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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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A mini-thesis submitted for transfer from MPhil to PhD

by Alisdair Owens

This report considers the requirement for fast, efficient, and scalable triple stores as part
of the effort to enable the Semantic Web. It summarises relevant information in the back-
ground field of Database Management Systems (DBMS), and analyses these techniques
for the purposes of application in the field of RDF storage. The report concludes that
for individuals and organisations to be willing to use Semantic Web technologies, data
stores must advance beyond their current state. The report notes that there are several
areas with opportunities for development, including scalability, low latency querying,
distributed and federated stores, and improved support for updates and deletions. Ex-
periences from the DBMS field can be used to maximise RDF store performance, and
suggestions are provided for lines of investigation. Work already performed by the au-
thor on benchmarking and distributed storage is described, and a proposal made to
research low-latency RDF querying for the purpose of supporting applications that re-
quire human interaction. Work packages are provided describing expected timetables
for the remainder of the PhD program.
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Chapter 1

Introduction

Resource Description Framework (RDF) is a means for expressing knowledge in a generic
manner, without requirement for adherence to a strong schema. It is designed to provide
a flexible means to support simple data aggregation, discovery, and interchange, and has
already found use as an underlying data format in such fields as e-science (Taylor et al.,
2005, 2006) and faceted browsing (Smith et al., 2007; schraefel et al., 2004). The goal
of researchers in the area is that as technologies mature, the Semantic Web will be built
upon linked RDF data (Berners-Lee et al., 2001).

This document, submitted for upgrade from MPhil to PhD, describes the author’s work
in the area of high performance RDF storage and query. It is clearly necessary to support
high performance querying over RDF data: development of the Semantic Web implies
the encoding of a massive quantity of data, and without the ability to manipulate and
extract information in a performant manner it will be impossible to develop the kind of
interfaces that popularised the Web.

There is already a considerable body of work dedicated to information storage and
retrieval: the Database Management System (DBMS) community has been working in
this area for many years, and a great deal of progress has been made - an overview
of which can be found in Date (1990). High performance RDF storage depends to a
significant extent on correct application of existing DBMS research, and so these areas
of research run in parallel: indeed, many RDF stores are built as layers that rely on
existing relational DBMSs (RDBMSs) to do much of the work.

RDF does, however, exhibit some features that make it difficult to model using tradi-
tional database systems: the structure of an RDF document is highly unpredictable,
and does not lend itself to storage in any but the most generic of schemas. This unpre-
dictability is also evident in query patterns: unlike more conventional relational systems,
support for performant arbitrary queries is expected on RDF stores. Finally, RDF also
exhibits an unusually large number of individual data points compared to the amount
of information encoded, meaning each operation generally has more datums to process.

1



2 Chapter 1 Introduction

Typically, each of these issues inhibits efficient storage and query optimisation, mak-
ing even advanced RDF stores both slow and lacking in scalability in comparison to
their relational peers1. The most powerful single machine RDF stores are capable of
storing around two billion RDF statements, or in the order of tens of gigabytes of data
(Erling and Mikhailov, 2006), and pattern-match queries performed over much smaller
datasets can produce unacceptable performance (Smith et al., 2007). This contrasts with
commercial RDBMS technologies which are capable of storing terabytes of data whilst
preserving real time query performance, and can lead interface designers to abandon
RDF stores in favour of faster, but more restrictive systems (Smith et al., 2007).

Given the damaging performance gap between RDF stores and traditional RDBMSs,
it is useful to consider the question of how applicable existing DBMS research is to
the problem of RDF query, and whether that knowledge is correctly applied in existing
RDF stores. This report contains a detailed review of research in the wider field of
DBMSs, and analyses it in the context of the unusual requirements of RDF. This review
forms a basis for innovation in RDF storage, uncovering useful techniques that can be
applied to RDF stores, areas of future work that result from the differences between
RDF stores and traditional systems, and offering explanation of the issues that current
stores experience. As far as the author is aware, there is no such analysis already in
existence, and it is believed that this work will greatly inform the process of RDF store
development, and contribute to narrowing the performance gap between RDF stores and
RDBMSs.

The performance issues of RDF stores can be categorised as scale and query latency
related. Progress has been made on scaling, with improved single machine systems and
the emergence of distributed stores (Harth et al., 2007; Erling and Mikhailov, 2008), but
little work has examined the creation of stores that offer very low query latencies. This
places limitations upon software that is designed for human interaction, in particular
the new wave of rich web applications that rely on regular contact with a backing data
store. An example of an application with such frustrated requirements is already present
in the mSpace faceted browser (Smith et al., 2007). This document highlights the need
for stores that offer query latencies suitable for human interaction, and it is upon this
that the author’s future work focuses.

1.1 Memory Storage for Low Latency RDF Query

In practice, the author argues that hardware changes are coming to the fore that will
aid the creation of low latency RDF stores. As main memory continues to get cheaper,
it can act as a primary storage mechanism for RDF data in interactive systems - a
trend that parallels the DBMS community (Stonebraker et al., 2007). Main memory is

1http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/



Chapter 1 Introduction 3

fundamentally faster than disk based storage, and offers much improved characteristics
with regard to the nonsequential access that is common in RDF systems. This hardware
shift will result in a change in focus for RDF store optimisation, from hiding the latency
created by the use of slow disks, to improving characteristics with regards to physical
footprint, cache performance, and CPU utilisation.

Of course, creating new techniques is difficult without a means to measure the improve-
ment that results from them. This report describes work performed by the author on
the topic of measuring RDF store performance, with the particular aim of being able
to test the individual components of the system, as well as a use-case based benchmark
running simulated mSpace sessions.

This work will form the basis of evaluation for the author’s proposed future work: an
adaptive in-memory storage structure for RDF that is aware of the architecture of mod-
ern machines, providing both footprint and performance improvements over existing
in-memory RDF stores. Architecture-aware indexes and storage layers have already
provided significant performance gains in the DBMS world (Rao and Ross, 2000; Boncz
et al., 2005), and it can be expected that such improvements can be realised in RDF
stores as well, given the creation of appropriate algorithms.

The work described in this report offers the following contributions:

• A detailed insight into the relationship between traditional RDBMSs and RDF
stores, including an analysis of how to close the performance gap between the two.

• Discussion of the design and prototype of a new distributed store designed espe-
cially for RDF.

• A new benchmarking/test system that offers the Semantic Web community new
ways to test the performance and utility of RDF stores, providing the ability to
break down the performance of different components of the tested systems in a
manner not supported by existing benchmarks.

• A description of future work in the area of in-memory RDF storage that will show
that application of knowledge regarding the underlying machine architecture can
provide significant improvements in both space efficiency and performance of RDF
stores.

The result of these contributions will be an improved understanding of the problem of
storing and querying RDF, and an application of this understanding in the area of low
latency RDF stores. This will increase the practicality of delivering rich, interactive
RDF-based applications, and thus encourage the large scale knowledge building that
the Semantic Web requires.



4 Chapter 1 Introduction

1.2 Overview of the Report

The report is structured as follows:

• Chapter 2 provides background information on the Semantic Web as a whole,
and individual technologies in particular, in order to frame and justify the work
undertaken for this mini-thesis. It goes on to consider the data models found in
existing DBMSs, with particular focus on the relational model, and relates them
to the RDF data model. It considers in particular the question of where the RDF
data model differs from existing constructs, framing the available areas of future
research.

