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ABSTRACT
We introduce a new class of games, congestion games with
failures (CGFs), which extends the class of congestion games
to allow for facility failures. In a basic CGF (BCGF) agents
share a common set of facilities (service providers), where
each service provider (SP) may fail with some known proba-
bility. For reliability reasons, an agent may choose a subset
of the SPs in order to try and perform his task. The cost of
an agent for utilizing any SP is a function of the total num-
ber of agents using this SP. A main feature of this setting
is that the cost for an agent for successful completion of his
task is the minimum of the costs of his successful attempts.
We show that although BCGFs do not admit a potential
function, and thus are not isomorphic to classic congestion
games, they always possess a pure-strategy Nash equilib-
rium. We also show that the SPs’ congestion experienced
in different Nash equilibria is (almost) unique. For the sub-
class of symmetric BCGFs we give a characterization of best
and worst Nash equilibria. We extend the basic model by
making task submission costly and define a model for taxed
CGFs (TCGFs). We prove the existence of a pure-strategy
Nash equilibrium for quasi-symmetric TCGFs, and present
an efficient algorithm for constructing such Nash equilibrium
in symmetric TCGFs.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; I.2.11 [Artificial Intelligence]: Distributed Ar-
tificial Intelligence —multiagent systems

General Terms
Algorithms, Theory, Economics
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1. INTRODUCTION
Rosenthal [11] introduced the class of congestion games

and proved that they always possess a Nash equilibrium
in pure strategies. Congestion games are noncooperative
games in which a collection of agents have to choose from a
finite set of alternatives (facilities). The utility of an agent
from using a particular facility depends only on the number
of agents using it, and his total utility is the sum of the util-
ities obtained from the facilities he uses. Congestion games
have been used to model traffic behavior in road and commu-
nication networks, competition among firms for production
processes, migration of animals between different habitats,
and received a lot of attention in the recent computer sci-
ence and electronic commerce communities [6, 8, 10, 11, 13].
Rosenthal [11] studied games with a finite number of play-
ers. In addition, several authors have considered nonatomic
congestion games with a continuum of players [6, 12].

However, the above settings do not take into considera-
tion the possibility that facilities may fail to execute their
assigned tasks. Typically, the facilities are machines, com-
puters, service providers, communication lines etc. These
kinds of facilities are obviously prone to failures because of
breakage or for any other reasons. Thus, the issue of failures
should not be ignored.

The notion of failures originates from the field of dis-
tributed systems. In a lot of situations failing components
of the system may be viewed as playing against its correctly
functioning parts. The issue of failures in game-theoretic
setting is extensively discussed in [4]. In another line of re-
search, Porter et. al. [9] introduced the notion of fault tol-
erant mechanism design which extends the standard game-
theoretic framework of mechanism design to allow for un-
certain executions. In the above settings failing components
are self-motivated or malicious agents. In our work we ini-
tiate an investigation of failures in congestion games, where
not the agents, but the facilities they share may fail.

As it turns out, such failures have significant implications
on agent behavior, as illustrated by the following simple
example. Consider a reliable network with two nodes s and
t, and two parallel links. Assume an agent wishes to send
a message from s to t. Then, he would send the message
along one of the links. However, if the network links are not
reliable then, for reliability reasons, the agent may decide to
send his message along both links.

Suppose now that n agents share a reliable network with
two parallel links, where the cost associated with each link
is a (nondecreasing) function l(x) of the congestion experi-
enced by this link. Each agent has to send a message from



s to t, and his aim is to minimize his own cost. If n is even,
then in an equilibrium, half of the agents would take one link
and the other half would use the second link, and thus the
cost to each agent is l

`
n
2

´
. If the network links are not reli-

able, the agents might send a message along both links. As
a result of such behavior, the network might be overloaded,
and the cost to each agent will be very high. Therefore,
each agent wants to maximize the probability of successful
delivery of his message and, simultaneously, to minimize his
cost.

The above example illustrates the need for a careful study
of the effects of failures in congestion settings. In order
to address this challenge, we introduce a model for conges-
tion games with failures (CGFs), and establish several basic
results for this model. To the best of our knowledge, no
attempt has been made so far to incorporate the issue of
failures into congestion settings.

We begin by defining a basic model for congestion games
with failures (BCGFs). In a BCGF agents share a com-
mon set of facilities (service providers), where each service
provider (SP) may fail with some known probability. For re-
liability reasons, an agent may choose a subset of the service
providers in order to try and perform his task. Therefore,
each agent’s set of pure strategies coincide with the power
set of the set of SPs, and the total load on the system is not
known in advance, but strategy-dependent. The cost for an
agent for successful completion of his task is the minimum of
the costs of his successful attempts. The cost function asso-
ciated with each SP is not universal but agent-specific. That
is, the utility to an agent depends not only on the number
of agents using the same SP, but also on the identity of the
agent in question. Congestion games with agent-specific cost
functions were first studied by Milchtaich [5]. This general-
ization was, however, accompanied by the assumption that
each agent chooses only one facility.

Our first result is that, although BCGFs do not admit a
potential function, and thus are not isomorphic to classic
congestion games, they always possess a pure-strategy Nash
equilibrium. We also show that the SPs’ congestion expe-
rienced in different Nash equilibria is (almost) unique. For
the subclass of symmetric BCGFs we give a characteriza-
tion of best and worst Nash equilibria with respect to the
social disutility, present algorithms for their construction,
and compare the social disutilities of the agents at these
points.

We also consider the worst possible ratio between the so-
cial disutilities incurred by agents in an equilibrium and in
an optimal outcome. This ratio (dubbed ”the price of anar-
chy”) was proposed by Koutsoupias and Papadimitriou [3] as
a measure of the inefficiency of selfish behavior in noncoop-
erative systems, and was extensively studied for nonatomic
congestion games [2, 13, 12]. We show that in congestion
games with failures the price of anarchy depends on the pa-
rameters of the game and cannot be bounded by a constant
value, even for very simple (e.g., linear) cost functions.

A natural extension of the basic model is obtained by mak-
ing task submission costly. There are two motivations for
considering this setting: service providers may demand some
fixed payment (cost) for task submission, or we can think
about taxes that can be imposed by some central coordina-
tor in order to achieve better social results. We define the
taxed congestion games with failures (TCGFs) model which
is obtained from the basic model by incorporating taxes as

follows: each agent pays a fixed cost/tax for using each of
the service providers he had chosen. Our main technical
result is the existence of a pure-strategy Nash equilibrium
in quasi-symmetric TCGFs. In a quasi-symmetric TCGF
service costs are facility-dependent. Our proof is construc-
tive and yields an efficient procedure for constructing such
equilibria in these games. In addition, we develop a simpler
algorithm for constructing Nash equilibrium in the special
case of symmetric TCGFs.

