + sin(x) + v, x(0) = 0,

u = −2x − x2 + v,

N : v 7→ y, x′ = −2x + sin(x) + v, x(0) = 0,

y = x.

Both D and N are compositions of memoryless operators
and the input-to-state operator given by the equationx′ =

−2x+sin(x)+ v, x(0) = 0. Using the conclusions obtained
in Section 4, we see that the first order approximations for
D andN are

D′(0) : v 7→ u, z′ = −z + v, z(0) = 0, u = −2z + v,

N ′(0) : v 7→ y, z′ = −z + v, z(0) = 0, y = z

and the inverse ofD′(0) is

[D′(0)]−1 : u 7→ v, z′ = z + u, z(0) = 0, v = 2z + u.

Hence, the first order approximation ofP is given as

P1 : u 7→ y, x′ = x + u, x(0) = 0, y = x.

6. CONCLUSION

We have presented results which permit the systematic
reduction of nonlinear systems to a series of simpler approx-
imants. Linearisation is the simplest case, and thereafterthe
technique can be considered to be introducing higher order
corrections to the linearisation to improve accuracy. These
approximations are derived in a principled manner based on
an input/output perspective, and give rise to systems of a
particular structure: namely recursive linear systems, with
inputs constructed by polynomial combinations of the earlier
recursively constructed states and the actual input. We have
illustrated the technique with simple examples for clarity,
however, the complexity reduction itself arrives when the
technique is applied to more complex systems; since the
build up of the polynomial terms in the approximants is
independent of the underlying system.
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