A Semantic Matching Approach for Distributed RDF Data Query

on a Knowledge Bus

Tao Guan, David W. Fowler, Richard M. Crowder, Feng (Barry) Tao, Nigel R. Shadbolt, Gary B. Wills
School of Electronics and Computer Science, University of Southampton
Southampton, SO17 1BJ, United Kingdom
tg2,dwf,rmc,ft,nrs,gbwlecs.soton.ac.uk

Abstract

During the past several years, semantic web technologies have been applied to facilitate the shar-
ing of data in new and unexpected ways. Various heterogeneous data are assigned well-defined
meaning by ontologies and expressed with RDF triples so that they are are able to be integrated and
extracted across multiple sources. As the order of magnitude of triples hosted is higher and higher,
and considering other essential issues (e.g. copyright, security) in application domains, a distributed
RDF data management approach is more appropriate for knowledge sharing and integration. In
this paper, we present a knowledge bus infrastructure - a general solution of locating and extracting
knowledge elements from distributed sources on-demand rather than loading all of RDF triples into
a large central triple store in advance. A semantic matching approach is discussed to support the key
function of automatic knowledge source location. The knowledge bus infrastructure as well as the
semantic matching approach has been adopted in the CFMS project, enabling a rapid information
search and access for the engineering domain.

1 Introduction

During the past several years, semantic web technologies [3] [9]] have been applied to facilitate the shar-
ing of data in new and unexpected ways. Various heterogeneous data are assigned well-defined meaning
by ontologies and expressed with RDF triples so that they are are able to be integrated and extracted
across multiple sources to support high-level intelligent applications. Generally speaking, there are two
approaches to managing a large volume of RDF triples: centralized and distributed RDF data manage-
ment. In most application domains (e.g. bioinformatics), all kinds of knowledge and experimental data
are encapsulated into a unified format and copied into a central data repository. However, as the order
of magnitude of triples hosted is higher and higher, the performance of central triple stores becomes the
bottleneck of the data integration system, for example, it normally takes several hours to load a billion
triples. Furthermore, because of copyright and security issue in many application domains, sensitive data
sources are required to be kept separately - only authorized users are able to access them.

In a distributed semantic data integration system, data providers wrap data into RDF format and
publish the access information of data sources. Data consumers may need to connect with a number of
different data sources on-demand to process a data query request. Three aspects need to be considered
when implementing the interaction between data providers and data consumers: the first is a method
that describes various data source features; the second is a mechanism for locating data sources so that
required data can be found and selected given a query request; the third is the way of data access.
Essentially, data source description, location and usage are interdependent: data source description is a
prerequisite for data source location; the mechanism of locating required data sources determines how
data sources should be described; data source usage depends on data source location and selection.

In this paper, we present a semantic system to support the data integration from distributed sources.
Heterogeneous data resources are encapsulated into RDF triples and are connected with a knowledge bus
infrastructure. The knowledge bus, the core component of the semantic system, is a general solution that
serves as an intersection for both knowledge providers and knowledge consumers, making it possible

tg2, dwf, rmc, ft, nrs, gbw@ecs.soton.ac.uk

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

to locate and extract knowledge elements from distributed sources on-demand rather than load all of
RDF triples into a large central triple store in advance. A key function supported by the knowledge bus
infrastructure is to locate required knowledge sources based on query requests because the answer to a
data query usually needs to exploit a number of different knowledge sources. A description model for
data sources and the semantic matching algorithm are designed and developed to realize the function of
automatic knowledge source discovery.

The paper is organized as follows. Section two briefly introduces the knowledge bus infrastructure.
Section three presents the knowledge sources description and the semantic matching algorithm. The
implementation of knowledge source location mechanism and the CFD user case are discussed in section
four. Section five introduces the related work and section six concludes our research work with the
discussion of further directions.