The paper is organized as follows. In Section 2 we define
our basic model. In Section 3 we show that BCGFs do not
admit a potential. In Section 4 we provide a (constructive)
proof of the existence of pure-strategy Nash equilibrium in
BCGFs and consider its uniqueness properties. Section 5
is devoted to symmetric BCGFs. We characterize the best
and worst Nash equilibria in symmetric BCGFs, present al-
gorithms for their construction and provide an upper bound
on the ratio between them. We also discuss the ratio be-
tween the social disutility in a Nash equilibrium and the op-
timal social disutility in these games. In Section 6 we define
taxed congestion games with failures, and (constructively)
prove the existence of a pure-strategy Nash equilibrium for
quasi-symmetric TCGFs. We also provide an efficient proce-
dure for computing Nash equilibrium in symmetric TCGFs.
Some proofs are omitted from this paper due to lack of space
and will appear in the full version.

2. THE BASIC MODEL
A basic CGF (BCGF) is defined as follows. Let N =

{1, . . . , n} be a finite set of agents, and let E = {1, . . . , m}
be a finite nonempty set of independent service providers,
each associated with a failure probability. Each agent has a
task which can be carried out by any of the service providers.
Agent i’s disutility from an uncompleted task is evaluated
by his incompletion cost (denoted by Wi). The service cost
(denoted by lie) for agent i for utilizing service provider e
consists of an execution cost (denoted by bi

e) and a fixed
completion cost (denoted by a).1 The disutility πi of agent
i from a combination of strategies (one for each agent) is
the expectation of the sum of his incompletion and service
costs, where the service cost for an agent is the minimum
of the service costs of the SPs he has chosen which did not
fail. This is defined more precisely below.

The success probability of e ∈ E is denoted by se (0 < se <
1). Similarly, fe = 1−se stands for the failure probability of
e. The set of pure strategies Σi for agent i ∈ N is the power
set of the set of SPs: Σi = P(E), and the set of pure-strategy
profiles is defined to be Σ = Σ1 × · · · × Σn = [P(E)]n.

Let σ = (σ1, . . . , σn) ∈ Σ be a combination of pure strate-
gies. The (|E|-dimensional) congestion vector that corre-
sponds to σ is hσ = (hσ

e )e∈E , where hσ
e =

˛̨
{i ∈ N |e ∈ σi}

˛̨
.

The execution cost of service provider e for agent i is a func-
tion bi

e : Σ → R of the congestion experienced by e. The
disutility function of agent i, πi : Σ → R, is defined as fol-
lows. If agent i chooses strategy σi = ∅ (i.e., does not assign
his task to any service provider) then his disutility equals his
incompletion cost, πi(σ) = Wi. For any strategy σi &= ∅ of

1This models for example a payment to the network admin-
istrator for successful execution of a task, by one or more
of the service providers. Our model can be extended, while
leading to similar results, to the case where the completion
cost is agent-dependent or facility dependent.



agent i,

πi(σ) = Wi

Y

e∈σi

fe +
X

A∈P(σi)!{∅}

min
e∈A

“
bi
e(h

σ
e ) + a

”

×
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Y
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+
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min
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lie(h
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Y
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fe,

where a is the fixed completion cost, bi
e(h

σ
e ) is the execution

cost of service provider e for agent i, when its congestion
is hσ

e , and the sum of execution and fixed completion costs
lie(h

σ
e ) = bi

e(h
σ
e ) + a is the service cost of service provider e

for agent i.
We assume that bi

e(·) is a nonnegative nondecreasing func-
tion satisfying bi

e(x) ≤ Wi for all i ∈ N , e ∈ E and integer
0 ≤ x ≤ n. This means that the execution of a task does
not cost more than its failure. W.l.o.g., we also assume that
for any agent i his incompletion cost Wi is larger than the
fixed completion cost a. Otherwise, the obvious dominant
strategy of agent i is to avoid assigning his task to any ser-
vice provider. Note that for all 0 ≤ x ≤ n, bi

e(x) ≤ Wi and
a ≤ Wi, but lie(x) might be larger than Wi. Obviously, if
lie(1) > Wi for all e ∈ E, the dominant strategy of agent i
is to avoid assigning a task, i.e. in this case agent i can be
actually ignored. Therefore, w.l.o.g., we assume that such
cases do not take place.

3. THE NON-EXISTENCE OF A
POTENTIAL IN BCGFS

Monderer and Shapley [7] introduced the notion of po-
tential function and defined a potential game to be a game
which possesses a potential function. A potential function is
a real-valued function over the set of pure-strategy profiles,
with the property that the gain (or loss) of an agent shifting
to another strategy while keeping the other agents’ strate-
gies unchanged is equal to the corresponding increment of
the potential function. The authors showed that the classes
of potential games and congestion games coincide.

In this section we show that the class of BCGFs does not
possess a potential function, and therefore is not isomor-
phic to the class of congestion games. We show that even
agent-symmetric BCGFs do not admit a potential function.
Hence, the non-existence of a potential in BCGFs is a re-
sult of allowing facility failures. To prove this statement we
employ Theorem 3.1 of Monderer and Shapley [7]. First,
however, we need to present some definitions.

A path in Σ is a sequence γ = (σ0 → σ1 → · · · ) such
that for every k ≥ 1 there exists a unique player, say player
i, such that σk = (σk−1

−i , x) for some x &= σk−1
i in Σi. σ0

is called the initial point of γ, and if γ is finite, then its
last element is called the terminal point of γ. A finite path
γ = (σ0 → σ1 → · · · → σK) is closed if σ0 = σK . It
is a simple closed path if in addition σl &= σk for every
0 ≤ l &= k ≤ K − 1. The length of a simple closed path
is defined to be the number of distinct points in it; that is,
the length of γ = (σ0 → σ1 → · · · → σK) is K. For a
finite path γ = (σ0 → σ1 → · · · → σK) and for a vector
U = (U1, . . . , Un) of utility functions, let us define

U(γ) =
KX

k=1

[Uik (σk)− Uik (σk−1)],

where ik is the unique deviator at step k. Then,

Theorem 3.1. (Monderer—Shapley, [7]) Let Γ be a
game in strategic form. Then, Γ is a potential game if and
only if U(γ) = 0 for every finite simple closed path γ of
length 4.