• Chapter 3 details several areas of research in the DBMS world: translation of
logical data model into physical representation, indexing, operator implementation,
and distribution. Their implementation is analysed with respect to a thorough
background of the characteristics of modern computer hardware.

This information is analysed in the context of the problem of RDF storage, seeking
to discover how lessons learned from the RDBMS world can be applied to the
problem of RDF storage, and where new innovations need to be made. Each
section provides a summary of the salient points, and the conclusion of the chapter
suggests future directions for RDF storage based on this information. Reference
is made in Section 3.5 to research performed by the author aimed at the creation
of a scalable distributed RDF store.

• Chapter 4 describes the means that exist for testing the performance of RDF
stores, including a body of work contributed by the author. This is important in
order to validate the future work described in Chapter 5.

• Chapter 5 details the direction that has been decided upon for future research,
with justification and reference to a set of work packages that will be required to
complete the research.

• Chapter 6 concludes with a summary of the points made, and explanation of the
contributions that will be made by this research.



Chapter 2

Background and Research

Motivation

This chapter describes the Semantic Web and several of its core technologies. It presents
the case for supporting the development of RDF stores in the context of the Semantic
Web’s requirement for high performance data storage and retrieval.

2.1 The Semantic Web

The Semantic Web (Berners-Lee et al., 2001) describes a large-scale effort to bring
machine-processable data to the World Wide Web. This is intended to allow machines to
be able to understand and easily traverse the web. Mechanisms for shared understanding
enable machines to communicate with each other, even in situations where they were
not expressly designed to do so. The advantages that can be found in this endeavour
are extraordinary: in particular, the long-awaited potential of software agents could be
realised (Hendler, 2001). Consider the following example:

Having decided to become healthier, I am undertaking a new fitness regime at the gym.
As well as regular exercise, my trainer has recommended me a more healthy diet plan.
As a member of the gym, I have complimentary access to a large selection of recipes.
Since I feel like trying something new, I ask my agent (accessed through a PDA) to pick
one for me. The agent, knowing the foods that I particularly like and dislike, works on
finding me a recipe. It can do this because metadata on the recipes is held in an RDF
store. This allows the agent to query for recipes that use ingredients or cooking methods
that I might particularly enjoy. It then presents the best option to me for confirmation,
along with a note that I will need to buy more ingredients to be able to cook it. It
sounds good, so I accept, and ask the agent to tell me where I can get the items I need
from. The agent, knowing that the weather is good and that I like to walk, looks for

5



6 Chapter 2 Background and Research Motivation

shops in the immediate area, and suggests two in close proximity that between them
should stock everything that I need.

This example shows a variety of benefits, in the elimination of a great deal of drudgery
from my life. Of course, if I want to perform any tasks, such as picking the recipe myself,
I can, but if I choose I can have large parts of my life automated for me. This example
is enabled by the intersection of two concepts: intelligent agents and the semantic web.
The agent learns about my preferences, and understands certain concepts such as food,
recipe, shop, and weather. Other services on the internet also understand some of these
concepts: the gym’s agent understands recipes, while the BBC’s agent might understand
weather (as well as the date and time that I want to know the weather for). The shops’
agents understand various kinds of food and whether something is in stock. My agent is
able to communicate through these shared understandings to bring about the scenario
described above.

Of course, the agents are the things that understand the concepts. However, the pro-
cess of sharing a vocabulary such that agents can communicate about concepts they
understand, and the mechanism for publishing that data, are brought about through
the Semantic Web. The Semantic Web has innumerable other uses: researchers on the
Semantic Grid (Taylor et al., 2005) are using it to advertise the availability of computing
resources. E-Science researchers (Taylor et al., 2006) are using Semantic Web languages
to exchange and aggregate data. There are Semantic Web browsers such as Tabulator
(Berners-Lee et al., 2006) that offer individuals the ability to browse Semantic Web data
for themselves. Faceted browsers like mSpace (schraefel et al., 2005) use Semantic Web
data to provide a rich browsing experience, releasing information that would have had
to be painstakingly manually collated previously. These are just a subset of the current
uses of the Semantic Web, and the potential uses of the future are limited only by the
imagination - and the capability of the backing technologies to support them.

The development of Semantic Web languages is proceeding apace: of the Semantic Web
layer cake, as seen in Figure 2.1, RDF, RDF-S, OWL, and SPARQL (SPARQL Protocol
and RDF Query Language) have reached a stable state. A simplistic explanation of
these is that RDF provides the ability to express data, SPARQL provides a mechanism
for querying this data, while RDF-S and OWL add to the ability to share concepts (for
example, providing mappings from one concept to another), as well as infer new data
from that already present.

2.2 Data Representation

RDF is, as previously mentioned, the underpinning language for data expression in the
Semantic Web (Lassila et al., 1999). It is expressed in the simple manner of a triple,
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Figure 2.1: The Semantic Web layer cake.

composed of subject, predicate, and object. This is roughly analogous to the subject
verb and object of a simple sentence (Berners-Lee et al., 2001): for example:

Subject: Alisdair
Predicate: Has Gender
Object: Male

This is expressed visually in Figure 2.2.

Figure 2.2: Triple Concept.

RDF triples are built out of Uniform Resource Identifiers (URIs) and literals. A URI
is a unique identifier that denotes a concept: for example, the URI for a dog might
be http://www.example.com/animals/dog. A literal is simply a string, such as ‘Alisdair
Owens’, with optional additions denoting language (such as English or French) and
datatype (any supported by XML, such as int and datetime). Ideally, a URI is unique
(no other concepts have the same URI), and each concept only has one URI to describe
it. However, while uniqueness is relatively simple to ensure through naming conventions,
it is very likely that any concept will have more than one URI associated with it, through
the creators of the URI being unaware of the existence of others.

The use of URIs in RDF makes it easy to find documents that relate to information that
I am interested in and understand. For example, if I (or my piece of software) am looking
for information about dogs, and I know the URI http://www.example.com/animals/dog
refers to the concept of a dog, I know that a triple containing that URI is certainly
relevant to me.
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In an RDF triple, the subject and predicate are guaranteed to be URIs, as they must
refer to concepts (if I wish to talk about myself, it makes no sense to assert facts about
the string Alisdair Owens, whereas it does make sense to do so about my URI). The
object can be either a URI or a literal. URIs are related to each other through their
expression in triples. This is shown in Figure 2.3.

Figure 2.3: RDF Triple

An RDF document is simply a set of RDF triples. As these triples refer to URIs,
relationships between concepts are described, and a directed graph of information is
created. This is a natural way to describe most information (Berners-Lee et al., 2001).
This is illustrated in Figure 2.4, where for simplicity the prefix ‘ex:’ is used to replace
‘http://www.example.com/’. There is no limit to the structure of this graph, beyond
the need to express the data in triples format.

Figure 2.4: RDF Graph

RDF, then, offers a great deal of power and flexibility. It offers the ability to specify
concepts and link them together into an unlimited larger graph of data. As a storage
language, this affords several advantages:

• RDF supports simple data aggregation: linking data sources together can simply
be a matter of adding a few additional triples specifying relationships between the
concepts. This is potentially much easier than the complicated schema realignment
that might have to occur in a standard data repository such as an RDBMS.