2 Infrastructure for Data Integration

2.1 Knowledge Bus Overview

The concept of a knowledge bus is borrowed from the concept of the data bus in computer architecture,
which is a subsystem that transfers data between computer components inside a computer or between
computers. Similar to the data bus, the Knowledge Bus provides the transportation media for knowledge
communication, and allows new sources of knowledge and new consumers of knowledge to be connected
together. Figure [T] shows a conceptual model of the Knowledge Bus, in which unique identifiers are
assigned to bus nodes so that each entity can communicate with any other entities on the same bus by
specifying the unique identifier of the target entity. A typical Knowledge Bus system consists of two
kinds of knowledge node: Bus Controller, Knowledge Terminal.

Knowledge Knowledge Knowledge
Terminal Terminal Terminal
(Consumer) (Consumer) (Consumer)
Bus Bus Monitor
Controller)
Knowledge Knowledge Knowledge
Terminal Terminal Terminal

(Provisioner) (Provisioner) (Provisioner)

Figure 1: Concept Model of Knowledge Bus

2.2 Knowledge Communication

The communication protocol for the Knowledge Bus is to use HTTP for transportation with the content
wrapped in XML/RDF. HTTP is lightweight and based on TCP/IP sockets which are widely supported
in different platforms. Many HTTP libraries are available which will help the rapid development of
knowledge nodes on the bus. A balance is considered between data source integration and independence:
it is assumed that knowledge consumers are not expected to update the content of knowledge providers
through the knowledge bus. Hence, the “GET” method of the HTTP protocol is mostly required.

A global URI is assigned to every concept on knowledge providers, so that RESTful interfaces for
knowledge providers can be exposed on the knowledge bus. The syntax of a normalized URI is:

http://3clix.org/<ks>/<identifier>

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

where “ks” refers to the name of knowledge providers. For example, the simulation rules of the Compu-
tational Fluid Dynamics (CFD) domain on the wiki would be expressed as

http://3clix.org/wiki2/rules/

This global strategy ensures the addressability of every resources on the knowledge bus and provides a
lightweight approach of resource access.

The knowledge consumers are able to extract knowledge elements in two ways. The first is to execute
a “graph query”. For example, the following request will be sent out to acquire the RDF statements of
the “wing3759” resources:

Get http://3clix.org/wiki/wings/wing3759

The second is implemented with the standard SPARQL query language [10]. The knowledge sources
could be configured to be SPARQL endpoints, and the knowledge consumers are able to query knowledge
elements as long as the URLs of the SPARQL endpoints are located. The contents requested are wrapped
in the HTTP envelope and returned in the HTTP response message.

2.3 Workflow of Processing a Knowledge Query

Figure 2] shows a general workflow which takes place when users or external applications submit a query
request through a knowledge node on the bus. It is assumed that the bus controller knows the information
of all knowledge nodes (to be discussed in the next section).

1| /7 1
% Query 2 [Local Triple
Ul Process
Store
_ Component
— 6 6
& 7T
(Bus Adapter)
Knowledge Node

<

Knowledge Bus

<ﬁ

Knowledge
Source Index

Bus Controller

Remote RDF
Resources

Knowledge Node

Remote RDF
Resources

Knowledge Node

Remote RDF
Resources

Knowledge Node

Figure 2: Answering a query in Knowledge Bus Infrastructure

An integrated process of accomplishing a knowledge query request is described as followings:
1. Query Submission: Users or external applications submit a query to a knowledge node.

2. Local Processing: the query processing component of the knowledge node receives the query,
parses it and checks whether required knowledge elements can be found in the local knowledge
repository.

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

3. Knowledge Source Location: If required knowledge elements cannot be found in the local knowl-
edge repository, the processing component will contact the Bus Controller by sending a knowledge
source location request.

4. Matching Knowledge Source Return: The bus controller looks up knowledge nodes on the bus and
returns the information of matching knowledge sources to the processing component.

5. Remote Knowledge Source Access: The query processing component exploits remote knowledge
sources and extracts required knowledge elements to answer the query. The knowledge elements
from one remote knowledge source may be used as the input of exploiting another remote knowl-
edge source.

