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Abstract — Multidimensional application of a finite difference front fixing method to various front-type
problems with moving boundaries and non-linear material properties is discussed. Advantages and
implementation problems of the method are highlighted. Particular attention is focused on conservation
properties of the algorithm and accurate solutions close to the moving boundaries. The algorithm is tested
using analytical solutions of diffusion problemswith cylindrical symmetry.

| ntr oduction

Using High Temperature Superconductors (HTS) in modern devices promises significant energy
savings, but also exposes difficulties in dealing with short circuit faults or other impulse loads. Such
intensive impacts require coupled treatment of both electromagnetic and thermal parts of the problem
since material properties of HTS are quite sensitive to temperature [1]. Standard numerical modelling
of the pulse events on fixed grids provides valuable assistance in the equipment design but existing
computational techniques not always provide appropriate balance between accuracy and efficiency.
More complex methods, such as adaptive meshes, front fixing and level sets methods [2], offer
advantages in applications to impulse problems but they have to be assessed and probably adapted for
the particular problem. The paper uses analytical solutions of common front type problems for the
evaluation of the numerical methods. The main emphasis is on the analysis of the front fixing
technique [2] since it requires only a small adjustment of the computational algorithm in comparison
with formulations using fixed grids [3]. Special attention is given to conservation properties of the
algorithm and accurate solutions close to the moving boundaries.

Formulation of the problem

Governing equations

The problem of electric current flow in HTS can be formulated in terms of either magnetic or electric
field diffusion [4, 5]. The electric field formulation is preferred for HTS materials with highly non-
linear properties since it provides much more stable solutions [5]. For this case the governing equation
takes the diffusion-like form

curl (curl E):—uoaa—‘t] 1)

in terms of the electric field E and current density J, but has to be supplemented by a relationship
between field E and current density J. A strong flux creep E-J characteristic is a specific feature of

HTS materials. This is often described by Rhyner’s power law E;'E = (3;13)* [4], where the critical

current density J.= 10° A m™2 corresponds to a critical electric field E.~ 10™V m™ and a large power
exponent o. which for practical materials could be about 20. Substitution of the material properties into
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(2) results in a formulation of the problem in terms of the electric field only. It is worth noting that (1)
can also be rewritten in terms of the electric current only:

-1nyope 31— a_J
curl (curl [(JC J) ECJ})_ Wo o (2)
but the more commonly used expression is in terms of the electric field:
a J (Ec—lE)l/OLé
curl (curl E)=—p,q [ ° " ] 3)

Both (2) and (3) have advantages and disadvantages. The time derivative in (2) does not include the
non-linear term and this makes an implementation of conservation laws more straightforward. On the
other hand, the absolute variation in the non-linear term is smaller for (3) due to the 1/o. power. For
this reason, (3) is less sensitive to rounding errors during calculations of impulse events.

Analytical solutions

It is helpful to conduct tests in at least 2D geometry. The existence of an analytical solution in
cylindrical coordinates provides an opportunity to evaluate the technique’s performance on curved
boundaries using the Cartesian coordinate system. Consider a HTS wire with a circular cross-section
of radius R. If the current pulse J,(r,t)=1,8(F)8(t—t,) is applied along the z axis at instant t=t,, the
dimensionless solution for (1) in the case of cylindrical symmetry can be derived as shown in [6]
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Fig. 1. Evolution of electric field and current density in a HTS wire of circular cross-section. The exact solution
is available for specific initial conditions. The analytical prediction of electric field and current density for a wire
with I,= 2A, R=0.5mm and o=6 is shown at different instances of time.

o , o/(0-1)
e(p,r)=@ ('ﬁj Y- % . e=i%, @)
with dimensionless length, time, electric field and current defined as
pet = ()% o do g BT o L) ©
R uoJ.R J.mR E, Je

Equation (4) is valid only inside p <py,(t) and during limited time when p,(t) <1 where
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The field and the current are zero outside the front region. The electric field and the current gradually
spread from the centre of the wire towards the edges and there is a sharp interface between the region
with non-zero field and the outside part of the wire. The field and current density profiles at different
instances of time are shown at Figure 1.

