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Abstract – The paper develops a reluctance-resistance network (RRN) formulation for determining the induced 
current distributions in a 3D space of multiply connected conducting systems. The proposed method has been 
applied to solve Problem No. 7 of the International TEAM Workshops. The induced currents in the conductive 
plate with an asymmetrically situated ‘hole’ have been analysed. The RRN equations have been formed by means 
of the finite element method using the magnetic vector potential A and the electric vector potentials T and T0. The 
block relaxation method (BRM) combined with the Cholesky decomposition procedure has been applied to solve 
the resultant RRN equations. Selected results of the analysis are presented and discussed. 

Introduction  

Many devices operate by utilising conduction currents created by electromotive forces, known as 
induced currents. Systems using such currents may be categorised as (a) simply connected regions 
with solid conductors, e.g. the solid part of a magnetic core, (b) multiply connected regions with thin 
(filamentary) conductors, e.g. windings composed of stranded conductors, (c) multiply connected 
regions with a form-wound multi-conductor windings, e.g. a squirrel cage winding of an induction 
motor, and (d) multiply connected regions with a solid core with holes [1]. We focus here on the case 
(d); the considered system consists of a conducting plate with an asymmetrically positioned hole and 
a coil excited using an alternating current (Fig. 1), as described by Problem No. 7 of the TEAM 
Workshops [2].  

 
Fig. 1. The system considered containing induced currents - TEAM Workshops Problem No. 7 

 
In the paper, a novel formulation of the reluctance-resistance network (RRN) approach is proposed. 
The reluctance-resistance network is obtained by coupling, via sources, two networks: (a) a reluctance 
network, and (b) a resistance network. The RRN equations have been derived by means of the edge 
element (EE) method. The use of vector potentials has been considered. The EE equations for the 
magnetic potential A represent the loop equations of the reluctance network, while the EE equations 
for the electric potential T correspond to the loop equations of the resistance network. However, the 
classical A-T formulation of the reluctance-resistance network method is not capable of treating 
multiply connected regions with solid conductors, such as aluminium bars in a cage rotor of 
an induction motor [3]. To rectify this shortcoming of the standard RRN formulation, the authors 



propose to complement the description of the RRN method by introducing supplementary equations 
in terms of T0 representing the induced current distribution in the region around the holes [3, 4]. 

Reluctance Network (RµµµµN) 

A reluctance network (RµN) may be constructed by applying an edge element formulation in terms of 
magnetic vector potential [5, 6]. In the reluctance model of an element, the network branches connect 
the centres of the facets with the centres of the element. A reluctance model of a hexahedron is shown 
in Fig. 2a. The branch fluxes φb passing through the facets of elements are related to the facet values of 
the flux density vector B in the element [5, 6]; their distribution may be described by 

 θθθθφφφφ −=Ω bµRu , (1) 

where Rµ is the matrix of branch reluctances, uΩ the vector of branch magnetic potential differencies, 
and θθθθ represents the vector of branch magnetomotive forces (mmfs). The branch reluctances RµN may 
be established using interpolating functions applied to the facet element 
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where wfp and wfq are the interpolating functions of the facet element for facets Sp i Sq [5, 7], Ve is the 
volume of the element, and νννν is the matrix of reluctivities. It should be noted that, in contrast to the 
classical formulation of the reluctance network, in the network constructed using the edge element 
method (EEM) mutual reluctances will normally appear [5, 6]. Next, having accounted for the 
structure of element connections and by introducing a full mesh (loop) matrix ke, the branch fluxes 
may be expressed in terms of mesh (loop) fluxes ϕ circulating around element edges 

 ϕϕϕϕφφφφ eb k= . (3) 

The loop fluxes represent the edge values of the magnetic vector potential. For example, the flux ϕ37 
of Fig. 2a may be associated with the value of the vector potential A for the edge P3P7. Substituting (3) 
into (1), while imposing the condition that the sum of magnetic potential differences in a loop is zero 
( 0=Ωuk T

e ), yields the following loop equation for the loop fluxes ϕ of the reluctance network  

 θθθθϕϕϕϕ T
ee
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Fig. 2. Network models of a hexahedron: (a) reluctance, (b) resistance 

In (4) the product θθθθT
ek represents the vector of loop mmfs Θ, that is a vector of the sum of the branch 

mmfs in a loop of the reluctance network. The loop mmfs form the vector on the right hand side of (4), 
which may be related to the vector of branch currents ie associated with the edges of elements, that is 
currents flowing through the loops of the reluctance network [6], (see also Fig. 4a) 

 e
T
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In electromagnetic field analysis the following circumstances may arise where magnetic field is 
created by: (a) magnetisation currents in permanent magnets, (b) conduction currents in filament 
windings, or (c) eddy currents induced in massive conductors or bulk materials. In the case of 
permanent magnets the matrix Θ is calculated from the distribution of the magnetisation vector Tm [8]. 
For filament currents (b), the sources are defined by the edge values of current density J [9]. For the 
case (c) of induced currents, the method of establishing the source term depends on the formulation 
used; for the approach presented in this paper, based on A-T-T0 and associated RRN method, the 
vector ie is obtained from the distribution of edge values of vector potentials T and T0 of the relevant 
resistance network. Further details related to the description of sources are provided later in the article. 