6. Query Result Return: After obtaining all of the knowledge elements, the processing component
makes a final process and returns the final results to users or external applications.

It should be noticed that the whole knowledge query process is transparent for users. They do not
need to know detailed knowledge sources that will be exploited to answer the query. The knowledge
bus infrastructure provides a function of automatic knowledge source location to realize the vision of
distributed RDF data query.

3 Locating Required Knowledge Sources

3.1 Methodology

A semantic knowledge management approach is adopted to support the function of automatic knowledge
source location. Knowledge sources are annotated with semantic description models, which are adver-
tised for public access. The matching engine collects the existing knowledge source models and checks
whether they are able to satisfy query requests. During such a semantic knowledge lifecycle, two issues
are essential: a semantic description model for describing knowledge sources and structuring related
domain concepts, and a matching engine for comparing the description models of knowledge sources
and query requests. The knowledge source description model and related concepts can be defined using
an ontology, which is expressed in a logical language, enabling accurate, consistent, sound and mean-
ingful distinctions among classes, properties and relations. The matching engine can be built based
on logic reasoning mechanisms, achieved by ontology supporting tools. As long as requesters present
their requirements with terms from the same ontology model used to build knowledge source description
models, logic reasoning mechanism can find the similarity between knowledge source descriptions and
request requirements.

It is assumed that the knowledge source request attempts to describe expected requirements with
terms from the same ontology model used to build the knowledge source description. However, it is
impractical that every knowledge source request can acquire the exact desired knowledge source even
though the required knowledge elements exist in several knowledge sources which have already been
deployed and advertised, because one knowledge source could have a number of description formats so
that there may be the deviation in the process of the knowledge source matching. In fact, the responsibil-
ity of the matching engine is to obtain all of the knowledge sources which could be related with requests
including those that differ from the request to some defined extent. These deviation matches should not
be rejected but be classified using a predefined rule (e.g. matching degree), enabling knowledge sources
to be selected and exploited to check whether required knowledge elements exist. Our knowledge source
location engine takes a request and available knowledge source descriptions as inputs, and outputs a list
of candidate knowledge sources as well as their matching degrees.

4

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

3.2 Description Model for Knowledge Sources

Each knowledge source has a number of attributes. However, when defining a general description model
for knowledge sources, only essential and most common attributes should be included in the high-level
models. We define five properties to compose the high-level description model for knowledge sources.
Figure [3]illustrates the description model for describing knowledge sources.

Terms
(Value: keywords in
URISs)

Advertisements
(Value: URLSs)

Description
Model of
Knowledge
Sources

AccMethod
(Value: REST,
SOAP)

Interface
(Value: URLS)

ComProtocol
(Value: HTTP)

Figure 3: Knowledge Source Description Model

The defined properties are explained as follows:

e Interface: the value of this property is single or multiple URLSs, a global address of knowledge
source assigned when connecting to the knowledge bus infrastructure.

e ComProtocol: this property indicates the binding communication protocol. Because the current
knowledge bus infrastructure only supports HTTP communication protocol, the value of this prop-
erty is “HTTP”.

e AccMethod: this property indicates the binding access method of knowledge sources. As dis-
cussed in the above section, the knowledge elements can be extracted from knowledge sources
with RESTful interfaces (Graph Query) and/or SOAP protocol (SPARQL), hence the value of this
property could be “REST” or “SOAP”.

e Terms: a knowledge source could be tagged with a number of keywords, demonstrating roughly
what the knowledge source is about. However, unlike most of existing tagging systems, the tags in
the knowledge source description are expressed with URIs, which avoid the ambiguity issue.

e Advertisements: the value of this property is URL(s), which points to semantic metadata models
of knowledge sources. This advertisement model will be used to check the detailed relationship
between a request and a knowledge source.