By this theorem, if Γ is a game in strategic form with Ui :
Σ → R the utility function of agent i, then Γ is a potential
game if and only if for every i, j ∈ N , for every z ∈ Σ−{i,j},
and for every xi, yi ∈ Σi and xj , yj ∈ Σj ,

Ui(β)− Ui(α) + Uj(γ)− Uj(β) +

Ui(δ)− Ui(γ) + Uj(α)− Uj(δ) = 0 ,

where α = (xi, xj , z), β = (yi, xj , z), γ = (yi, yj , z), δ =
(xi, yj , z) (thus, α → β → γ → δ → α is a simple closed
path of length 4).

Proposition 3.2. The class of BCGFs does not possess
a potential function.

Proof: A counterexample is the following symmetric game
G in which two agents (N = {1, 2}) wish to assign a task to
two independent SPs (E = {e1, e2}). The failure probability
f of each SP is positive (f > 0). The failure cost to each of
the agents is W ≥ 2, and the service cost function of each SP
to each agent is given by lie(x) = min{x, W}+a (∀e, i). Con-
sider the simple closed path of length 4 which is formed by
α = (∅, {e2}) , β = ({e1}, {e2}) , γ = ({e1}, {e1, e2}) , δ =
(∅, {e1, e2}) :

π1(α) = W ; π2(α) = fW + (1− f)(min{1, W} + a);

π1(β) = π2(β) = fW + (1− f)(min{1, W} + a);

π1(γ) = fW + (1− f)(min{2, W} + a); π2(γ) = f2W

+(1− f)(min{1, W} + a) + f(1− f)(min{2, W} + a);

π1(δ) = W ; π2(δ) = f2W + (1− f2)(min{1, W} + a).

Then,

π1(β)− π1(α) + π2(γ)− π2(β) + π1(δ)− π1(γ)

+π2(α)− π2(δ) = −(1− f)2 &= 0.

Then, by Theorem 3.1, congestion games with failures do
not possess a potential function. !

4. PURE-STRATEGY NASH EQUILIBRIA
IN BCGFS

By Monderer and Shapley [7], every finite potential game
possesses a pure-strategy Nash equilibrium. We have shown
in Section 3 that BCGFs do not admit a potential function,
but this fact, in general, does not contradict the existence of
an equilibrium in pure strategies. In this section we prove
that all basic congestion games with failures possess a Nash
equilibrium in pure strategies, and present an efficient algo-
rithm that finds such equilibrium points in a given BCGF.
Moreover, we show that different Nash equilibrium profiles
of a given BCGF correspond to (almost) the same conges-
tion vector.

4.1 Existence and construction
We present below our first theorem.

Theorem 4.1. Congestion games with failures possess a
Nash equilibrium in pure strategies.



One point to notice is that the proof is constructive and
makes use of the following efficient simple algorithm for find-
ing a pure Nash equilibrium in a given BCGF.

4.1.1 NE-algorithm
Initiali-
zation: For all 1 ≤ i ≤ n, set σi := ∅;

Main For all e ∈ E:
step: (1) Sort the agents in a non-increasing

order of
xi

e = max{x|Wi > lie(x), x = 0, 1, . . . , n};
Let ϕe : N → {1, . . . , n}

i *→ ie = ϕe(i)
be the corresponding permutation
function;

(2) For ie = 1 to n:
if ie ≤ xi

e, then σi := σi ∪ {e}.

4.2 (Almost) uniqueness
We consider uniqueness properties of Nash equilibria in

BCGFs. We restrict our attention to games with strictly
increasing service cost functions, and show that in such
BCGFs the difference between the congestion experienced
by any SP in two different Nash equilibria is bounded by 1.

Let NE ⊆ Σ be a set of Nash equilibrium pure-strategy
combinations, and let hM represent the maximal congestion
that may be experienced by any service provider at any Nash
equilibrium, i.e. hM = max{hσ

e |e ∈ E, σ ∈ NE}. Then,

Proposition 4.2. If for all e ∈ E and i ∈ N , lie(x)
is a strictly increasing monotone function on the interval
0 ≤ x ≤ hM , then for any pair of Nash equilibrium strategy

profiles σ1, σ2 ∈ NE the inequality |hσ1
e −hσ2

e | ≤ 1 holds for
all e ∈ E.

For the proof of Proposition 4.2 we need the following claim.

Claim 4.3. Let σ ∈ NE be a Nash equilibrium strategy
profile. Then, for all i ∈ N ,

(i) lie(h
σ
e ) ≤ Wi, ∀e ∈ σi;

(ii) lie(h
σ
e + 1) ≥ Wi, ∀e /∈ σi.

Proof of Proposition 4.2: Let σ1, σ2 ∈ NE be Nash

equilibrium strategy profiles, and assume that hσ1
e > hσ2

e +1
for some e ∈ E. Then, there is an agent i such that e ∈ σ1

i ,

but e /∈ σ2
i . By Claim 4.3, for agent i we have lie(h

σ1
e ) ≤ Wi

and lie(h
σ2
e + 1) ≥ Wi. Therefore, lie(h

σ1
e ) ≤ lie(h

σ2
e + 1).

Now, hσ1
e > hσ2

e + 1 coupled with the monotonicity of lie(x)

lead to lie(h
σ1
e ) > lie(h

σ2
e + 1), in contradiction to lie(h

σ1
e ) ≤

lie(h
σ2
e + 1). !

It is easy to show that if in addition to the requirements of
Proposition 4.2, the cost function lie(·) satisfies lie(x) &= Wi

for 0 ≤ x ≤ hM , then all Nash equilibria of a given BCGF
correspond to the same congestion vector, i.e. the congestion
of any SP is fixed for all equilibrium points. In particular,
all generic BCGFs have this uniqueness property.

5. SYMMETRIC BCGFS
In this subsection we give some additional characteriza-

tion of Nash equilibria in symmetric BCGFs. In symmetric
BCGFs, the agents and the SPs are symmetric, i.e. for all

i = 1, . . . , n and e ∈ E we have Wi = W , fe = f , and
lie(x) = l(x), for all x ∈ {0, 1, . . . , n}. We also present effi-
cient algorithms for finding best and worst Nash equilibria,
and make a comparison between this equilibria.

