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Abstract— The paper develops a reluctance-resistance netviBRN) formulation for determining the induced
current distributions in a 3D space of multiply coected conducting systems. The proposed method bees

applied to solve Problem No. 7 of the InternationBEAM Workshops. The induced currents in the condive

plate with an asymmetrically situated ‘hole’ havedn analysed. The RRN equations have been formethegins
of the finite element method using the magnetic teegotential A and the electric vector potentialsand T,. The

block relaxation method (BRM) combined with the Abeky decomposition procedure has been appliedotaes
the resultant RRN equations. Selected results & #malysis are presented and discussed.

Introduction

Many devices operate by utilising conduction cusecreated by electromotive forces, known as
induced currents. Systems using such currents reagabegorised as (a) simply connected regions
with solid conductors, e.g. the solid part of a metie core, (b) multiply connected regions withnthi
(filamentary) conductors, e.g. windings composedsivhnded conductors, (c) multiply connected
regions with a form-wound multi-conductor windingsg. a squirrel cage winding of an induction
motor, and (d) multiply connected regions with fdsoore with holes [1]. We focus here on the case
(d); the considered system consists of a condugtiaig with an asymmetrically positioned hole and
a coil excited using an alternating current (Fiyy. ds described by Problem No. 7 of the TEAM
Workshops [2].

Ve

Yy

conducting plate

Fig. 1. The system considered containing induceceots - TEAM Workshops Problem No. 7

In the paper, a novel formulation of the reluctaresistance network (RRN) approach is proposed.
The reluctance-resistance network is obtained bploag, via sources, two networks: (a) a reluctance
network, and (b) a resistance network. The RRN tiopus have been derived by means of the edge
element (EE) method. The use of vector potentials leen considered. The EE equations for the
magnetic potential represent the loop equations of the reluctancerarkt while the EE equations
for the electric potential correspond to the loop equations of the resistmetwork. However, the
classical A-T formulation of the reluctance-resistance networthud is not capable of treating
multiply connected regions with solid conductorsicts as aluminium bars in a cage rotor of
an induction motor [3]. To rectify this shortcomimd the standard RRN formulation, the authors



propose to complement the description of the RRkhotk by introducing supplementary equations
in terms ofT, representing the induced current distributiorhim itegion around the holes [3, 4].

Reluctance Network (RN)

A reluctance network () may be constructed by applying an edge elenwnidlation in terms of
magnetic vector potential [5, 6]. In the reluctanoedel of an element, the network branches connect
the centres of the facets with the centres of lament. A reluctance model of a hexahedron is shown
in Fig. 2a. The branch fluxeg passing through the facets of elements are retattte facet values of
the flux density vectoB in the element [5, 6]; their distribution may besdribed by

up =R,@, -9, 1)

whereR, is the matrix of branch reluctances, the vector of branch magnetic potential differesci
and®@ represents the vector of branch magnetomotiveefofomfs). The branch reluctancegNRmay
be established using interpolating functions aplpicethe facet element
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wherew;, andw, are the interpolating functions of the facet eletrfer facetsS, i §, [5, 7], Ve is the
volume of the element, andis the matrix of reluctivities. It should be notdtht, in contrast to the
classical formulation of the reluctance networkthie network constructed using the edge element
method (EEM) mutual reluctances will normally app¢a, 6]. Next, having accounted for the
structure of element connections and by introdueinigll mesh (loop) matrik,, the branch fluxes
may be expressed in terms of mesh (loop) flyxesculating around element edges

@, =keb. (3)
The loop fluxes represent the edge values of thgnetic vector potential. For example, the fluy

of Fig. 2a may be associated with the value ofvator potentiaA for the edgd®;P,. Substituting (3)
into (1), while imposing the condition that the sofrmagnetic potential differences in a loop isozer

(ks ug =0), yields the following loop equation for the lofipxes ¢ of the reluctance network
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Fig. 2. Network models of a hexahedron: (a) relucta (b) resistance

In (4) the productk @ represents the vector of loopmfs ©, that is a vector of the sum of the branch

mmfs in a loop of the reluctance network. The loapfs form the vector on the right hand side of (4),
which may be related to the vector of branch cusrgrassociated with the edges of elements, that is
currents flowing through the loops of the relucenetwork [6], (see also Fig. 4a)

O=kl0=i,. (5)



In electromagnetic field analysis the following atimstances may arise where magnetic field is
created by: (a) magnetisation currents in permanggnets, (b) conduction currents in filament
windings, or (c¢) eddy currents induced in massieaductors or bulk materials. In the case of
permanent magnets the mat@xs calculated from the distribution of the magregisn vectorT,, [8].