The knowledge source description model is expressed with RDF language. The following is a brief
example of knowledge source description in RDF.
<KnowledgeSource:presents>
<des:DesModel rdf:ID=‘‘KnowSourcel’’>
<des:hasInterface rdf:resource=‘‘http://www.3clix.org/ksl’’/>
<des:hasComProtocol rdf:resource=‘‘#HTTP’’/>
<des:hasAccMethod rdf:resource=‘ ‘#REST’’/>

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

<des:hasTerms rdf:resource=‘‘http://3clix.org/concepts/Wings’’/>
<des:hasTerms rdf:resource=‘‘http://3clix.org/concepts/Aerofoils’’/>
<des:hasAdvertise rdf:resource=‘‘http://3clix.org/meta/ksl’’/>
< ol More properties...... >
</des:DesModel>
</KnowledgeSource:presents>

3.3 Knowledge Source Advertisements and Requests

Apart from interfaces, communication protocols and access methods, other features of knowledge sources
are also represented in the knowledge source description, which are indicated and structured by adver-
tisements - semantic metadata model of knowledge sources. The features of knowledge sources are
either concepts or restrictions for existent concepts. The value of knowledge source advertisement is
URL(s), which could be separated from the detailed knowledge source contents. Different knowledge
source advertisement URLs can be made and published for one knowledge source with one knowledge
source interface, enabling the knowledge sources to be reused for several purposes. For example, a
knowledge source contains both knowledge elements about aerofoils and about their designers. Hence,
this knowledge source can have two metadata URLs: one’s topic is about “People”, and the other’s topic
is “Aerofoil”.

Similar to the knowledge source advertisement, a knowledge source request often consists of a num-
ber of individual requirements, specifying the features to be expected in a knowledge source. In order
to ensure the matching process to succeed, knowledge source advertisements and requests must be de-
scribed in an appropriate manner. The selection of description language is an important issue because it
affects the way of describing knowledge source advertisements and knowledge source requests, and the
matching algorithm between advertisements and requests. In our approach, the Web Ontology Language
(OWL) is adopted to describe knowledge sources because it enables us to employ the benefits of semantic
matching. OWL is often used by computer applications that need to process the content of information
instead of simply presenting information to humans, and there are many existing tools supporting its
editing, parsing and reasoning.

All of features that could describe knowledge sources will be specified in the knowledge source
advertisements, which can be shown in the form of:

Advertisement C (A1) N (A2)N(A3)N---N(A,)

where A; is a named concept or an existential restriction or a complementary restriction between two
values. For example, an advertisement for a knowledge source that includes data about aerofoils, con-
tributors, and their relationship (e.g. designers have contribution to aerofoil design) is described as

follows:
Advertisement C KnowledgeSourceN

JhasElements.Aero foilN
JhasElements.Designersn
JhasInternalRestriction.Res
Res = Designersn
JhasContribution.Aero f oil

A knowledge source request consists of a number of individual requirements, taking the form of:
Request C (R1)N(Ry)N(R3)N---N(Ry)
where R; is an individual requirement, taking the form of:

R; C (= lhasReqDes.RD) N (= 1hasExpMacLel MatchingLevel)

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

where RD is the detailed requirement description, which could be a concept or an existential restriction
or a internal restriction between two concepts. The MatchingLevel indicates matching degree of concepts
in the description models that can meet this requirement. Its values are “Exact”, “Substitute”, “Cover”,
“Fuzzy” and “Close”. The following example shows a knowledge source request expressed in description
logic notation:

Request C FhasReq(Req N KnowledgeSource NhasExpMacLel .Exact)N
JhasReq(Req N hasRegDes.RD1 N hasExpMacLel .Cover)N
JhasReq(Req N hasReqDes.RD2 N hasExpMacLel .Substiute)N
JhasReq(Req N hasInternal Restriction.Res1 NhasExpMacLel .Fuzzy)