Proposition 5.1. Let G be a symmetric BCGF. If l(x)
is a strictly increasing monotone function on the interval
0 ≤ x ≤ hM , then at any Nash equilibrium σ ⊆ NE(G),
the difference between the congestions of different SPs is
bounded by 1, i.e. for all σ ∈ NE and for all a, b ∈ E,
the inequality |hσ

a − hσ
b | ≤ 1 holds.

5.1 Best and worst equilibria
Given a strategy profile σ, define the social disutility π(σ)

as the sum of the agents’ disutilities in this strategy pro-
file: π(σ) =

P
i∈N πi(σ). A strategy profile that minimizes

the social disutility over the set of strategy profiles is called
a social optimum. A best (worst) equilibrium is a strategy
profile that minimizes (maximizes) the social disutility over
the set of equilibrium strategies. The social disutility in a
best equilibrium describes the best result that can be ob-
tained in a system with noncooperative selfish agents. The
ratio between the social disutilities in a worst equilibrium
and in a social optimum serves as a measure of the ineffi-
ciency of Nash equilibrium. In this subsection we character-
ize, construct and compare best and worst Nash equilibria
in symmetric BCGFs.

Proposition 5.2. Let h∗ = max{x|l(x) < W}. Then,
there is a best Nash equilibrium strategy profile σ in which
the congestion on each e ∈ E is hσ

e = h∗, and moreover,˛̨
|σi| − |σj |

˛̨
≤ 1 for all i, j ∈ N .

We prove below that the following algorithm (5.1.1), which
is a (modified) version of the NE-algorithm (4.1.1), finds a
best pure-strategy Nash equilibrium with the properties de-
scribed by Proposition 5.2, in a given symmetric BCGF.

5.1.1 BNE-algorithm
Initiali-
zation: For all 1 ≤ i ≤ n, set σi := ∅;

Main For all e ∈ E:
step: (1) Sort the agents in an order

ϕe : N → {1, . . . , n}
i *→ ie = ϕe(i)

satisfying the following condition:
for all i, j ∈ N ,
|σi| < |σj | ⇒ ie = ϕe(i) < ϕe(j) = je;

(2) Let
xmax = max{x|W > l(x), x = 0, 1, . . . , n};
For ie = 1 to n:
if ie ≤ xmax, then σi := σi ∪ {e}.

Proof of Proposition 5.2: By Theorem 4.1, the com-
bination of strategies constructed by BNE-algorithm is a
Nash equilibrium strategy profile. One can check that the
resulting combination of strategies satisfies the conditions
of Proposition 5.2. More precisely, x agents choose .mh∗

n /
service providers, where m denote the number of SPs, and
y agents choose .mh∗

n /+ 1 service providers, where x and y
satisfy the following equation:


x.mh∗

n /+ y(.mh∗

n /+ 1) = mh∗

x + y = n.



The values of x and y are

x = n

„
.mh∗

n
/+ 1

«
−mh∗ ;

y = mh∗ − n.mh∗

n
/ . (2)

Note that if n divides mh∗, then x = n, y = 0. To complete
the proof we need the following two claims.

Claim 5.3. Let σ ∈ NE be a combination of strategies at
Nash equilibrium with two agents i, j ∈ N , such that |σi| >
|σj | + 1. Then, the combination of strategies

σ̂ = (σ1, . . . , σi " {b}, . . . , σj ∪ {b}, . . . , σn),

where b ∈ arg maxe∈σi!σj l(hσ
e ), is better than σ, i.e.Pn

k=1 πk(σ̂) ≤
Pn

k=1 πk(σ).

Claim 5.4. Let σ &= (E, . . . , E) be a Nash equilibrium
strategy profile and let i be an agent playing σi &= E. Then,
for all k ∈ N and for all e ∈ E " σi,

πk(σ) ≤ πk(σ1, . . . , σi ∪ {e}, . . . , σn).

By Claims 5.3 and 5.4, the combination of strategies con-
structed by the BNE-algorithm is a best Nash equilibrium
profile. !

The BNE-algorithm provides an efficient procedure for
constructing best Nash equilibria in symmetric BCGFs, as
defined in Proposition 5.2. Next we identify some worst
equilibria in symmetric BCGFs. These equilibrium points
have very simple form and can be easily constructed, as fol-
lows from the next proposition.

Proposition 5.5. Let h∗∗ = arg max{x|l(x) ≤ W}. Then,
there is a worst Nash equilibrium strategy profile σ in which
exactly h∗∗ agents play E, n− h∗∗ agents play ∅ and hσ

e =
h∗∗ for all e ∈ E.

Next we compare the best and the worst Nash equilibria.
Let us denote the social disutility of a best Nash equilibrium
strategy profile by πB , and the worst one by πW :

πW = h∗∗ (Wfm + l(h∗∗)(1− fm)) + (n− h∗∗)W

= h∗∗(1− fm) (l(h∗∗)−W ) + nW ; (3)

πB = x
“
Wf$

mh∗
n % + l(h∗)(1− f$

mh∗
n %)

”

+y
“
Wf$

mh∗
n %+1 + l(h∗)(1− f$

mh∗
n %+1)

”

= f$
mh∗

n %(x + fy) (W − l(h∗)) + nl(h∗), (4)

where x and y are given by (2).
Therefore, the ratio between social disutilities in worst

and best equilibria is

πW

πB
=

h∗∗(1− fm) (l(h∗∗)−W ) + nW

f$
mh∗

n %(x + fy) (W − l(h∗)) + nl(h∗)
. (5)

Since l(h∗) < W and l(h∗∗) ≤ W , we have that

πW

πB
<

nW
nl(h∗)

=
W

l(h∗)
. (6)

This implies that the values of the social disutility in differ-
ent Nash equilibrium points lie in a very narrow range. In
the context of social performance of Nash equilibria, one has
to ask how far these values are from the social optimum.

5.2 Nash equilibria and social optimum
In this subsection we discuss the social performance of

Nash equilibrium in BCGFs. By Ashlagi [1], a best equilib-
rium strategy profile in classic congestion games with mono-
tone concave cost functions is socially optimal. Simple ex-
amples (that were omitted from this paper) show that in
BCGFs with such cost functions, best equilibrium strategy
profiles are not always socially optimal.