Cartesian and Cylindrical coordinates

Keeping in mind that the only non-zero component of electric field is in the z direction, (3) for the
cylinder takes the following form

0 . ll(x) 190( oe
—|{ signe- =——p— |, 0,1]. 7
= signe-[e pap[papJ pe 0] ™
The initial condition for (7) is
i(p=0,1=0)=i0¥6(r),sincejS(F)dr =1. (8)
p
Boundary conditions are easy to derive due to cylindrical symmetry of the solution (4). At the centre
oe =0. 9)
op 0=0
At outer surface Ampere’s law requires
R
RHo(r=R)=[J,(r,t)rar, (10)
0
which, after substituting into Faraday’s law and applying dimensionless variables, results in
oe g (L
—| ==-|Jilp.0)pdp |. (11)
ap o at{
Combining (7) and (8) or, indeed, direct integration of (4) gives
b Po. i
[ip,D)pdp |=| [i(p,D)pdp :EEconst. (12)
0 0
According to (11) the boundary condition is
oe =0, (13)
op o
which can be extended towards the front boundary
? =0,¢ =0. (14)
P P=Pp PPe

The additional boundary condition in (14) is in fact an implicit condition for the boundary py.
Alternatively it can be replaced by a conservation integral (12) as suggested in [3].

The curl operator in (3) may be written for the first quarter in Cartesian coordinates by taking account
of (5) and the symmetry of the problem:
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5| sig G 22 oy p y°, xye[0]] (15)
It follows from (14) that appropriate boundary conditions for (15) would be
oe =0, oe =0, (16)
ox y=0 lyg
at the symmetry lines and
%®_0, e=0 (17)
on

at any point behind the front edge py, with N being the normal to the computational region boundary.
Conservation Law

Pure Neumann boundary conditions (16) and (17) dictate a conservation integral

11 i
{” i(X Y, r)dxdyj = TO = const . (18)
00

Computational technique
Front-Fixing Method

Let us fix an extent of the computational region by some boundary s(x,y)=0 as described in [2]. In
general the transformed version of (15) contains mixed derivatives; this is not desirable for modelling
of diffusion processes with sharp gradients since small time steps are required to suppress non-
monotonic oscillations in the numerical solution (see [7, 8] for general theory of monotonic solutions).
Fortunately, the boundary condition (17) is an implicit one and may be imposed at any point behind
the real boundary. It is convenient therefore to consider a rectangular region with moving edges xs(t),
ys(T). An introduction of new variables u=(x—Xxg)/Xs, V=(y—Ys)/Yys fixes the extent of the
computational domain to 0<u,v<1. In order to derive a finite volume scheme, we have to integrate
(15) over time and space intervals [9]. The space is discretised at M+1 points for u and at K+1 points
for v. The discretisation points are defined by a fixed discretisation of u,v and they are written as
Up=0,u,...,uy =1, Vg =0,,...,vx =1. The finite volume discretisation [9] of (15) is based on
integration around the nodes and is fairly straightforward [10, 11], e.g. for the node (m,k) it may be
written as:

Tn+l

(Umt0.5 = Um-0.5)(Vk+05 —Vk-05) | Xs¥s-imkdT =

Tn

1 0.5, k
™ {1 de  dx 1””

(Vir05 —Vk-05) | Vs dt + (19)
Tn

Xg ou dt m-05, k

"  k+0.5
3 1 0e _dys . m e
(Um+0.5—Um-05) | Xs —l

Tn

The boundary conditions (16) and (17) appear naturally in (19)
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oJe
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The finite volume discretisation for (20) immediately follows from the general form (19) and is
straightforward [12].