• The use of URIs offers the opportunity to discover new data, as the same URI
is (conceptually) used to refer to a concept, across every document in which that
concept is contained. While this ideal will usually not be the case, any degree of
URI reuse is of benefit.
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• Since the data graph is unlimited, with no requirements for data to be or not
be present, RDF offers a great deal of flexibility. There are no requirements for
tightly defined data schemas as seen in environments such as RDBMSs, which is
a significant benefit when the structure of the data is not well known in advance
(Taylor et al., 2006).

• RDF offers a single language for representing virtually any knowledge. This is
useful in terms of allowing reuse of parsing and knowledge extraction engines.

RDF offers a very useful data format, but as with any information, the topic of manag-
ing that data is important. Clearly, in the case of small datasets, it may be sufficient
to simply statically store an RDF file, and allow individuals to process it as they wish.
However, in many cases this approach will be inadequate: as the data grows, or con-
current users wish to access or modify it, it becomes necessary to have a system for
managing it. This is the preserve of DBMSs, and the DBMSs of the Semantic Web
world are known as RDF (or Triple) Stores. RDF stores allow a repository of RDF data
to be queried in place, using a language such as SPARQL (described in Section 2.3).

2.2.1 RDFS and OWL

While not the focus of this document, it is worthwhile to give a brief summary of the
languages used to perform inference on the Semantic Web. RDF Schema is an extension
to RDF that adds some basic constructs (Lassila et al., 1999). Most importantly, this
includes classes and subclasses, which allows statements about something’s type. This
means I could make statements such as ‘Greg has a type of “Human” ’, and, with an
additional statement that a ‘Human’ is a subclass of the type ‘Animal’, infer that Greg is
an Animal. Further additions include property domains and ranges, allowing us to make
statements about the class of objects that can be inserted as the subject and object of
particular properties.

OWL adds much more wide ranging capabilities, aimed at providing computers with the
ability to share not just information, but vocabulary (Patel-Schneider et al., 2003). This
means that potentially, even if computers do not share the same understood ontologies,
they might be able to communicate by expressing concepts and relations that they
do understand. OWL adds extensive reasoning capabilities, varying within the three
sublanguages:

• OWL Lite, which offers minimal reasoning capabilities designed to support classi-
fication hierarchies. This enables reasoners to work with OWL Lite ontologies and
produce relatively fast results.

• OWL DL, which offers a great deal of expressiveness, along with guarantees that
all reasoning will be both complete and computable.
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• OWL Full, which offers maximum expressiveness, with no guarantees that reason-
ing can be concluded in finite time.

Reasoning over RDF-S and OWL ontologies is complex. Most RDF stores pre-compute
much of the entailment of RDF-S data (forward chaining). This effectively determines
all the new facts that might be determined by inference and asserts them, leading to
a relatively minimal impact upon query performance beyond the requirement to store
more triples.

The pre-computation of the full entailment of even OWL Lite data is complex and likely
to result in an explosion of the number of triples that need to be stored. Reasoning
at the point of the query (backward chaining) is likely to be too expensive to support
interactive-time query satisfaction. This problem is largely outside the scope of this
document, as it focuses on the issue of storing and querying the RDF graph, rather than
performing efficient reasoning.

2.3 Data Extraction

Given a standard set of data representation languages, it is of clear use to have a stan-
dard mechanism for extracting subsets of information from documents expressed in
them. There are a variety of query specifications created to accomplish this, with the
SPARQL standard being the W3C’s recommendation (Prud’hommeaux and Seaborne,
2006). SPARQL, like other languages of its kind, works by allowing users to specify a
graph pattern containing variables, which is then matched against a given data source,
with all matching datasets returned. Figure 2.5 gives an example.

SELECT ?x WHERE { ?x <http://www.example.com/has-gender>
<http://www.example.com/male> . }

Figure 2.5: SPARQL Query

The query shown in Figure 2.5 would select all unique values ?x, where there is a
triple that matches any subject ?x, and the specified predicate and object (in this case,
anything with a gender of male). The data is returned in a standard XML-based format.

This can be built up into a pattern longer than one triple in length. In Figure 2.6, there
are two constraints, which ought to return any URIs representing a human male:

SELECT ?x WHERE { ?x <http://www.example.com/has-gender>
<http://www.example.com/male> . ?x <http://www.example.com/has-species>

<http://www.example.com/human> . }

Figure 2.6: SPARQL triple pattern
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These query patterns are the fundamental operation in SPARQL, although there are of
course complications that aid usability, such as the ability to specify some parts of the
pattern as optional, and the ability to order the results. In general, though, SPARQL is
a relatively simple language when compared to Sructured Query Language (SQL), the
equivalent in the world of RDBMSs.

The benefit to be gained through the use of a standard query language is clear: poten-
tially, a human or computer could connect to any open data repository, make a very
specific request for information, and retrieve machine-processable data. This is in stark
contrast to the web of today, which machines have a great deal of difficulty traversing
in a meaningful manner, and which even humans can have difficulty in finding relevant
information.

2.4 RDF in Relation to Other Database Models

In any database system, data is stored according to some model: that is, there is some
logical concept of how data is laid out within the system. This section describes data
models in common use today, with a particular focus on the pre-eminent relational
model, and relates this knowledge back to the RDF data model as described in Section
2.2, asking the question: is the RDF data model fundamentally different? The answer
to this question dictates the extent to which the approaches used in traditional DBMSs
can be applied to RDF stores.

2.4.1 Early Database Models

A database management system is a computerised record keeping system. This docu-
ment distinguishes between the database, which is the body of data, and the database
management system which manages that data.

The storage and processing of databases is one of the earliest uses of computer systems.
Database systems were created to enable such enormous tasks as tracking inventory data
related to the Apollo project. Early systems were designed for sequential access via tape
drive, and were later adapted for magnetic hard drive storage. Data was stored in a
strict hierarchical or network-oriented manner (Date, 1990).

What was notable about these database systems was that the manner in which they
logically stored data reflected the way in which in which it was physically stored on the
hard disk. Changes to the way data was physically represented (to improve performance,
for example) necessitated changes to both the dataset itself, to match the new database
structure, and to the applications sitting on top of the database such that they could
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physically traverse the data. These applications accessed the data in a procedural man-
ner, navigating from node to node to find the data that they needed. This mechanism
was optimised for the retrieval of individual pieces of data, rather than whole datasets
matching particular criteria.

Clearly, this mechanism for data storage and management has significant disadvantages.
Changes to the DBMS could result in a lot of work modifying existing databases to fit,
and modification of existing applications to take into account the new data traversal
paths they would have to take. Further, writing queries was something that only a
highly skilled professional would do, and while there was scope for the fine tuning of
queries to maximise performance, it relied on the programmer working out the optimal
manner in which to retrieve data. The modern database market has evolved massively
from this starting point, thanks in large part to the relational data model, derivatives
of which are pre-eminent in the DBMS market today.

2.4.2 The Relational Data Model

A radical diversion from early approaches was proposed by E. F. Codd in Codd (1970). In
his approach, a mathematically complete data model based on set theory and predicate
logic is used to define the logical storage of data, and the interactions that can be
performed on it. This is known as the relational model. In particular, it emphasises the
separation of this data model from the way the data is physically stored: that is, the
DBMS may choose to lay the data down on disk in any manner, but the way in which
the data appears to the user remains consistent.