RD1 = JhasElement.Aerofoil

RD2 = JhasElement .Person

Res1 = PersonnN
JhasContribution.Aerofoil

3.4 Algorithm for Locating Knowledge Sources

A knowledge source request is composed of a number of individual requirements, specifying various
attributes to be expected. The matching engine takes a knowledge source request and a group of knowl-
edge description models as inputs, and is responsible for determining whether a knowledge source is
a matching one for the request. The comparison between requests and description models consists of
two stages. Initially, the matching engine checks whether values of “hasTerms” property in a knowledge
source description model include similar vocabularies with the requirements whose expected matching
level is “Exact” (concepts or values of existential restrictions in the request expression). This is a basic
rough matching process to narrow down the possible candidates for further matching. If not all of “Ex-
act” requirements can find similar terms in the values of “hasTerms” property in a knowledge source,
this knowledge source will be dismissed. The result of the rough matching process is a list of candidate
knowledge sources, which will be used as inputs for the next stage comparison. The second stage is
an elaborate matching process: the matching engine makes a comparison between advertisements and
requests of knowledge sources. As both of them are expressed in OWL language, graph matching, triple
matching and then concept matching will be implemented.

During the matching process, an important issue is how to check semantic similarity of vocabularies.
An assumption is made that the similarity of conceptual attributes can be judged using logic reasoning
based on the taxonomic relation in ontology definition. Otherwise, other available similarity measure-
ment approaches such as [12] and [13] will be adopted to acquire the knowledge of similarities. Same
as the definition of expected matching level in the knowledge source, five expected matching levels of
vocabularies are used:

e “Exact” indicate that the user expects to find a concept in the knowledge source description which
is equal to the concept in the requirement.

e “Substitute” indicate that the user expects to find a concept in the knowledge source description
which is the direct superclass of the concept in the requirement.

e “Cover” indicates that a concept which subsumes the concept in the request is expected to be
found.

e “Fuzzy” means this requirement is of little importance for matching. As long as a concept in the
description can be found which has the subsumption relationship (either superclass or subclass)
with the concept in the requirement, it will be satisfied.

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

e “Close” indicates that the user expects to find a concept in the description which has the same
direct superclass in the defined concept (ontology) structure with the concept in the requirement.
This expected matching level is defined for the conceptual attribute, whose similarity cannot be
assessed with the subsumption reasoning.

After rough matching and elaborate matching process, the matching engine may find a number of
knowledge sources for a specific request. Although the knowledge source matching engine is not re-
sponsible for the selection (the processing component is), the matching degree information about each
candidate knowledge source is required to be provided for requests. We use the term “MatchingScore”
to show the matching degree of the candidate knowledge sources. For a candidate knowledge source, its
“MatchingScore” is calculated using the following equation:

n

MatchingScore = Z Score;/n
i=1

The “Score;” indicates the matching degree of every individual general requirement in the request
against the related attribute in the description metadata model. For concepts between which the sub-
sumption relation exists, the score can be obtained based on the semantic distance ||C,,C,|| between
the individual requirement (C,) and the related attributes (C,) in the ontology structure. The following
equations are used to calculate the individual score:

Score; =
1 ifC, = C,

1

% + SCCTD if C,isasuperclass of C,

1

GG if Cyisasuperclassof C,

The matching score of each candidate knowledge source is calculated based on Score;, and it will
determine the ranking. The higher the score is, the higher ranking the candidate knowledge source has.

4 Implementation and CFD Use Case

The knowledge source location middleware is built to serve as the registry center on the knowledge bus.
It provides both web application and web service interfaces for knowledge source owners to publish their
knowledge sources on the knowledge bus. During the process of knowledge source publishing, the used
domain concepts and restriction in the description models are extracted, and related ontology instances
are created and stored in the ontology repository. When a knowledge source request is received, the
matching engine only needs to parse the request, and judge similarity between concepts in the request
and instances in the ontology repository. This pre-reasoning approach speeds up the time of processing
a query request because it saves the time of analyzing a number of knowledge source advertisements.
The knowledge source location middleware has been implemented in Java with the MySQL database,
the Jena framework, the Racer reasoning system [8]], and other related techniques. Jena provides a pro-
gramming environment for OWL ontologies which is used to parse knowledge source descriptions and
manage required ontologies. The Racer system is responsible for executing the necessary reasoning tasks
during the matching process. Knowledge source description models and advertisements are stored in the
Jena triple store on the top of the MySQL database, which is captured through publishing interfaces. The
knowledge source information middleware is written as both a Java Web Service for knowledge nodes on

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

the knowledge bus infrastructure to submit location requests and a web application for managing exist-
ing knowledge sources manually using the AJAX design mode which can be accessed through a standard
web interface.