Furthermore, we show below that in BCGFs the price of
anarchy (the ratio between social disutilities in a worst Nash
equilibrium and a social optimum) depends on the parame-
ters of the game and cannot be bounded by a constant value,
even for very simple (e.g., linear) cost functions.

Consider the following example. Suppose we have n ≥ 2
agents sharing the set E = {1, . . . , m} of m ≥ 2 independent
SPs. Each service provider e ∈ E has the failure probability
f , and the service cost of each SP for each agent is l(x) =
min{x, W} + a, where a is a fixed completion cost. The
failure cost of each agent is W = n + a.

The worst Nash equilibrium in this case corresponds to
the combination of strategies σ in which each agent chooses
to use each of the SPs. The disutility of agent i, i ∈ N , at
this point is

πi(σ) = fmW + (1− fm) (min{x, W} + a) (7)

= fm(n + a) + (1− fm)(n + a) = n + a,

and the social disutility is

π(σ) =
nX

i=1

πi(σ) = n (n + a) . (8)

Consider the combination of strategies σ̂ that corresponds
to the following agents’ behavior: each agent chooses only
one SP and the agents divide up the SPs in a uniform way,
i.e. each SP is chosen by n

m agents (assume m divides n).
The disutility of agent i, i ∈ N , at this point is

πi(σ̂) = fW + (1− f)
“
min{ n

m
, W} + a

”
(9)

= f(n + a) + (1− f)
“ n

m
+ a

”
= fn + (1− f)

n
m

+ a,

and the social disutility is

π(σ̂) =
nX

i=1

πi(σ̂) = n
“
fn + (1− f)

n
m

+ a
”

. (10)

Then, the ratio between outcomes of the worst Nash equi-
librium and the social optimum is

π(σ)
π(OPT )

≥ π(σ)
π(σ̂)

=
n (n + a)

n
`
fn + (1− f) n

m + a
´ (11)

=
n + a

fn + (1− f) n
m + a

=
m(n + a)

fmn + (1− f)n + am

f→0
>

m(n + a)
n + am

a→0
>

mn
n

= m. (12)

This implies that the price of anarchy in congestion games
with failures, unlike in classic congestion games, is not bounded
by a constant value, but is game-dependent.



6. TAXED CONGESTION GAMES WITH
FAILURES

A natural extension of the basic model is obtained by
making task submission costly. We define the taxed conges-
tion games with failures (TCGFs) model which is obtained
from the basic model by incorporating fixed costs/taxes as
follows: each agent pays a fixed cost/tax for using each of
the service providers he had chosen. The disutility of an
agent equals the sum of his disutility in the corresponding
BCGF and the sum of taxes over the set of SPs selected
by this agent. Let te be a fixed cost/tax for using service
provider e. Then, the disutility of agent i is given by

πTCGF
i (σ) = πBCGF

i (σ) +
X

e∈σi

te. (13)

Since BCGF is a special case of a TCGF, we can easily
conclude that the class of taxed congestion games with fail-
ures does not admit a potential function. Nevertheless, in
the following subsection we prove the existence of a pure-
strategy Nash equilibrium for quasi-symmetric TCGFs as
defined below, and develop a procedure for obtaining such
equilibrium.

6.1 The existence of a pure-strategy Nash equi-
librium in quasi-symmetric TCGFs

A quasi-symmetric TCGF is a TCGF in which service
costs are not agent-specific (∀e ∈ E, i ∈ N, lie(·) = le(·)),
and taxes and failure probabilities of all service providers
are identical (∀e ∈ E, te = t, fe = f). Notice that in TCGFs
service costs can be facility-dependent.

We now present our main technical result.

Theorem 6.1. Every quasi-symmetric TCGF possesses a
Nash equilibrium in pure strategies.

We say that a strategy profile is stable if there are no
agents who wish to unilaterally drop an SP or exchange it for
another one. We denote the set of all stable strategy profiles
by Σ0, and note that (∅, . . . , ∅) lies in Σ0. Note that a stable
strategy profile for which no agent would like to unilaterally
add an SP to his strategy set is a Nash equilibrium. This
leads us to prove the theorem by constructing an iterative
algorithm having the following properties:

• The input and the output of each iteration of the al-
gorithm lie in Σ0.

• The congestion of each service provider e ∈ E can only
increase as the algorithm proceeds.

• The algorithm reaches a Nash equilibrium point after
a finite number of iterations.

Given σ ∈ Σ0, the algorithm selects, in a way described
below, an agent iadd who wishes to add an SP to his strategy
set. If after this addition the system is not stable, then a
stabilization step closes this iteration of the process. We
show that a Nash equilibrium is achieved if we initialize the
iteration sequence using the empty strategy profile.

6.1.1 TNE-algorithm
Initiali- For all i ∈ N , set σi := ∅;
zation: For all e ∈ E set he := 0;

Main (1) Set Ē := {e ∈ E|he < n};
step: (2) Order Ē according to the rule

x ≤ y ⇔ lx(hx + 1) ≤ ly(hy + 1);
(3) For all i ∈ N , set ei := min{x|x /∈ σi};
(4) If for all i ∈ N ,

πi(σ1, . . . , σi ∪ {ei}, . . . , σn) > πi(σ),
then QUIT. Otherwise, go to (5);

(5) Set N̄ := {i ∈ N |πi(σ) ≥
πi(σ1, . . . , σi ∪ {ei}, . . . , σn)};

(6) Set emin := min{ei|i ∈ N̄};
(7) Set iadd := min{i|ei = emin};

σiadd := σiadd ∪ {emin};
hemin := hemin + 1;

(8) If (σ1, . . . , σiadd ∪ {emin}, . . . , σn) ∈ Σ0,
then go to (1). Otherwise, go to (9);

(9) Set eN := {i ∈ N |πi(σ) >
πi(σ1, . . . , σi " {emin}, . . . , σn)
∨ ∃u ∈ Ē " σi : πi(σ) >
πi(σ1, . . . , (σi " {emin}) ∪ {u}, . . . , σn)};

(10) Set idrop := min{i|i ∈ eN};
(11) Set σidrop := σidrop " {emin};

hemin := hemin − 1, and go to (3).