The relational model defines data in terms of relations, consisting of any number of
tuples and attributes. Relations are broadly analogous to tables, consisting of rows and
columns. These terms are used interchangeably in the rest of this document. These
relations are (conceptually) unordered. Each tuple is unique (since it makes little sense
to assert the same fact twice). Data retrieval in the relational data model differs sig-
nificantly to the way it was performed in prior systems, primarily in that queries are
specified in a declarative language, which allows users to state what data they want
to retrieve, without forcing them to specify how to retrieve it. Generally, in relational
systems it is the responsibility of the DBMS to work out how to make the query run
as fast as possible (Stonebraker et al., 1976). The component that performs this work
is usually known as the query optimiser. This removes the burden of optimisation from
the application programmer, and allows the database system to be queried with a much
smaller level of expertise (Stonebraker, 1980).

The relational model is designed to support operations that return a large number of
results: queries that perform operations like ‘retrieve all mechanics who have worked
on a car containing part x’. This was a relatively complex operation in previous data



Chapter 2 Background and Research Motivation 13

models, where each node would have to be separately navigated to through hierarchies
that may not have been designed for this kind of query. Relations can have a variety
of operations performed upon them, each of which produces a relation as an output.
This ‘closure principle’ means that query commands can be chained. These include,
in particular, select, project, and join. These are explained below, and illustrated in
Figure 2.7.

Select: A selection (or restriction) is a simple unary operation that returns all tuples
in a relation that satisfy a particular condition. For example, one might select all tuples
in a relation describing people, where the value of the ‘Surname’ attribute is ‘Owens’:

Project: A projection is a unary operation applied to a relation by restricting it to
certain attributes. Non-unique results are filtered out of the resulting relation.

Join: A join is a binary operation used to combine information in relations based on
common values in a common attribute.

Figure 2.7: Illustration of common database operations
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2.4.3 Other Data Models

Since the relational data model gained dominance in the 1980’s, other models have also
been created. Perhaps the most heavily publicised challenger is the Object data model
described in Atkinson et al. (1989). This is based on the familiar principles found in
object-oriented programming, and indeed these DBMSs are often used as a persistence
mechanism for application objects.

In the object model, a database designer creates ‘classes’, which are templates describing
objects that can be created. This object stores certain data, and has ‘methods’ that
can modify or retrieve that data. Object-based DBMS have amassed a body of criticism
(Date, 1990) due to their perceived slowness and inflexibility: due to their very nature, it
is difficult to perform arbitrary queries across these databases, as each object is designed
to support specific operations. While the object model is very much appropriate for
applications, which use the objects for pre-defined, specific purposes, a DBMS is much
more likely to require more ad-hoc use. Some of the useful features of ODBMSs have
been incorporated into many commercial databases, in a hybrid model called the Object
Relational Model. We will not consider this to a great extent: there is little need for the
complexity of objects in a system that models tiny discrete data items such as triples.

There are a many other models in existence. Increasingly common are Data Warehouses
(DWs) and Data Marts. These are often, as in many RDF stores, built as a layer
on top of SQL databases: indeed, SQL now provides explicit support for them. DWs
are built for specialised applications such as business decision support, which often
require complex, unpredictable queries over massive quantities of batch-updated data
(Chaudhuri and Dayal, 1997). Warehouses may be constructed as an aggregate of many
smaller operational databases, and are a very large task to construct: it is very important
to define a data schema that effectively models business processes and captures the right
information. Query performance is much more important than ability to process writes,
and a lot of data (such as aggregate figures) is precalculated to save work.

Finally, a common model used by applications for data persistence is simple key/value
pair storage, as evidenced in Berkeley DB (Olson et al., 1999). This allows arbitrary
data assertion and retrieval, assuming it conforms to this simple model.

In general, most models work on a presumption that data will be asserted in a well-
understood manner. Table 2.1 offers a brief overview of the differences between current
models.

2.4.4 Representing RDF

While the purpose of RDF stores is similar to that of conventional database systems such
as the dominant RDBMSs, Object-Relational DBMSs (ORDBMS) and Object-Oriented
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DBMSs (OODBMS), RDF graph storage and querying bears notable differences in terms
of the structure of the data that is stored. Whereas existing database systems largely
require that the data structures that can be asserted into them (the schema of the data)
are defined prior to assertion of actual data (Date, 1990), RDF stores allow arbitrary
assertion of knowledge in the form of triples (or quads if provenance information is
also desired). While the very concept of a triple is a data schema in and of itself, it
is extremely loose compared to that expected to be defined within previous database
systems.

There are important reasons why it is necessary to explicitly define schema in existing
database systems:

• It defines what data is expected to be asserted into the system. Since most current
databases act as knowledge stores for a fixed set of applications, this is usually both
reasonable and useful: it prevents the assertion of data of an incorrect structure
for those applications to use, and preserves data integrity (Date, 1990).

• It offers cheap, detailed information to the DBMS on how the data is structured:
how it might best be laid down in storage, how queries can be optimised using
knowledge of indexes, row lengths, etc. (Date, 1990; Stonebraker et al., 1976)

While the requirement for strict schema definition is usually helpful in traditional database
environments, the situation regarding RDF storage is rather different: it is explicitly de-
signed to be as unconstrained as possible. As previously noted, this has advantages in
terms of accessing arbitrary data sources on the Semantic Web, interoperation between
heterogeneous data sources, and situations where the data is of unknown or constantly
changing structure (Taylor et al., 2005). However, this generates difficulties in terms
of optimising stores such that they are capable of storing large numbers of triples, and
querying them in an efficient period of time (Carroll et al., 2004; Smith et al., 2007).
Current RDF stores are restricted to storing orders of magnitude less data than relational
systems (Lee, 2004).

As noted, an individual installation of a traditional DBMS product is likely to have a
known set of applications running upon it. Thus, the access patterns can be anticipated,
and the database can be optimised for those patterns through the use of indexes and
other tactics. While arbitrary access is supported, this can be massively slower than
doing so through the predicted routes. In contrast, an open data node (a store that
is publicly accessible) on the Semantic Web might be used in a variety of manners. It
could be accessed in a completely arbitrary manner, as different users request different
information, or it might have a certain set of applications that perform the majority of
data requests. It might have to adapt to new applications suddenly adding a lot of load
with a new style of query that it had not previously had to satisfy often (Erling and
Mikhailov, 2008).
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As mentioned in Section 2.4.3, constructing a basic schema for RDF storage is straight-
forward: indeed, it is possible to represent RDF using the relational model and translate
SPARQL queries into SQL (Harris, 2005). Many RDF stores are built into or on top of
existing relational DBMS engines, and even non-relational RDF stores usually use the
concepts of select, project, and join to answer queries. Conceptually, RDF can be mod-
elled as simply a long list of triples, and this can be represented using a single relation.
If one wishes to normalise, one can use more tables to store a list of URIs and literals,
with the triple table itself storing keys into those tables.

Unfortunately, RDF’s flexibility (in both the manner in which data is represented and
the manner in which it is queried) presents a barrier to creating more complex, expressive
representations. The ease with which the structure of an RDF document can change
makes the creation of anything but the most simplistic of fixed storage schemas very
challenging. This can be considered the major factor that differentiates the RDF model
from the other common representations. These differences can be seen at a glance in
Table 2.1. In addition, there are several other features of the RDF data model that are
of interest when constructing a DBMS implementation:

• There is no requirement for partial text searching over URIs: that is, while URIs
are strings, there is no requirement to match over a portion of that string, because
URIs are discrete concepts.