Comment. The cylindrically symmetric problem (7) with boundary conditions (13) and (14) can be
discretised in a similar way as shown in [10].

0, %
v=0 v

—oand 22 0, =0,% =o,i_=0. (20)
Uly=1 a Vg A

u=0

Numerical Scheme

To develop unconditionally monotonic scheme we restrict the consideration by combining an explicit
method with an appropriate limiter [7, 8] for the advection part in (19) with a fully implicit method for
diffusion fluxes. The integrals over time in (19) result in an operator finite volume form with the
advection fluxes split in the u and v directions

U ( pt— p”) =LA,p" +LA,p" + D™ + D™, (21)
n o _ nyn:n n _(in \*
Pm, k = (Umt05 ~Um-05)(Vk+05 — Vk—05)Ys Xsim, k+ Emk = ('m,k) , (22)
1

TR S ‘Xg)(u o5,k ~Un 05D 0s ¢ 23)

mk (Urns0.5 — U 0.5) X2+0'5 m+0.5 Pm+0.5, k —Y“m-0.5Pm-0.5,k | -

n+1 n
1 (ys —Ys )

APk = 05 (Vk+0.5 P, k+0.5 ~ Vk-0.5 P, k—O.S) ) (24)

(Vk+05 —Vk-0.5) Yo

n+1 n+1 n+1 n+1 n+1
D nl . n+l  n Ys €mitk “€mk  €mk —€m-1k o5
uemk = (T =1 ) (k105 — Vk—0.5) il - ' (25)
Umt1 —Um Umn —Um
n+1 n+1 N+l _n+l
Dol — (Ml _ N X2+1 €mk+l ~€mk Gmk ~Gmk-1 26
Vemk = (T =T ) (Umio5 —Um-05) — g - ’ (26)
Ys Vi1 — Vi Vi = Vi1

where U is a unity operator and L is a limiter [7, 8]. The limiter L is chosen to be a linear combination
of standard upwind/downwind with high resolution schemes (23), (24) [7]. Tests on one dimensional
cylindrically symmetric problems [7-9] indicate that appropriate choice of L could provide 2™ order
accuracy in space. An introduction of p in (21) is due to the fact that the value of p is actually
conserved during the coordinate transformation and diffusion. Additional equations to predict
variations of xs, ys with time should be added to (21) as discussed in the implementation section.

Fractional Steps

The numerical solution of (21) could be optimised, since: 1) the application of A, and A, together
results in strict stability conditions; 2) D,, D, are non-linear with broad spectra and the choice of
iteration parameters for standard methods, e.g. Gauss-Seidel, is not obvious. Both complications can
be overcome by applying the so-called “fractional step” method, which replaces a sum on the left-hand
side of (21) by a linked chain of one-dimensional equations

U ( pn+0.25 _ pn): A, pn, 27)

U ( pn+0.5 _ pn+0.25 ) =A pn+0.25, (28)
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U ( pn+0.75 _ pn+0.5 ) _ Duen+0.75 , (29)

U ( pn+1 _ pn+0.75) _ Dven+1. (30)

It was found that strong non-linearity of the diffusion operator introduces large errors (see Fig. 2)
which can be significantly reduced by introducing a symmetric sequence:

U (< p*)”+0'75 _ pn+0.5): D, (&)n+0.75, (31)
U (<p*)n+1_<p*)n+0.75): D, (&)™ (32)
U (( IOA*)n+075 _ Ion+o.5) _ D\,(ek*)”+0'75, (33)
U ((pen) ™ = (o)) = D (), (34)
pn+1=0.5((pk*)n+1+(p*)n+1). (35)
Errors €, for M=K=40, asymmetric diffusion splitting Errors ¢, for M=K=40, symmetric diffusion splitting Errors ¢, for M=K=40, Jacobi iterations for diffusion
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Fig. 2. Errors in predictions of electric field inside a HTS wire with ;= 2A, R=0.5mm and o=6 after t = 10 ms.
A constant time step 8t = 10®sec and a grid with M = K = 40 were used for predictions.
(@) Asymmetric form of diffusion split (29), (30) distorts the front shape: it becomes an ellipsoid extended in x
direction. (b) Symmetrisation (31)-(35) decrease the errors and shifts them to x = y plane. (c) Coupled u-v
scheme (36) with Jacobi iterations produce minimal errors but is very demanding in terms of computational time.