The potential of the knowledge bus infrastructure and knowledge source location mechanism is
demonstrated by applying them to construct a semantic system for rapid engineering information ac-
cess in the Computational Fluid Dynamics (CFD) domain.

In order to meet these requirements of CFMS project EI, a semantic system is constructed based on
the knowledge bus infrastructure (Figure). A Semantic CFD Wiki, which is wrapped as several wiki
triple stores by opening a “back door” of the wiki, and other data sources can be integrated through the
knowledge bus. Semantic application gateway is an example of knowledge consumer, able to collect
required knowledge elements from heterogeneous knowledge providers and assist to implement high-
level applications. The detailed discussion about semantic system for the CFMS project is at [7] [6].

M

[—A Wiki Triple
Store 1 >
J— (theoretical
knowledge)
% [itaraes - ?eEqSquL:I Enowlegge Knowledge User User
(Semantic > easqmng ngry
Domain Users CFD Wiki) ; yr— Engine Engine
iki Triple
c Store 2 Intelligent Applications
X (expt. App
I Kiowledge |
_ 2 [ESUIE) nowledge Req
g = Element Local Triple |[&— -
H =} » ” | n I —
Data On Wikjf | @ S [mom eaaal S =]
Wiki Triple s Engine
= | xm
_ soren |, & Application Gateway || -
(erofolls, Q
E— Wings) [v] Knowledge -
w Knowledge Elements 3
- % Source Discovery Aerofoil Browser
i Dat s
Legacy DB Triple SOS(; 3
Data on DB Swe Reg. == I
9 A Knowledge Knowledge
iy SellEs Source |
Matching R .
i P Engine eposiory
RDE Triple Store
Doc, Matlab > /SPARQL |— Bus| Bus controller |
Fuction... Enciaioyg Endpoint Management |
Message CFD Advisar |

Figure 4: Semantic System on Knowledge Bus

4.1 Aerofoil Design Scenario

One of the existing applications developed is for the aerofoil design scenario, which helps aerofoils
designers search and select aerofoils existed in the CFD knowledge space to fit desired performance
requirements. The aerofoil design application scenario requires three kinds of knowledge sources. The
first is the triple store about aerofoils from the Semantic CFD Wiki, where various existing aerofoils
as well as their shape data are published. An “aerofoil” category is defined in the semantic wiki, so
that users are able to add or edit the aerofoil individuals, keeping pace with the latest aerofoil update.
The second is the engineers’ conversation database, where previous use records of aerofoils are stored.
The third is the CFD results of aerofoils, in which various aerodynamic constraints (e.g. Mach number,
Reynold number) are kept. However, in the CFD domain, there are several triple stores about aerofoils,
categorised by the their contributors (e.g. NACA), and many engineers’ conversation databases about
various topics (e.g. flight engines, wings). It is impossible and unreasonable for users to have the prior
knowledge of which data sources to be used.

Uhttps://www.cfms.org

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

For example, users may like to find information (e.g. shape data, previous experience, CFD results)
of aerofoils contributed by NACA. After starting the application, a query string will be generated and
transferred to the knowledge query engine in Application Gateway. The query processing component
then submits three knowledge source requests to the bus controller, which can be described in description
logic notation as:

Request1 C FhasReq(ReqNhasReqDes.RD11 NhasExpMacLel .Exact)N
JhasReq(Req N hasReqDes.RD12 N hasExpMacLel .Substitute)N
JhasReq(Req N hasInternalRestriction.Res11 NhasExpMacLel .Exact)