• Sorting has no inherent meaning for RDF URIs, since they are simply labels for a
concept rather than data in and of themselves.

• There is likely to be a requirement for partial text searching over literals.

• Typically, most SPARQL queries specify a predicate, and are searching for either
subjects or objects. It is relatively uncommon to search for the predicate that
connects two concepts (Seaborne, Andy, personal communication, August 2008).

• RDF typically has a large number of data points (triples) relative to the physical
size of the data.

An attempt to implement a more descriptive schema that adapted to the structure
of the data was attempted in Wilkinson (2006), but this approach has its own issues.
While it was shown to confer some performance advantages, and attempts were made
at managing the evolution of the schema automatically (Ding et al., 2003), it generally
proved a complex, largely manual task (Abadi et al., 2007). As will be seen in the
following chapters, the difficulty of creating anything but the most general of schemas
for RDF in the relational model is mirrored by a difficulty in creating a physical storage
schema that provides adequate performance.
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Intended Use Expected Data
Structure

Queries

RDF Arbitrary knowledge
representation

Triples, potentially
no greater repeating
structure

Unknown level of
query predictability

Relational Application support,
knowledge base

Tables, predefined
structure

Mostly predictable
queries, but includes
arbitrary query
support

Object Application support Objects, predefined
structure

Mostly predictable
queries, may include
some arbitrary
query support

Data
Warehousing
(various)

Decision support,
statistics, knowledge
base.

Tables, predefined
structure

Limited query
predictability

Berkeley DB Application support Key/value pairs Unknown level of
query predictability,
relatively simplistic
query support

Table 2.1: Database model comparison

The problem of RDF storage is important to the success of the Semantic Web. If
we are to expect individuals or organisations to host data and allow users to query it,
particularly in a free environment, it has to be feasible to support low latency, concurrent
queries over large quantities of data. If we wish to create interfaces on to RDF data that
are suitable for human users, we must maintain the interactive performance to which
they have become accustomed.





Chapter 3

Exploration of the Problem

Domain

RDF storage and query is a challenging problem, thanks to the nature of the RDF data
model: data structure and query load are both highly unpredictable, and each data
point in an RDF document is very small, implying a large number of data points to
encode a meaningful amount of information. Managing and working with such a large
quantity of datums in a performant manner is a difficult problem.

This chapter considers mechanisms for improving the performance of RDF stores, draw-
ing on knowledge from the wider world of relational DBMSs, and existing experiences
of RDF store creation. This knowledge is analysed, and opportunities for future work
are derived. Several important factors in the creation of a high performance RDF store
are considered:

• Section 3.1 provides background on the architecture of modern computer systems.
This is of critical importance when designing a DBMS, and highlights common
misunderstandings with regard to the manner in which hardware components be-
have.

• Section 3.2 examines the problem of translating the RDF data model into a rep-
resentation suited for storage and retrieval on a computer, using the knowledge
gathered in Section 3.1 to examine the techniques used in current RDF stores to
achieve high performance.

• Section 3.3 tightens the focus to indexing algorithms. Since RDF stores typically
have to extract small amounts of data from a vast corpus, while experiencing unpre-
dictable queries, the indexing technique used is extremely important. This section
reviews the most promising indexing technques in the DBMS world, analysing
their suitability for RDF storage.

19
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• Section 3.4 describes the importance of the join operation in RDF storage, and
how the amount of time spent joining can be minimised through careful query
optimisation and precalculated joins.

• Section 3.5 describes the primary method for scaling RDF stores to extremely large
quantities of data: clustering information across multiple machines. This section
includes a description of work performed by the author aimed at overcoming the
issues that RDF presents with regard to distribution.

• Finally, Section 3.6 distils the preceding sections into an analysis of the most
promising opportunities for future work.

3.1 Characteristics of Modern Hardware

In order to understand how to create a performant RDF store, it is obviously important
to understand how the hardware on which a store is to be run behaves. This section
offers a brief overview of the components of modern computers that are particularly
relevant to DBMS performance, with a focus on the commonly used x86 architecture.

3.1.1 Disk

The majority of modern DBMSs make use of disk-based storage. It is plentiful and
cheap, with consumer-level disks offering over a terabyte of space.

Unfortunately, while the speed of CPUs has continued to rise dramatically, the perfor-
mance of hard disks has not kept pace (Stonebraker et al., 2007). The speed of sustained
reads and writes on the disk is quite slow, in the order of 60MB/s. Even more critically,
there is an average seek time associated with travelling from one block of data to an-
other non-sequential block in the order of 10ms. The specific value of this seek time is
dependent upon how far apart the data is located (Abadi et al., 2006).

This storage medium, in particular its seek time, is a major limiting factor in both
read and write performance in any disk-based DBMS. To put this in perspective, using
a modern 3.0GHz processor that can execute one simple instruction per cycle, thirty
million instructions could be executed in the time it takes to perform a single disk seek.
Upcoming solid state disk designs are less capacious, but by comparison feature virtually
negligible seek times for reads. This is particularly relevant for RDF stores, which are
generally required to process a great many very small data points: in this situation,
assuming the processing cannot be kept fully sequential, access time is extremely im-
portant. It can be expected that as solid state disks mature they will become a popular
choice for RDF storage.
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3.1.2 Main Memory

On the face of it, storing data in RAM is a relatively simple matter: RAM itself has a
constant access time, and its performance is vastly better than that of hard drives. This
means that the requirement for pieces of logically contiguous data to be placed next to
each other is looser, making RAM easy to work with. Since RAM is a resource that is
consistently reducing in cost, it has the potential to become the main storage medium
for applications that require very low latency.

Unfortunately, this view of RAM has been rendered overly simplistic, thanks to the
failure of modern RAM technologies to keep up with the performance of CPUs. While
the bandwidth of RAM is very high, latency can be in excess of 200 processor cycles,
making it impractical for modern processors to wait for RAM every time they need
access to a piece of data (Drepper, 2007). As a result, data going to and from RAM
is held in caches on the processor. These are explored in more depth in Section 3.1.3,
but the practical upshot is that contiguity of data access remains important even when
working with a main-memory system.

Other difficulties in working with RAM are that it is limited in size and not persistent.
Thanks to its increasing availability, however, main-memory stores are becoming more
practical, leading some observers (Stonebraker et al., 2007) to call for certain classes
of DBMS to become main-memory based. RAM’s lack of persistence complicates this
somewhat, as it must be possible to reconstruct the database into RAM from a persistent
store (usually a hard disk) in case of failure.