Resistance Network (RσσσσN) 

A resistance network (RσN) may be developed by applying the edge element method formulated in 
terms of the electric vector potential T [6]. The network branches, in a similar way as in the previously 
described reluctance network, are associated with the connections between the centres of the facets 
with the centres of the element (Fig. 2b). The branch currents ib associated with the facets of elements 
are linked to the facet values of the current density J [6], and their distribution may be described by 

 eiRu −= be σ , (6) 

where Rσ is the matrix of branch resistances derived from the interpolating functions of the facet 
element, ue is the vector of branch electric potential differences (voltage drops), and e represents the 
vector of branch electromotive forces (emfs). As before for the reluctance network, by taking account 
of the structure of element connections and introducing the matrix ke, the branch currents may be 
expressed in terms of mesh (loop) currents im around the element edges 

 meb iki = . (7) 

Substituting (7) to (6) and incorporating the Kirchhoff’s voltage law that the sum of branch potential 
drops in a loop is equal to zero ( 0=e

T
e uk ) leads to the following expression for loop currents 

 ekikRk T
eme

T
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The branch resistances Rσ may be derived form the interpolating functions of the facet element as 
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where the vectors wfp are wfq are the interpolating functions of the facet element for the facets Sp and 
Sq, Ve is the volume of the element, and σσσσ is a matrix of resistivities of the conducting materials. As in 
the case of the reluctance networks, the resistance networks will contain mutual resistances [6]. The 
sum of branch emfs, represented by the productek T

e , is equal to the vector of loop emfs eο in the loops 
of the resistance network. The vector of loop emfs is described by the right hand side of (8), which is 
established by time differentiation of branch fluxes φφφφe associated with element edges (Fig. 4b), that is 
fluxes passing through the loops of the resistance network [6]. Hence 
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The procedure described above provides a very efficient method but is applicable – in the form 
presented – only to the analysis of singly-connected regions. Until recently it was argued that it would 
not be possible to use the electric vector potential T in cases of multiply-connected regions, that is 
regions containing ‘holes’ [3, 4]. However, the majority of conducting components in practical 
electromechanical devices contain such multiply-connected regions; examples include cage rotors of 
induction motors, windings made of multi-turn ‘rods’, coils made of thin filaments, bulk conducting 
elements in the rotor with holes introduced to limit losses due to eddy currents. A direct application of 
the network formulation RσN using the electric vector potential T leads to the loop equations (8), 
which refer only to the loops containing currents induced around the element edges. Although the 
number of such equations is usually higher than the number of independent loops, it has been found 
that for multiply-connected regions it is impossible to create a set of fundamental loops necessary for 
achieving a unique solution – the reason is because the equations do not contain information about the 
current flow in the loops around the holes [4]. It is therefore necessary to supplement the loop 



equations with additional conditions expressed in terms of the potential T0 describing current flow 
around the multiply-connected regions [3, 4]. 
 

 
Fig. 3. Selecting the loop current ic representing the edge value of potential T0  

In the TEAM Workshop problem No. 7 considered here, the conducting plate is a doubly-connected 
region with asymmetrically positioned internal hole (Fig. 1). Following the argument presented above, 
in order to analyse the induced current distribution in the plate using the resistance network, it was 
necessary to expand the loop equations (8) by adding a supplementary equation describing the 
distribution of current ic around the hole, which has in fact created another loop. The selection of this 
supplementary loop is guided by the requirement that any loop must contain the hole within itself; the 
appropriate procedure for our example case is depicted in Fig. 3. This allows a matrix ze of ‘cuts’ 
between loop surfaces and element edges to be established, known as a surface-edge or S-E approach 
– further details of this technique may be found in [3, 4]. In the special case of Fig. 3 the matrix ze has 
just one column; it enables specification of those resistances of the network which belong to the 
auxiliary loop and through which the current ic will flow. Having incorporated the additional loop into 
the RσN model, the branch currents ib may be expressed as a sum of two terms: the first containing all 
loop currents around element edges, and the second expressed in terms of the current in the additional 
loop (or additional loops in the general case of multiply-connected regions). Expression (7) becomes 

 cemeb iziki += . (11) 