RD11 = JhasElement .Aero foil

RD12 = JhasElement NACA

Res11 = NACAN
JhasContribution.Aero foil

Request2 C FhasReq(Req N hasReqDes.RD21 NhasExpMacLel .Exact)N
JhasReq(Req N hasReqDes.RD22 N hasExpMacLel .Fuzzy)N

RD21 = JhasElement Conversation

RD22 = JhasTopic.Aerofoils

Request3 C FhasReq(Req N hasReqDes.RD31 NhasExpMacLel .Exact)
RD31 = JhasElement .CF DResult

The knowledge sources which contain triples about aerofoils and NACA (or its high-level institutions
because the expectation match level is Substitute) will be located for the first request; the knowledge
sources of engineer conversation about any terms related with Aerofoil (based on the definition of Aero-
foil ontology) will be located for the second request because the expectation matching level of “RD22”
is fuzzy; as for the third request, only knowledge source about CFD results gets returned.

The matching degree information about each candidate knowledge source is also returned, which is
based on the “close” relationship of concepts between requirements and descriptions. For example, for
the second request, considering the following two candidate knowledge sources:

Advertisement1 C JhasElements.ConversationN
JhasTopic.bladeN

Advertisement2 C JhasElements.ConversationN
JhasTopic.wingN

The score of the knowledge source one is
0.5+1/2%(241)=0.667,
which is higher than that of the knowledge source two
05+1/2%(44+1)=0.6,

because the semantic distance between “aerofoil” and “blade” is two and the semantic distance between
“wing” and “aerofoil” is four.

After locating related knowledge sources, the query process component communicates with them
and extract knowledge elements. Finally, all of the extracted knowledge is organized and displayed in
a faceted browser (Figure [5). Designers are able to browse, compare, and select aerofoils according to
values of various shape requirements (e.g. Area, Chamber, Angle-of-Attack). The conversation records
provide previous use reference of aerofoils. After filtering out a large number of aerofoils, designers
make a further selection based on the CFD results.

10

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

77 Marotedl Uints - Wik dows etar sat | agisces EER

Figure 5: Semantic System on Knowledge Bus

5 Related Work

Semantic Web technologies make various online content to be machine processable, enabling software
components to process them and produce value-added knowledge to end users. Semantic Web technolo-
gies have been utilized in many fields for data integration and knowledge management, e.g. Watson [S],
Bio2RDF [2], Semaplorer [[11]. Although existing semantic systems solved several challenges of data
integration and knowledge management, most of them were using a centralized RDF data management
approach and users have to know the information of targeting data sources in advance. Our approach
is to provide a virtual central-storage infrastructure, enabling users to extract knowledge elements from
distributed sources on demand without existing data source knowledge required.

There are also many existing work on distributed RDF storage and retrieval. For example, in [1], the
authors present a distributed storage and query infrastructure on top of an existing RDF infrastructure.
The triple information indexed by the predicate value is stored at a mediator to implement the function
of distributed RDF query. In [4]], an RDF triple repository for storing, indexing and querying individual
RDF statements is presented, based on a structured peer-to-peer network. Different with these previous
work, the index in our matching approach works at the ontology level — a metadata model is defined for
data source description, and reasoning is used for locating required knowledge sources.

6 Conclusions and Future Work

The distributed RDF data management approach is more appropriate for knowledge sharing and integra-
tion as the size of the central triple store grows with time. This paper presents a knowledge bus infras-
tructure - a general solution of integrating and extracting knowledge elements from distributed sources
on-demand rather than loading all of the RDF triples into a large central triple store in advance. A key
function supported by the knowledge bus infrastructure is to locate required knowledge sources auto-
matically because the answer to a data query needs to exploit a number of different knowledge sources.
A description model for knowledge sources and the semantic matching algorithm are discussed to re-
alize the vision of automatic knowledge source discovery. The knowledge bus infrastructure together

11

Semantic Matching for Distributed RDF Data Query Tao Guan, David Fowler et al.

with the knowledge source location mechanism has been applied in the CEMS project, enabling a rapid
engineering information access in the CFD domain.