For filament currents (b), the sources are defingdhe edge values of current densitj9]. For the
case (c) of induced currents, the method of estaiblj the source term depends on the formulation
used; for the approach presented in this papeedbas A-T-T, and associated RRN method, the
vectorie is obtained from the distribution of edge valuésector potentialS andT, of the relevant
resistance network. Further details related talseription of sources are provided later in thielar

Resistance Network R,N)

A resistance network (Rl) may be developed by applying the edge elemerthadeformulated in
terms of the electric vector potent&[6]. The network branches, in a similar way athie previously
described reluctance network, are associated Wwehconnections between the centres of the facets
with the centres of the element (Fig. 2b). The bhacurrents,, associated with the facets of elements
are linked to the facet values of the current dgrksj6], and their distribution may be described by

u, =R.i, —e, (6)
where R; is the matrix of branch resistances derived fréwe interpolating functions of the facet
element,u, is the vector of branch electric potential diffezes (voltage drops), amdrepresents the
vector of branch electromotive forcesrfs). As before for the reluctance network, by talkaegount

of the structure of element connections and intcody the matrixk, the branch currents may be
expressed in terms of mesh (loop) curréep&round the element edges

iy =Kol (7
Substituting (7) to (6) and incorporating the Kinoiff’'s voltage law that the sum of branch potential
drops in a loop is equal to zerk(u, = 0) leads to the following expression for loop cutsen

kiR k.. =kie. (8)
The branch resistanc& may be derived form the interpolating functionghaf facet element as
Ropq = || [WiowdV,., 9
Ve

where the vectorsk, arews, are the interpolating functions of the facet eletrfer the facetss, and
Sy Ve is the volume of the element, aagds a matrix of resistivities of the conducting erls. As in
the case of the reluctance networks, the resistaatgorks will contain mutual resistances [6]. The

sum of branclemfs, represented by the prodkée, is equal to the vector of lomanfs e, in the loops

of the resistance network. The vector of l@ps is described by the right hand side of (8), whsch
established by time differentiation of branch flaxg associated with element edges (Fig. 4b), that is
fluxes passing through the loops of the resistareteork [6]. Hence
—%. (10)
The procedure described above provides a veryiaftionethod but is applicable — in the form
presented — only to the analysis of singly-conrieotgions. Until recently it was argued that it Wbu
not be possible to use the electric vector potkfitian cases of multiply-connected regions, that is
regions containing ‘holes’ [3, 4]. However, the ordty of conducting components in practical
electromechanical devices contain such multiplyrsmted regions; examples include cage rotors of
induction motors, windings made of multi-turn ‘rgdsoils made of thin filaments, bulk conducting
elements in the rotor with holes introduced to filnsses due to eddy currents. A direct applicatibn
the network formulation BN using the electric vector potenti@l leads to the loop equations (8),
which refer only to the loops containing curremduced around the element edges. Although the
number of such equations is usually higher thanntimaber of independent loops, it has been found
that for multiply-connected regions it is impossilb create a set of fundamental loops necessary fo
achieving a unique solution — the reason is bectigsequations do not contain information about the
current flow in the loops around the holes [4].idttherefore necessary to supplement the loop

e, =k.,e=



equations with additional conditions expressedeims of the potentialy describing current flow
around the multiply-connected regions [3, 4].
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Fig. 3. Selecting the loop bu%re’@'representing the edge value of potenftial

In the TEAM Workshop problem No. 7 considered héhne, conducting plate is a doubly-connected
region with asymmetrically positioned internal h@fég. 1). Following the argument presented above,
in order to analyse the induced current distributio the plate using the resistance network, it was
necessary to expand the loop equations (8) by gddirsupplementary equation describing the
distribution of current. around the hole, which has in fact created andtdwy. The selection of this
supplementary loop is guided by the requiremerttahg loop must contain the hole within itself; the
appropriate procedure for our example case is twpim Fig. 3. This allows a matriz of ‘cuts’
between loop surfaces and element edges to bdigistal) known as a surface-edge or S-E approach
— further details of this technique may be foun{Bind]. In the special case of Fig. 3 the makikas
just one column; it enables specification of thossistances of the network which belong to the
auxiliary loop and through which the currenwill flow. Having incorporated the additional loaqto

the RN model, the branch curreritsmay be expressed as a sum of two terms: thecbrgining all
loop currents around element edges, and the seogmdssed in terms of the current in the additional
loop (or additional loops in the general case oftiply-connected regions). Expression (7) becomes

iy =k,i, + 2z, (11)