The solution of diffusion equations, e.g. (29), has been described in [3]. The proposed method (27),
(28), (31)-(35) requires only O(MK) operations and is quite efficient. Another possible approach is to
use Jacobi iterations [7, 8] to solve

U ( pn+1 _ pn+0.5 ) _ Duen+1 n Dven+1, (36)

linked with (27) and (28). Equation (36) should be solved simultaneously in both u and v directions.
The symmetry is preserved by (36), but Jacobi iterations require O(M?K?) operations and are
inefficient for fine grids.

Implementation

Ideally, the edge of the computational region should coincide with the front boundary. But strong non-
linear variations of field e or current i at the front prohibit the usage of any standard interpolations for
the boundary (17) since this provides reasonable accuracy only for smooth solutions. A one-
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dimensional problem can replace the Neumann boundary condition with a conservation integral (12)
[3], but this is not feasible for a multidimensional case (18). Fortunately, we can extend slightly the
computational domain, so that a few grid points stay in a zero field region. The algorithm iterates to

n+l n+l

choose x{t" ), y«(t" ) in such a way that

ek =80, k=0,...K ; ek =&,>0,m=0,...,M , 37)
to enforce the zero field and

it <€ k=0, K ; €Mk 1 <ep,m=0,..,M | (38)
to ensure negligible flux at the boundary. For a stable algorithm &, = 10°® was used and sufficient

accuracy was achieved with g,= 10"%.

Careful examination of advection operators (23) and (24) reveals that the Courant number is usually
greater than one, especially for initial stages of a pulse event when X, ys are small. This is mainly due
to large multiples u/Au~M and v/Av~ K on the left hand side of (23) or (24). The Courant-
Friedrich-Levy condition [7, 8] is not satisfied and explicit methods (23), (24) are unstable. One
possible way to overcome the problem is to move towards implicit methods. A standard
upwind/downwind first order scheme would introduce a large artificial diffusion at the front and is
thus absolutely unsuitable, since the existence of the front is due to very sharp changes in diffusion
fluxes themselves. Hence high order advection schemes with limiters have to be applied.
Unfortunately, the only limiter which provides stable solution for a large Courant number is the
“minmod” one [8]. However, tests suggest that this limiter provides only a small improvement in
comparison with an upwind/downwind scheme and its usage is not desirable.

To reduce the Courant number the motion of the boundaries was split into additional h fractional steps.
For each sub-step g =0,---,h—1 a one-dimensional advection problem was solved

U(pn+(g+1)/h_ pn+g/h)=|_AvI pn+g/h, (39)

n+(g+l)/h _ Xn+g/h)
S S

with a small displacement (x and explicit advection operator

1 (X2+(g+1)/h _ X2+g/h

n+g/h _ n+g/h n+g/h

APk n+05 (“m+05pm+05 k ~Um-05Pm 05, k) - (40)
"~ (Um+05 —Um-05) xg

The number of displacements in (39) was chosen to keep the Courant number below unity.

A choice for limiter L was studied in details. A flux transport corrected SHASTA method [13] was
implemented together with “minmod” [7], van Leer [14], Sweby [15], and “SuperBee” [16] limiters. It
was found that the smallest numerical dissipation was given by the “SuperBee” [16] limiter. Therefore
this limiter was used for further tests.