Each iteration of the above algorithm begins from a sta-
ble strategy set σ with its congestion vector h. First, the
algorithm sorts the set of all e ∈ E with he < n in the
non-decreasing order of le(he + 1). For each agent i, let ei

be the smallest SP which is not included in the strategy set
of i, according to the above order. If a unilateral addition
of an SP to the strategy set of i does not deteriorate his
payoff, then the most appropriate additional SP for agent
i is ei. If no agent wishes to change his strategy in this
manner, we declare σ is a Nash equilibrium strategy profile
and quit the algorithm. Otherwise, let N̄ denote the set
of agents who wish to add an SP to their strategy set, and
let emin = min{ei

˛̨
i ∈ N̄}. The algorithm selects from N̄

an agent iadd := min{i
˛̨
ei = emin}, and adds the service

provider emin to his strategy set. If the resulting strategy
profile σ′ is stable, the algorithm proceeds to the next it-
eration. Otherwise, we need to stabilize σ′. We need the
following lemma:

Lemma 6.2. Let σ ∈ Σ0 and let σ′ be obtained from σ by
adding agent i to service provider x. Then, for all j ∈ N
and z ∈ σ′j " {x}:

(i) πj(σ
′) ≤ πj(σ

′
1, . . . , σ

′
j " {z}, . . . , σ′n);

(ii) πj(σ
′) ≤ πj(σ

′
1, . . . , (σ

′
j " {z}) ∪ {y}, . . . , σ′n), where

y ∈ E " σ′j.

Proof: If j = i, then the proof is immediate.
Consider j &= i. Since σ is a stable strategy profile,

πj(σ) ≤ πj(σ1, . . . , σj " {z}, . . . , σn).



Then,

Wjf
|σj | +

X

A∈P (σj)

min
e∈A

le(he)s
|A|f |σj |−|A| + |σj |t

≤ Wjf
|σj |−1 + (14)

X

B∈P (σj!{z})

min
e∈B

le(he)s
|B|f |σj |−|B|−1 + (|σj | − 1)t,

where P (S) represent the set of all nonempty subsets of S,
for any set S: P (S) = P(S) " {∅}.

For every pair of sets S, Q, the next equality holds:

P (S) = P (S ∩Q) ∪ P (S " Q) ∪ (15)
˘
Ω ∪Ψ

˛̨
Ω ∈ P (S ∩Q), Ψ ∈ P (S " Q)

¯
.

By (14) and (15) with S = σj , Q = σj " {z},

Wjf
|σj | + f

X

B∈P (σj!{z})

min
e∈B

le(he)s
|B|f |σj |−|B|−1

+s
X

B∈P (σj!{z})

min
e∈B∪{z}

le(he)s
|B|f |σj |−|B|−1

+lz(hz)sf
|σj |−1 + t (16)

≤ Wjf
|σj |−1 +

X

B∈P (σj!{z})

min
e∈B

le(he)s
|B|f |σj |−|B|−1

⇒ (1− f)
X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(he)−min

e∈B
le(he)

«

×s|B|f |σj |−|B|−1

≤ (1− f)(Wj − lz(hz))f
|σj |−1 − t

⇒
X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(he)−min

e∈B
le(he)

«
s|B|f−|B|

≤ Wj − lz(hz)−
t

(1− f)f |σj |−1
. (17)

By contrary, assume that adding agent i to service provider
x causes agent j to drop service provider z &= x. Then, by
step (9) of the TNE-algorithm,

πj(σ
′) = πj(σ1, . . . , σi ∪ {x}, . . . , σj . . . , σn)

> πj(σ1, . . . , σi ∪ {x}, . . . , σj " {z} . . . , σn)

= πj(σ
′
1, . . . , σ

′
i, . . . , σ

′
j " {z} . . . , σ′n).

That is,

Wjf
|σj | +

X

A∈P (σj)

min
e∈A

le(h
x
e )s|A||fσj |−|A| + |σj |t

> Wjf
|σj |−1 +

X

B∈P (σj!{z})

min
e∈B

le(h
x
e )s|B|f |σj |−|B|−1

+(|σj | − 1)t, (18)

where for all v ∈ Ē, hv
e is defined to be

hv
e =


he e &= v;
he + 1 e = v.

(19)

From (18), by (15) we get

X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(h

x
e )−min

e∈B
le(h

x
e )

«
s|B|f−|B|

> Wj − lz(hz)−
t

(1− f)f |σj |−1
. (20)

By (19) and the monotonicity of le(·), for any B ∈ P (σj "
{z}) we have

min
e∈B∪{z}

le(h
x
e )−min

e∈B
le(h

x
e ) ≤ min

e∈B∪{z}
le(he)−min

e∈B
le(he).

Then, by (17),

X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(h

x
e )−min

e∈B
le(h

x
e )

«
s|B|f−|B|

≤
X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(he)−min

e∈B
le(he)

«
s|B|f−|B|

≤ Wj − lz(hz)−
t

(1− f)f |σj |−1
, (21)

in contradiction to (20).
Now assume that adding agent i to service provider x

causes agent j to deviate from service provider z &= x to
service provider y. Then,

πj(σ
′) = πj(σ1, . . . , σi ∪ {x}, . . . , σj , . . . , σn)

= Wjf
|σj | +

X

A∈P (σj)

min
e∈A

le(h
x
e )s|A|f |σj |−|A|

+|σj |t > Wjf
|σj | + |σj |t (22)

+
X

C∈P((σj!{z})∪{y})

min
e∈C

le(h
x,y
e )s|C|f |σj |−|C|

= πj(σ1, . . . , σi ∪ {x}, . . . , (σj " {z}) ∪ {y}, . . . , σn)

= πj(σ
′
1, . . . , σ

′
i, . . . , (σ

′
j " {z}) ∪ {y}, . . . , σ′n).