As a consequence, the loop equations (8), supplemented by the condition arising through the 
introduction of the additional loop equation, may now be written as 
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where eco is the emf in the loop around the hole [4] as given by 
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Reluctance-Resistance Model 

The reluctance-resistance network (RRN) can now be developed by appropriate coupling – via 
sources, that is through loop mmfs and emfs – of a reluctance network and a resistance network 



(Fig. 2). The loop mmfs in the network RµN are equal to the branch currents ie associated with the 
element edges. These currents can be calculated from branch currents ib associated with element facets 
of the RσN network as 

 b
T

e iKi ==ΘΘΘΘ , (14) 

where K is the transposition matrix converting branch quantities associated with facets to branch 
quantities associated with edges of the elements [3]. The relationship between branch currents ib of the 
resistance network and the currents passing through a single loop of the reluctance network and its 
relevant mmf is depicted in Fig. 4 for the case of a parallelepiped elements. The current ie i,j shown 
in Fig. 4a is calculated by adding (with appropriate signs and weights) the currents ibk (Fig. 4b); for 
example, for a hexahedron each weight equals 1/8 [6]. When the branch currents ib are expressed by 
loop currents im and the current ic - expression (11), then the currents ie can be calculated as follows 
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The loop emfs in the resistance network are calculated as time derivatives of branch fluxes φφφφe. To find 
the fluxes φφφφe, first – on the basis of the loop fluxes – the fluxes φφφφb are established, which are at the 
same time branch fluxes in the reluctance network. The relationship (3) can be used for this purpose. 
Next, by using the matrix K, that is after summing up of branch fluxes (again with appropriate signs 
and weights) [4, 6], the fluxes φφφφe passing through the loops of the resistance network may be found 
(Fig. 4) as 
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Merging loop equations (4) of RµN with loop equations (12) RσN, while incorporating the conditions 
describing the coupling between the two networks via the loop mmfs and emfs, the final set of 
equations for the system of Fig. 1 has been derived as 
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where p is the differential operator (p=d/dt) and the vector Θz represents the loop mmfs set up by the 
flow of current through the winding above the conducting plate (Fig. 1). 
 

  
Fig. 4. The coupling in the RRN formulation between the networks: (a) reluctance, (b) resistance 

Results and Conclusions 

Based on the presented enhanced RRN formulation, a dedicated software algorithm has been 
developed for calculation of transient electromagnetic fields in 3D space. The block relaxation method 
(BRM), combined with Cholesky decomposition procedure, has been applied to solve the model 



equations. The software allows the determination of induced current distributions in multiply 
connected conducting regions. As an example, the test problem No. 7 of the International TEAM 
Workshops has been examined. The system consists of a coil and a conductive plate with an 
asymmetrically situated 'hole' – see, Fig. 1. The relevant space has been subdivided into about 150 000 
hexahedron elements. The total number of RRN equations is approximately 450 000. The calculations 
have been performed for the value of the current density in the coil Jcu=1,0968 A/mm2 and the source 
frequency f = 50Hz. Selected results are shown in Figs 5 and 6. Fig. 5a,b,c presents the distributions of 
the components of the magnetic flux densities (Bx, By, Bz) on the surface parallel to the conducting 
plate, half the distance between the plate and the coil. The corresponding distributions of the 
components of the vector current densities (Jx, Jy, Jz) on the upper surface of the plate are shown in 
Fig. 6a,b,c, respectively. The distributions have been determined assuming the maximum value of the 
current in the coil. 

 
Fig. 5a. Distribution of the x component  

of  the magnetic flux density (Bx) 

 
Fig. 6a. Distribution of the x component  

of the current density (Jx) 

 
Fig. 5b. Distribution of the y component  

of  the magnetic flux density (By) 

 
Fig. 6b. Distribution of the y component  

of the current density (Jy) 

 
Fig. 5c. Distribution of the z component  

of  the magnetic flux density (Bz) 

 
Fig. 6c. Distribution of the z component  

of the current density (Jz) 
 



A comparison with the results published in [1, 10] and [11] reveals very close agreement and thus high 
accuracy of the proposed RRN computational scheme. The small differences for a selected point are 
marked on the figures. The total computational time using BRM and imposed error threshold of 10−6 was 
typically about an hour, which should be compared with 6.5 hours needed to achieve the same accuracy 
using a reluctance-conductance network described in [12]. 
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