Pulse Event

A very high gradient of the electric field originates during the impulse of current. It spreads very
quickly in all directions. Any attempt to use directional splitting (29) and (30), or even the
symmetrical form (31)-(35), results in unrealistically fast motion of the front. The problem can be
solved by separating a pulse into sub-pulses with a smaller current input during individual sub-pulses
(similar to what was done for advection operator A). To achieve good accuracy the number of sub-
pulses in the first time step was found to be ~10 MK which makes the algorithm too slow. If
alternatively Jacobi iterations are applied to the pulse event only (single time step), no introduction of
sub-pulses is required. Further calculation can be carried on with directional splitting.



ISEF 2009 - XIV International Symposium on Electromagnetic Fields

in Mechatronics, Electrical and Electronic Engineering
Arras, France, September 10-12, 2009

Results and Discussion

Predictions from fixed grid calculations and the front-fixing method are summarized in Fig. 3.
Variation of errors with an increasing number of space intervals M=K are plotted in Fig. 3(a). The
error ¢ is taken in a continuous C norm

M,K .
£ = max eanalytlcal _emodel (41)

mk=0] mk mk
A slope of the M ™" - & curve in Log-Log coordinates indicates only the 1st order space approximation.
This is true for both fixed grid and front-fixing approaches and is not affected by diffusion split
introduced in (31)-(35). The asymmetric technique (27), (28) has a large directional bias, see Fig.2(a).
The bias cannot be eliminated by mesh refinement and errors start to saturate at relatively high level.
A symmetric version of the diffusion split (31)-(35) has almost the same accuracy as Jacobi method
but requires significantly less computational effort. In fact, the symmetric split still has a directional
bias which is an inherent feature of any split technique [7]; it is just moved to the x=y plane, see
Fig.2(b). Even the totally symmetric Jacobi method (36) has a slight bias around the x=y plane,
Fig.2(c), although it is hardly noticeable. The low spatial accuracy in the continuous norm is a result of
the sharp front with infinite derivatives in the solution. Since the errors concentrate around the front
(see Fig.3), then a convergence in any integral norm, e.g. L, would be better. On the other hand, for
the strongly-coupled problems, the convergence in the C norm is of main importance.

-2
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rror €
B Coupled u-v method (36) Fixed Grid
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(a) Errors in predictions of an electric field at t = 0.01s (b) Effect of time step on the errors (large number of
(small time step 1 us) reveals an approximately first grid points M=K). The results indicate that the
order of accuracy O(M™). algorithm has first order accuracy in time O(67).

Fig. 3. Numerical prediction of an electric field E,(x,y) for a wire with I,= 2A, R=0.5mm and o=6 after
t = 10 ms: the mesh size and time step effects.

Errors due to time discretisation were studied by varying &t between 0.05ms and 1ms for a large
number of space intervals M = K. A combination of explicit advection with fully implicit diffusion
approach provides a first order approximation in time O(6t) (Fig. 3b). Such choice is dictated by high
field (current) gradients in the pulse event. When the pulse disperses slightly, it is possible to move
towards the semi-implicit method with O(5t%) [3] by applying Crank-Nicolson approximations for
advection and diffusion operators in (23)-(26). The method can be improved further by the Lax-
Wendroff explicit approach with limiters for (23), (24) [7, 8] and by the Alternating Direction Implicit
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scheme for (25), (26) [7, 8]. The latter should make the method approximately symmetric with
reduced directional bias. (A small asymmetry will remain due to the application of the implicit scheme
in one direction and the explicit one in the other.)

Conclusions

Generally, there are several advantages of using a front-fixing method for modelling of impulse
phenomena in HTS, in particular high accuracy can be obtained with a small number of grid points
and large time increments.

However, the following properties of the solution need to be noted and handled carefully:
(a) Complex boundary conditions have to be implemented by considering the conservation laws.

(b) A careful choice of a limiter for advection problems associated with the mesh motion needs to be
made.

(c) Fully implicit schemes may be needed for pulse events, which limits the temporal accuracy. It is
suggested to switch towards semi-implicit methods after the pulse disperses.
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