From (22), by (15) with S = σj , Q = σj " {z} for the left
hand side and S = (σj " {z}) ∪ {y}, Q = σj " {z} for the
right hand side, we get

X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(h

x
e )− min

e∈B∪{y}
le(h

x,y
e )

«

×s|B|f−|B| > ly(hy + 1)− lz(hz) (23)

If ly(hy + 1) ≥ lz(hz), then by (23),

0 ≥
X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(h

x
e )− min

e∈B∪{y}
le(h

x,y
e )

«

×s|B|f−|B| > ly(hy + 1)− lz(hz) ≥ 0, (24)

a contradiction. Therefore,

(23) ⇒ ly(hy + 1) < lz(hz). (25)

Since σ is a stable strategy profile,

πj(σ) = Wjf
|σj | +

X

A∈P (σj)

min
e∈A

le(he)s
|A|f |σj |−|A|

+|σj |t ≤ Wjf
|σj | + |σj |t (26)

+
X

C∈P((σj!{z})∪{y})

min
e∈C

le(h
y
e)s|C|f |σj |−|C|

= πj(σ1, . . . , (σj " {z}) ∪ {y}, . . . , σn), (27)



From (26), by (15) we get

X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(he)− min

e∈B∪{y}
le(h

y
e)

«

×s|B|f−|B| ≤ ly(hy + 1)− lz(hz) (28)

If ly(hy + 1) < lz(hz), then by (28),

0 ≤
X

B∈P (σj!{z})

„
min

e∈B∪{z}
le(he)− min

e∈B∪{y}
le(h

y
e)

«

×s|B|f−|B| ≤ ly(hy + 1)− lz(hz) < 0, (29)

a contradiction. Therefore,

(28) ⇒ ly(hy + 1) ≥ lz(hz), (30)

in contradiction to (25). !

By lemma 6.2, the only potential cause for non-stability
of σ′ is the existence of an agent who wishes to drop service
provider emin or to exchange it for another one. Let eN
denote the set of agents who wish to make such a change
in their strategies. The algorithm selects from eN the agent
idrop := min{i

˛̨
i ∈ eN}, and remove the service provider

emin from his strategy set. The following lemma shows that
the resulting strategy profile σ′′ is stable. Therefore, now
the algorithm can proceed to the next iteration.

Lemma 6.3. Let σ ∈ Σ0 and let σ′ be obtained from σ by
adding agent i to service provider x. If agent j &= i wants to
drop service provider x or exchange it for another one, then
the strategy profile σ′′ obtained from σ′ by removing service
provider x from the strategy σ′j of agent j, is stable.

Proof: The case in which agent j wants to drop service
provider x is trivial. If agent j wants to deviate from x to
y, then

πj(σ
′) = Wjf

|σ′
j | +

X

A∈P (σ′
j)

min
e∈A

le(h
x
e )s|A|f |σ

′
j |−|A| + |σ′j |t

> Wjf
|σ′

j | +
X

C∈P((σ′
j!{x})∪{y})

min
e∈C

le(h
y
e)s|C|f |σ

′
j |−|C|

+|σj |t = πj(σ
′
1, . . . , (σ

′
j " {x}) ∪ {y}, . . . , σn), (31)

From (31), by (15) we get

X

B∈P (σj!{x})

„
min

e∈B∪{x}
le(he)− min

e∈B∪{y}
le(h

y
e)

«

×s|B|f−|B| > ly(hy + 1)− lx(hx + 1) (32)

⇒ ly(hy + 1) < lx(hx + 1). (33)

It is clear that agent j does not wish to drop any SP in σ′′j ,
where σ′′j = σj " {x}. We show below that he does not wish
to move from any SP in σ′′j to an SP in E " σ′′j . In contrary,
assume that j wants to deviate from v̄ ∈ σ′′j to ū ∈ E " σ′′j .
Then,

πj(σ
′′) > πj(σ

′′
1 , . . . , (σ′′j " {v̄}) ∪ {ū}, . . . , σ′′n). (34)

By similar arguments used before,

(34) ⇒ lū(hū + 1) < lv̄(hv̄). (35)

Since σ is a stable strategy profile, for all v ∈ σj and for all
u ∈ E " σj we have

πj(σ) ≤ πj(σ1, . . . , (σj " {v}) ∪ {u}, . . . , σn).

Then, for all v ∈ σj and for all u ∈ E " σj ,

lu(hu + 1) ≥ lv(hv). (36)

If ū &= x, then (35) contradicts (36). Otherwise, by (33) and
(36),

lx(hx + 1) > lv̄(hv̄),

in contradiction to (35). !

Consider the k’th iteration of the algorithm, where adding
agent ikadd to service provider ek

min destabilizes the system.
If after adding ikadd to ek

min, agent ikdrop preferred to remove

ek
min from his strategy set, then he will not wish to add it

to his strategy at the next iteration, i.e. ikdrop /∈ N̄k+1.

If after adding ikadd to ek
min, agent ikdrop preferred to ex-

change ek
min to another service provider u /∈ σik

drop
, then

lu(hu + 1) < lek
min

(hek
min

+ 1). That is, eik
drop

< ek
min, and

therefore, at the next iteration, ikdrop will be the unique

player in {i ∈ N̄k+1
˛̨
ei = ek+1

min }. Hence, at iteration (k + 1)

this agent will be selected by the algorithm as ik+1
add and will

add the service provider u to his strategy set. Thus, break-
ing exchange move into two parts does not effect the process.

It remains to show that the TNE-algorithm halts. It is
clear that the congestion of each service provider does not
decrease as the algorithm proceeds. Therefore, in order to
prove that the algorithm terminates after finitely many it-
erations, it suffices to show that every sequence of iterations
with constant congestion is finite. This statement follows
from the following lemma:

Lemma 6.4. Let σk represent the input of the k’th itera-
tion of the TNE-algorithm, and let hk be the corresponding
congestion vector. Then, for every r > k such that hr = hk,
σr &= σk.

Proof: Consider agent p = ikadd who adds service provider
ek
min to his strategy set σk

p at the beginning of the k’th iter-
ation. We prove below that for all r > k such that hr = hk

and for all e ≤ ek
min, e ∈ σr

p. Then, since ek
min /∈ σk

p , we get
σr &= σk for all such r.

In contrary, assume that agent p drops some service provider
e ≤ ek

min before or at the r’th iteration. Let k < s ≤ r be
the first iteration in which such a change occurs. Then, by
Lemma 6.2, this change is caused by adding agent q = isadd

to service provider es
min ∈ σs

p. Let σs+ = (σs
1, . . . , σ

s
q ∪

{es
min}, . . . , σs

n). Since for all e ≤ es
min, e ∈ σs

p, then agent p
cannot improve his payoff by moving from es

min to another
SP, but only by removing es

min from σs
p. Then,

πp(σ
s+) > πp(σ

s−), (37)

where σs− = (σs+
1 , . . . , σs+

p " {es
min}, . . . , σs+

n ).

By (15) and stability of σs,

(37) ⇒ les
min

(hes
min

+ 1) > Wp −
t

(1− f)f |σ
s+
p |−1

. (38)



Let k ≤ l < s be the last iteration where agent p adds
an SP to his strategy set, before dropping service provider
es
min. Then,

πp(σ
l+) ≤ πp(σ

l), (39)

where σl+ = (σl
1, . . . , σ

l
p ∪ {el

min}, . . . , σl
n).