3.1.3 CPU

Making efficient use of the CPU has become an increasingly challenging task, thanks
largely to the fact that the rate of improvement in processor performance has outpaced
that of supporting technologies. In particular, both disk and memory latencies for ran-
dom access are now vastly greater relative to processor performance than in previous
years (Hua and Lee, 1990; Keeton et al., 1998). This rapid growth in processor perfor-
mance has been supported by simple increases in clock frequency, combined with changes
such as the introduction of pipelined, superscalar architectures and the addition of mul-
tiple processor cores per CPU (Harizopoulos et al., 2006). A single core of a modern
CPU is now capable of executing up to two instructions per cycle on certain workloads
(Boncz et al., 2005) - or in the order of six billion instructions in a single second at a
3GHz clock rate.
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3.1.3.1 Superscalar and Pipelined Architectures

In a nutshell, pipelining is the process of breaking down the work required to perform
an instruction into its component parts, and executing them sequentially. If the pipeline
is kept full (i.e. once stage 1 of the pipeline has finished executing part 1 of instruction
1, it immediately begins executing part 1 of instruction 2), the processor can execute
one instruction per cycle, despite the fact that any given instruction will take several
cycles to complete (Anderson et al., 1967). This process has the benefit of allowing the
CPU to maximise the utilisation of its functional units, and hide the fact that there are
latencies involved in the processing of an instruction that make it impossible to compute
in a single cycle. Pipeline lengths can vary dramatically between processor designs: the
Intel Itanium 2 has a short pipeline length of seven stages, as opposed to 31 for the Intel
Pentium 4 (Boncz et al., 2005).

Superscalar architectures involve a processor being able to fetch and complete more than
one instruction simultaneously. This is performed not with the simple duplication of all
functional units within the processor, but by the inspection of the instruction stream
to find suitable instructions available for execution given the currently available unused
functional units (Boncz et al., 2005).

Both of these architectural improvements have the benefit of increasing CPU through-
put without the requirement for increases in clock frequency. Unfortunately, neither is
foolproof. Both require data-independent instructions if they are to operate with full
effectiveness: that is, if one instruction depends on the output of another, it cannot enter
the pipeline (or be processed simultaneously) until the first instruction has completed,
and the processor may have to insert stalls, or wasted clock cycles into the pipeline
(Riseman and Foster, 1972). Fortunately, modern processors have the ability to process
instructions out of order, allowing instructions that do not depend on actions performed
in the pipeline to ‘jump the queue’. This is usually highly effective, except in situations
such as a tight loop that operates repeatedly on a small number of pieces of data, re-
sulting in a lot of dependencies within the instruction stream (Zukowski et al., 2006).
In this case, a lot of processor cycles can be wasted.

Instruction pipelines also benefit from a predictable instruction stream: that is, if the
instructions involve a conditional branch to another code area, the processor has to guess
which branch will be taken and fill the pipeline with those instructions (Drepper, 2007).
If the guess is wrong, the pipeline has to be cleared, resulting in the loss of all ongoing
work within it. Modern CPUs include branch prediction units that attempt to decide
which branch will be taken in advance based on past behaviour: these are effective for
branches that exhibit predictability (Drepper, 2007).
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3.1.3.2 Caching

In order to hide the performance inadequacies of main memory, a complex set of caches
has been created. Of particular import are the data and instruction caches, and the
Translation Lookaside Buffer (TLB).

When the CPU is looking for information in memory, it will check its caches first. If one
of the caches has the information, the CPU can access it at the cost of cache latency
rather than main memory latency. If not, the information is transferred from main
memory into the cache, and other information is evicted on a Least Recently Used
(LRU) basis. Typically, an entire ‘cache line’ will be transferred from memory at once,
which on modern systems is usually 64 or 128 bytes, making subsequent accesses to
adjacent data especially fast (Harizopoulos et al., 2006).

Typical CPUs have Level 1 (L1) and Level 2 (L2) caches (some extending to even more).
The L1 cache is small (on the order of 16-32KB each for data and instructions), and
extremely fast. Data can usually be retrieved from this level in around three processor
cycles. The L2 cache is larger (at two or more megabytes in total), and somewhat slower,
requiring around 14 cycles to access: this is still an order of magnitude faster than main
memory, however (Drepper, 2007). As long as data and instruction flow is sufficiently
predictable, or occurs over a sufficiently small set of data, the information can be held
in and retrieved from cache, allowing the exceptional throughput of modern processors
to be utilised to full effect. A simplified hierarchy of data storage is shown in Figure 3.1.

Assuming a working set of information larger than these small caches, predictability
is once again key to maintaining overall performance. If the processor knows which
instructions will be accessed, they can be prefetched into cache. Conditional branch
instructions again cause issues, this time with the caching of instructions: if the processor
does not accurately predict which branch will be taken, it may end up having to clear
the pipeline(s) and wait on main memory to retrieve instructions. This kind of stall is
especially severe since the processor cannot perform any out of order execution in an
attempt to cover this error (Ailamaki et al., 1999).

In certain situations, the CPU can also perform data prefetching into cache. Modern
processors can detect sequential access, in situations such as iteration over an array,
and behave appropriately to fetch information into cache ahead of time (Drepper, 2007;
Harizopoulos et al., 2006). Thanks to the high bandwidth of memory, extremely high
performance can be maintained in this scenario. Other common operations such as tree
traversal, linked list iteration, or binary chop over an array do not benefit from this
optimisation, however, resulting in poor processor utilisation.

In modern operating systems, each process is given access to an area of memory that
appears sequential, unused by any other process. This area is known as a virtual address
space. Virtual addresses within this space are then mapped by the OS onto physical
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Figure 3.1: Data storage hierarchy.

memory addresses. Since the process of translating virtual addresses to physical ones
can be quite expensive, even in a system that performs much of the work in hardware,
modern processors have a TLB. The TLB is a cache that stores commonly used virtual
to physical address mappings (Ailamaki et al., 1999). The more memory pages an
application uses, the more entries are required in the TLB, increasing the likelihood of
overflowing its capacity and requiring expensive manual translations for memory accesses
(Drepper, 2007).

Array Size (MB) Comparisons Required Unpredictable (ms) Predictable (ms)

0.6 18 2200 820
6 21 9610 960
60 24 20660 1090
600 28 67540 1270

Table 3.1: Cost of Binary Chop as Dataset Increases in Size

In general, as the working set of information moves outside of the capabilities of these
caches, overall performance degrades significantly thanks to the relatively high latency
of main memory. This is illustrated in Figure 3.2 and Table 3.1, where the author
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Figure 3.2: Cost of Binary Chop as Dataset Increases in Size

created a simple application to perform repeated binary chops with predictable (i.e
repeating) and unpredictable search terms, over a given quantity of data. It can be
seen that with unpredictable search terms the time required increases out of proportion
with the number of comparisons required, whereas with predictable terms the scaling is
more linear. This is because the predictable terms are consistently accessing the same,
already cached values, while the unpredictable terms need to wait regularly on memory.
The disparity is small for a dataset that fits in cache, because the entire dataset can be
cached, but becomes huge as the dataset scales up. The code for this test can be found
in Appendix B

Given this information, it can be seen that it is important for applications which require
extremely high performance to ensure that data is compact and that related data is
located contiguously where possible, maximising cache utilisation. DBMSs have histori-
cally performed poorly at this task (Ailamaki et al., 1999; Keeton et al., 1998; Knighten,
1999).

3.1.3.3 Multiple Cores

Attempts to increase clock frequency have recently started to come up against hard
limits. As clock frequency increases, power consumption (and hence heat production)
increases out of proportion. The traditional offset for this, reduction of the scale at which
processors are manufactured, became insufficient, and a new approach to improving CPU
performance was required beyond simply ramping up the frequency. The result of this
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is multi-core CPUs, essentially multiple processors on the same die, with certain shared
components (for example, one level of cache may be shared).