As a consequence, the loop equations (8), suppkewcheby the condition arising through the
introduction of the additional loop equation, maywnbe written as
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wheree, is theemf in the loop around the hole [4] as given by
_ __7 do
€o _deo __Z—erd_te- (13)

Reluctance-Resistance Model

The reluctance-resistance network (RRN) can nowdéeeloped by appropriate coupling — via
sources, that is through loapmfs andemfs — of a reluctance network and a resistance nktwor



(Fig. 2). The loopmmfs in the network N are equal to the branch currentsassociated with the
element edges. These currents can be calculateddiranch currentis associated with element facets

of the RN network as
@=i, =K', (14)

where K is the transposition matrix converting branch ditis associated with facets to branch
quantities associated with edges of the elemetd fi& relationship between branch curreptsf the
resistance network and the currents passing thraugimgle loop of the reluctance network and its
relevantmmf is depicted in Fig. 4 for the case of a parallgeg elements. The current; shown
in Fig. 4a is calculated by adding (with approgriatgns and weights) the currenjs(Fig. 4b); for
example, for a hexahedron each weight equals 1/8\Gen the branch currenitsare expressed by
loop currents,, and the currerit - expression (11), then the currentsan be calculated as follows

io =Kk, + KTKZi, . (15)
The loopemfs in the resistance network are calculated as dienatives of branch fluxeg. To find
the fluxesq., first — on the basis of the loop fluxes — thex@is @, are established, which are at the
same time branch fluxes in the reluctance netwbhle relationship (3) can be used for this purpose.
Next, by using the matriK, that is after summing up of branch fluxes (agsith appropriate signs
and weights) [4, 6], the fluxeq. passing through the loops of the resistance né&tway be found
(Fig. 4) as

Q. =K'q, =K'k, (16)

Merging loop equations (4) of R with loop equations (12) /R, while incorporating the conditions
describing the coupling between the two networls thie loopmmfs andemfs, the final set of
equations for the system of Fig. 1 has been deiged

kiRk. -K'k, -K'kz, [¢] [©,
pPK'k, kiRk, kIRk.z |[i,|=|0 |. (17)
Pze KTk, Zeke Roke  ZokgRKez | i 0

where p is the differential operator (p=d/dt) ahd vector®, represents the loapmfs set up by the
flow of current through the winding above the coctihg plate (Fig. 1).
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Fig. 4. The coupling in the RRN formulation betwelka networks: (a) reluctance, (b) resistance

Results and Conclusions

Based on the presented enhanced RRN formulatiodedicated software algorithm has been
developed for calculation of transient electromaigrféeelds in 3D space. The block relaxation method
(BRM), combined with Cholesky decomposition proaeduhas been applied to solve the model



equations. The software allows the determinationinmfuced current distributions in multiply
connected conducting regions. As an example, tsepmblem No. 7 of the International TEAM
Workshops has been examined. The system consists adil and a conductive plate with an
asymmetrically situated 'hole' — see, Fig. 1. Télevant space has been subdivided into about 180 00
hexahedron elements. The total number of RRN empgis approximately 450 000. The calculations
have been performed for the value of the currensitigin the coill,,=1,0968 A/mm and the source
frequencyf = 50Hz. Selected results are shown in Figs 5 afdgs 5a,b,c presents the distributions of
the components of the magnetic flux densitiBg By, B,) on the surface parallel to the conducting
plate, half the distance between the plate andcthie The corresponding distributions of the
components of the vector current densitigs J,, J,) on the upper surface of the plate are shown in
Fig. 6a,b,c, respectively. The distributions hagerbdetermined assuming the maximum value of the
current in the coll.
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A comparison with the results published in [1, &Y [11] reveals very close agreement and thus high
accuracy of the proposed RRN computational schdine.small differences for a selected point are
marked on the figures. The total computational tirsiag BRM and imposed error threshold of°*Mas
typically about an hour, which should be compar&t @.5 hours needed to achieve the same accuracy
using a reluctance-conductance network describgPn
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