By (15) and stability of σl,

(39) ⇒ lel
min

(hel
min

+ 1) ≤ Wp −
t

(1− f)f |σ
l
p|

. (40)

Since |σs+
p | ≤ |σl

p| + 1, from (38) and (40) we have

les
min

(hes
min

+ 1) > Wp −
t

(1− f)f |σ
s+
p |−1

≥ Wp −
t

(1− f)f |σ
l
p|
≥ lel

min
(hel

min
+ 1), (41)

in contradiction to les
min

(hes
min

+ 1) ≤ lel
min

(hel
min

+ 1). !

Proof of Theorem 6.1: By Lemmas 6.2, 6.3 and 6.4,
the TNE-algorithm finds a Nash equilibrium strategy profile
in any given quasi-symmetric TCGF. !

6.2 The construction of a pure-strategy Nash
equilibrium in symmetric TCGFs

In this subsection we consider the special case of taxed
congestion games with failures - symmetric TCGFs. In a
symmetric TCGF, the agents and the SPs are symmetric,
i.e. for all i = 1, . . . , n and e ∈ E we have Wi = W ,
fe = f , te = t and lie(x) = l(x), for all x ∈ {0, 1, . . . , n}.
We present an efficient simple algorithm which easily finds
a pure-strategy Nash equilibrium profile in the above class
of games.

The algorithm is initialized with an empty strategy set for
each agent. It orders the set N × E = {(i, e)|i ∈ N, e ∈ E}
of pairs of the agents and the service providers, according to
the rule described below. According to this order, it offers
the agents to add an SP to their strategy set. If the addi-
tion of service provider e to the strategy set σi of agent i
does not deteriorate the payoff of this agent, the algorithm
updates the strategy set of agent i and proceeds to the next
pair. The algorithm halts when it receives the first decline.

Let us denote a(mod b) by [a]b.

6.2.1 STNE-algorithm
Initiali- For all i ∈ N , set σi := ∅;
zation: Set k := 0;

Main 1. Set k := k + 1.
step: If k > gcd(m, n), then QUIT;

2. Set q := 1;
(a) Let eq = [q + k − 1]m;
(b) If π[q]n(σ1, . . . , σ[q]n ∪ {eq}, . . . , σn)

≤ π[q]n(σ), then set
σ[q]n := σ[q]n ∪ {eq};
Otherwise, QUIT;

(c) Set q := q + 1. If q > lcm(m, n),
then go to 1. Otherwise, go to (a).

The procedure of ordering the set N ×E is illustrated by
the following example. Suppose we have n = 9 agents and

m = 6 service providers. We define an order in which we
offer the agents to add an SP to their strategy set in the
following way.

e1 e2 e3 e4 e5 e6

1 2 3 4 5 6
7 8 9 1 2 3
4 5 6 7 8 9

1 2 3 4 5
6 7 8 9 1 2
3 4 5 6 7 8
9

1 2 3 4
5 6 7 8 9 1
2 3 4 5 6 7
8 9

We assign the agents to SPs, beginning from the agent 1
assigned to service provider 1, agent 2 assigned to service
provider 2, and so on. Agent 6 is assigned to the last service
provider; then agent 7 goes to service provider 1. The last
agent gets service provider 3, and we continue with assign-
ing agent 1 to service provider 4. At the end of the first
iteration, agent 9 is assigned to service provider 6. At the
next iteration we move the agents by one step; that is, agent
1 is assigned to service provider 2, agent 2 is assigned to ser-
vice provider 3, and at the end of the iteration, agent 9 is
assigned to service provider 1. The length of each iteration
is bounded by the least common multiplier of m and n, and
the number of iterations is bounded by the greatest common
divider of m and n.

Theorem 6.5. The STNE-algorithm finds a pure-strategy
Nash equilibrium in a given symmetric TCGF.

7. DISCUSSION & FUTURE WORK
In this paper we studied congestion games in which facil-

ities may fail to complete their assigned tasks. We have
shown that these games do not admit a potential func-
tion, and therefore are not isomorphic to classic congestion
games. However, we were able to prove the existence of
pure-strategy Nash equilibrium for these games, and to find
an efficient algorithm for its construction. We also showed
that the congestion experienced by each of the facilities in
different Nash equilibria is (almost) unique. For symmetric
BCGFs we provided a characterization of the best and worst
Nash equilibria, presented algorithms for their construction,
and made a comparison of agents’ payoffs at these equilib-
rium points. We defined a model for taxed congestion games
with failures and proved the existence of a pure-strategy
Nash equilibrium in quasi-symmetric TCGFs. We also pro-
vided an efficient algorithm for computing Nash equilibrium
in symmetric TCGFs.

Since it is known that Nash equilibria do not optimize the
overall welfare, the social performance of Nash equilibria
should be studied. In this context, we outline the follow-
ing two directions: (i) evaluation of the inefficiency of Nash
equilibria; (ii) developing methods for improving the out-
come of Nash equilibria. In both directions we have some
partial results for the games presented in this paper. For
instance, the price of anarchy in BCGFs is a function of the
parameters of the game and cannot be bounded by constant
value, even for very simple (e.g., linear) cost functions. The



inefficiency of Nash equilibria motivates the study of meth-
ods for improving the social outcome obtained by selfish
agents. In this context, we have some positive results (that
were omitted from this paper) showing that economic in-
centives, e.g. taxation, can improve the outcome of Nash
equilibria in congestion games with failures. That is, we can
price the facilities to reduce the total social disutility of Nash
equilibrium - the sum of the agents’ disutilities plus taxes
paid. We are interested in formulating meaningful condi-
tions under which taxes can reduce the total cost of Nash
equilibrium in games with failures.

As part of our research we plan to take further look at the
modelling of noncooperative games with failures. The mod-
els we presented here could be extended or modified. In par-
ticular, the facility failures might be congestion-dependent
or unknown to the agents.

Overall, we believe this work tackles a fundamental con-
nection between distributed computing and game theory.
While congestion is substantial to both disciplines (and in-
deed is extensively studied by both communities), the notion
of selfish behavior pertains to game theory and the notion
of failures originates from distributed computing. However,
there is a natural connection between these topics which to
the best of our knowledge is first explored in this work.
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