Programming for multiple cores has its complications: thread synchronisation across
processors is complex, and keeping caches current when a single location in memory
may be altered by multiple cores can cause serious performance degradation (Drepper,
2007). Typically, however, multi-user DBMSs are well placed to take advantage of
multi-core CPUs: these systems are inherently multi-threaded, working on several nearly
independent problems at the same time.

3.1.4 Network

The behaviour of computer networks is important when discussing distributed stores.
Typically, a round trip over gigabit ethernet with no other traffic has a latency in
the order of 0.2ms (Erling and Mikhailov, 2008), and the maximum bandwidth for an
individual Network Interface Card (NIC) is 1Gbit/s.

Practically, two factors have a significant impact upon these stated figures. Firstly, the
effective bandwidth of the system reduces with an increasing number of messages: there
is a significant overhead associated with sending a communication and the necessary
acknowledgement. This means that effective bandwidth increases as the size of messages
goes up (Erling and Mikhailov, 2008). Secondly, the structure of the network makes a
big difference to the overall bandwidth between two machines. Two machines that are
communicating across several network switches are much more likely to require access
to a contended network line than two machines located on the same switch. It is thus
desirable to keep communication limited as far as possible to between machines on the
same hub.

3.1.5 Summary

This section provides an overview of the components of a modern computer system with
special relevance to the creation of a DBMS. A recurring theme in modern computers
is the issue of latency. Both disk and RAM have a very high latency compared to
their maximum throughput, and the CPU experiences latencies in the processing of
instructions: it has mechanisms to disguise them, but they only work if the workload is
sufficiently predictable.

In order to achieve the highest possible performance, these components require pre-
dictable, contiguous access. This presents a significant challenge for DBMSs, since their
job is usually to work with and extract relatively small amounts of information out of
an extremely large corpus, an activity that inherently involves a certain amount of non-
sequential access. The challenge, then, is to limit nonsequential access as far as possible
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without processing too much irrelevant data or causing storage footprints to balloon
overmuch. The balance between these factors depends on the components in question.

In addition to favouring sequential access, both RAM and disk provide us with a given
block of information in the course of an access: in the case of a disk, a page in the
order of 4-16KB is retrieved. In the case of RAM, the equivalent is a 64-128 byte cache
line. The difference in cost between doing work on only one datum in this block and
doing work on the entire block is relatively small: in both cases, the cost of retrieving
another nonsequential block is usually high compared to the cost of actually doing the
work. The practical upshot of this is that data structures should attempt to make all
of the data within a block at least somewhat related, as this extra information can be
processed cheaply.

3.2 Physical Representation: Translating a Data Model

into a Performant Storage Layer

As noted in Section 2.4, modern DBMSs have a logical view onto data that is not
required to match the manner in which data is physically stored and manipulated on
the system. The topic, then, of translating a logical representation into a performant
physical one is clearly of great importance. This section considers the host of factors
and challenges involved in creating a performant physical representation for any DBMS
(Date, 1990; Stonebraker, 1980; Hawthorn and Stonebraker, 1986), including:

• What is the optimal manner in which to store the data for a given storage medium?
Are we looking to optimise for small database footprint or performance? If the
answer is performance, is read or write performance the most important?

• How can the most efficient use of the various components of the system be made,
in particular the CPU, memory, and disk?

3.2.1 Physical Representations in DBMSs

The physical representation of a database has a large impact on read performance,
write performance and space utilisation, and is thus a topic of clear importance. There
is often a requirement for trading off between these considerations, and the focus is
chosen depending on the expected usage profile of the DBMS. The choice of physical
representation is also heavily influenced by the chosen storage mechanism (such as RAM,
hard drive, or even flash memory).

In general, the most common (O)RDBMSs have physical representations that are re-
markably similar to the logical layout of the relational model. Data is written to the
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disk row by row, kept loosely sorted, or ‘clustered’, on a given column or set of columns
(Rowe and Stonebraker, 1986). Typically, the table will be accompanied by one or more
indexes that allows, for a specified key, the location of rows containing that key to be
located promptly: this is necessary since as the table grows it quickly becomes imprac-
tical to scan through all entries. Since indexes are of particular importance to RDF
stores, due to the exceptionally long tables that they can require, the topic of indexing
is explored in more detail in Section 3.3.

Row oriented representations can be considered optimised for write performance, in that
adding a row to a table usually only requires a single write operation to the backing
storage. This is appropriate for the most common DBMS tasks, such as a backing store
for a web site, or storing employee payroll information, since data may change at any
time and there is little requirement for performing extremely complex queries: most
read operations will involve retrieving a single record.

Optimising for writes in this fashion can have a significant impact on read performance,
however, which is of great performance for other applications such as data warehousing
and decision support. Row-orientation means that in performing a select based on a
single column, it is still necessary to read the entirety of each row into memory. This
results in greater data transfer, more memory use, less efficient use of CPU and disk
caches, and is particularly damaging on wide tables. Finally, the fact that data is not
maintained in correctly sorted order means that additional disk seeks can be required
when retrieving data, and the cost of join operations increases (Stonebraker et al., 2005).

If database use is expected to be heavily read-biased, one might choose to optimise for
reads. Characteristically, a read-optimised DBMS will maintain strict sorted order, and
may store its data in columns: that is, each column of data will be stored contigu-
ously in disk or memory. This benefits read performance significantly when working
with specified columns over a larger table, as irrelevant columns can simply be ignored
(Stonebraker et al., 2005). In addition to a reduction in wasted memory and disk trans-
fer time, this lack of wasted space has a beneficial effect upon CPU cache performance,
as related data is more likely to be colocated within cache lines (improving access times,
and resulting in less wasted cache). Schemes to improve the cache utilisation of row
oriented DBMSs also exist, an example of which is PAX Ailamaki et al. (2001). PAX
stores information row-wise overall, but column-wise within a disk block, resulting in
improved cache utilisation without significantly increasing time spent writing to disk.

In general, when designing the physical layer of a DBMS, the following rules of thumb
should be considered:

• When attempting to optimise data assertion performance, it is important to min-
imise the amount of data written to storage. This includes reordering of data: for
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example, if data is kept in sorted order on disk or in memory, it is expensive to
perform an insertion.

• When attempting to optimise data retrieval performance, it is important to min-
imise the amount of data that is read from storage. This does not necessarily mean
that the data footprint should be small: if the data is stored in several represen-
tations, it is necessary only to read from the one that will allow the retrieval of
the data in the quickest time. It is often useful to maintain data in sorted order,
contiguously on the storage medium.

• For both cases, it is important to read or write the data as contiguously as possible
to reduce the impact of memory and/or disk latency.

3.2.1.1 Compression

Thanks to the increasing disparity between disk and CPU performance, data compres-
sion has become a topic of increasing importance in the DBMS field. Where compression
was originally utilised purely for the benefit of saving storage space (Stonebraker et al.,
1976), it has now reached a point where in a disk-based environment the saving in the
time taken to retrieve a piece of data can actually result in improved overall query
performance. This is thanks to the obvious improvement in effective transfer rate, com-
bined with a reduction in average seek time due to the reduced distance between datums
(Abadi et al., 2006).