In the future, we plan to continue our work to improve the automatic knowledge source location
mechanism. Numeric attributes were not considered in the current knowledge source description model
and the query request. A percent deviation or a fuzzy membership function could be used to judge
similarity between numeric attributes. An alternative method for semantic matching which can provide
the function of computing concept similarity is the rule-based approach. Although the rule definition
is closely coupled with the application domain, presenting rules to check similarity for particular types
of requirements while keeping the approach general, is worth investigating. The experiments are also
planned to operate to evaluate the performance and optimize the algorithm, especially when different
number of knowledge sources are deployed on the bus.

References

[1] G. Adamku and H. Stuckenschimidt. Implementation and evaluation of a distributed rdf storage and retrieval
system. In IEEE/WIC/ACM International Conference on Weeb Intelligence (WI'05), pages 393-396, 2005.

[2] F. Belleau, M.A. Nolin, N. Tourigny, P. Rigault, and J. Morissette. Bio2rdf: Towards a mashup to build
bioinformatics knowledge systems. Journal of Biomedical Informatics, 41(5):706-716, 2008.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284(5):34-43, May
2001.

[4] M. Cai and M. Frank. Rdfpeers: a scalable distributed rdf repository based on a structured peer-to-peer
network. In Proceedings of the 13th international conference on World Wide Web, pages 650-657, New
York, USA, May 2004.

[5] M. d’Aquin, C. Baldassarre, L. Gridinoc, S. Angeletou, M. Sabou, and E. Motta. Characterizing Knowledge
on the Semantic Web with Watson. In Workshop on Evaluation of Ontologies and Ontology-based tools,
Sth International EON Workshop, collocated with the International Semantic Web Conference (ISWC 2007),
Busan, Korea, 2007.

[6] T. Guan, D. Fowler, R. Crowder, N. Shadbolt, F. Tao, and G. Wills. A semantic system for rapid engineering
information access. Computers in Industry, Submitted.

[7] Tao Guan, David W. Fowler, Richard M. Crowder, Feng (Barry) Tao, Nigel R. Shadbolt, and Gary B. Wills.
A semantic system for rapid information search and access. In 6th European Semantic Web Conference
(poster), Heraklion, Greece, May 2009.

[8] Volker Haarslev and Ralf Moller. Racer: a core inference engine for the semantic web. In Proceedings of 2nd
International Workshop on Evaluation of Ontology-based Tools, pages 27-36, Sanibel Island, Florida, USA,
Oct. 2003.

[9] D.E. Millard, N. M. Gibbins, D. T. Michaelides, and M. J. Weal. Mind the Semantic Gap. In HYPERTEXT
’05: Proceedings of the sixteenth ACM conference on Hypertext and hypermedia, pages 54—62, Salzburg,
Austria, 2005. ACM.

[10] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. Available at:
http://www.w3.org/TR/rdf-sparql-query/, January 2008. W3C Recommendation.

[11] S. Schenk, C. Saathoff, A. Baumesberger, F. Jochum, A. Kleinen, S. Staab, and A. Scherp. SemaPlorer —
Interactive Semantic Exploration of Data and Media based on a Federated Cloud Infrastructure. In Billion
Triples Challenge at the 7th International Semantic Web Conference 2007, Karlsruhe, Germany, 2008.

[12] A. Schwering. Hybrid model for semantic similarity measurement. Lecture Notes in Computer Science,
3761/2005:1449-1465, 2005.

[13] A. Tverski. Features of similarity. Psychological Review, 8(2):327-352, 1977.

12

	Introduction
	Infrastructure for Data Integration
	Knowledge Bus Overview
	Knowledge Communication
	Workflow of Processing a Knowledge Query

	Locating Required Knowledge Sources
	Methodology
	Description Model for Knowledge Sources
	Knowledge Source Advertisements and Requests
	Algorithm for Locating Knowledge Sources

	Implementation and CFD Use Case
	Aerofoil Design Scenario

	Related Work
	Conclusions and Future Work