Both read and write oriented stores may make use of compression. Most DBMSs that
make use of compression inflate data either as it is streamed off disk, or in the pro-
cess of working on it. This necessitates extremely high performance algorithms of the
kind described in Zukowski et al. (2006). As a result of this, DBMS compression tech-
niques are usually very lightweight. Examples of these algorithms are simple dictionary
compression, common prefix elimination, frame of reference (subtraction of a common
maximum number and storage of the small delta), and run length encoding. These are
commonly encoded at a block level (Poess and Potapov, 2003; Zukowski et al., 2006):
that is, a given dictionary or common prefix will apply to a single (or small number of)
disk block, reducing the cost of data changes when compared to maintaining a dictionary
over the entire database. Some DBMSs also make use of more heavyweight processes
such as Lempel-Ziv compression (Abadi et al., 2006), which can generally compress data
reliably regardless of its format. This comes at the cost of greater compression/decom-
pression time, and the loss of the ability to retrieve individual values: instead, a block
must be decompressed en masse.

In Abadi et al. (2006), the authors note that the ultimate way in which to make use of
compression is to integrate it into the query optimiser itself, such that the query opti-
miser can use aspects of the compression to its own benefit. For example, a join over
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two sorted, run length encoded columns is extremely simple compared to the equivalent
join over uncompressed data. This adds significant complexity to the query optimiser,
and is less simple to integrate into existing DBMS engines than simple pre-execution de-
compression, but represents the opportunity to create large performance improvements.

3.2.2 Physical Representation in RDF Stores

While the creation of a simple logical representation for RDF is not difficult, it is chal-
lenging to create a performant physical representation. This section describes in detail
the concerns with regards to implementation in RDF stores. This document does not
offer any great detail on systems designed to put an RDF interface on an existing fixed
relational schema, as described in Bizer and Cyganiak (2006): the focus in this document
is on stores designed for unpredictable access patterns and unpredictable data changes.

Perhaps the standard model for an RDF triple store is that of a triple table storing
identifiers representing URIs and literals, combined with mapping tables to translate
these identifiers back into their lexical form. This approach is exemplified by 3Store
(Harris, 2005), a system of moderate performance that runs on top of the MySQL
relational engine. 3Store uses a single table in which to store the graph shape (as quads,
since it adds another field to denote provenance, or ‘model’), as shown in Figure 3.3.
Since MySQL is a simple row oriented store, the physical representation of this schema
largely mirrors its logical structure.

Figure 3.3: 3store data schema.

Each subject, predicate, and object field contains a hash value, the actual text of which
is discovered by joining to another table, keyed on the hash value. This table contains
information such as the lexical representation of the data, as well as integer, floating
point and datetime representations stored for the purposes of performing comparisons
between literals.

The answering of SPARQL queries is a relatively simple matter in this model: the
SPARQL is translated into an SQL query that the underlying RDBMS can answer. For
example, if one wished to answer the SPARQL query in Figure 2.5, 3Store might perform
the SQL in Figure 3.4 upon the quad table.
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SELECT subject
FROM triples
WHERE predicate=[hash of <http://www.example.com/has-gender>]
AND object=[hash of <http://www.example.com/male>]
AND model=0

Figure 3.4: SQL produced by 3Store

Clearly, additional SQL is required to determine the lexical representation of the hash
values that would be returned by this query, but the mechanism is adequately illustrated.
In the case of additional constraints in the SPARQL query, 3Store simply performs joins
back onto the triples table. 3Store relies on the MySQL query optimiser to optimise the
SQL it produces.

This schema offers a significant degree of flexibility, by virtue of the fact that any rep-
resentation of triples is stored in a generic fashion, without requirement for schema or
index customisation. There is no limitation upon the structure of the graph, except for
the amount of data that MySQL can efficiently process.

The approach of a long triple table stored in a relational database is common in the
world of RDF stores: popular systems such as Jena (Wilkinson et al., 2003), Sesame
(Broekstra et al., 2003), and Redland (Beckett, 2002) all have well used backends that
utilise this kind of structure. However, while it is relatively simple to implement, and
provides full support for RDF storage and query, it should be noted that the nature of
the simple RDF schema described above is such that it is somewhat intractable for real
RDBMSs: the triple tables are exceptionally long, with very little information per row.
This has several effects:

• Very long, thin tables are a nonstandard optimisation case, making it challenging
for DBMSs to produce relevant statistics to aid the automatic resolution of queries.

• An increasing quantity of rows usually increases the difficulty in finding any given
piece of information.

• Typical queries become very expensive. Since a small amount of information is
encoded per row, a useful amount of information typically requires a lot of rows to
encode. Unfortunately, to answer queries, the triple table has to be joined to itself,
and queries that involve lots of joins become rapidly more costly as the number of
rows in the working set increases (Date, 1990).

• (O)RDBMSs usually have a per-row overhead due to tuple headers that provide
information about the row. While these headers are useful for ensuring optimal
behaviour with larger rows, in the case of RDF stores they can overwhelm the size
of the actual data being stored (Abadi et al., 2007).
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• the row-oriented versus column oriented debate is relatively academic. RDF rows
are so small in a normalised environment that the benefits provided by column
orientation are reduced somewhat, particularly since RDF query matching often
requires that the whole triple be retrieved anyway. Most stores thus stick to a
row-oriented approach, although it is, of course, still beneficial to consider ways to
reduce the size of the data that is being worked with.

As noted in Section 2.4.4, in a relational database there is usually an expectation that
a fixed set of applications will be running, with a largely predictable query load. When
performing queries that are unexpected, and thus do not have appropriate indexes to
aid the retrieval of data, query performance can quickly become extremely poor (Date,
1990). Since the knowledge of what queries will be performed is typically very limited in
an RDF store environment, RDF stores often employ a highly comprehensive indexing
scheme. This, however, has associated costs in build time, maintenance, and storage
space, making indexing a topic of particular importance in RDF stores. Indexing is
examined in detail in Section 3.3.

3.2.2.1 Normalising

As previously noted, many RDF stores normalise URIs and literals into unique integer
IDs. This offers several advantages: much less space is used to store each triple, reducing
storage requirements and time required to transfer information to and from backing
storage, improving cache efficiency, and making comparisons (for the purposes of joins)
vastly quicker. In addition, working sets require much less space in memory, and the
complication and inefficiency of working with variable length data is eliminated.

The major disadvantage of this approach is that at some point the IDs must be trans-
formed back into their real lexical values again. Retrieving each uncached ID to lexical
value mapping may require seeks on the disk, so this process can be extremely expensive.
In general, if the output set of a query is similar in size to the total of all the data that
entered the working set, this normalisation scheme will significantly reduce performance.
Fortunately, however, the output set of most queries is much smaller than this, and in
general complex queries will benefit significantly from this approach.

Where possible, it is clearly worthwhile to eliminate the ID to lexical value conversion.
This is possible in some situations: with 64 bit IDs it is possible to encode integers,
dates, floats, and even small strings directly in the ID. This process is known as inlining
(Owens et al., 2008b). Some overhead is required to distinguish between genuine IDs
and inline values, as well as the type of the inlined data, but it is generally possible to
inline large ranges of several data types. Any data outside those ranges can assigned an
ID and treated as normal.
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The mechanism for creating an ID also deserves attention. As noted in Section 3.2.2,
many stores take a hash of the lexical value and use that as the ID (others, such as
Kowari (Wood et al., 2005), generate IDs iteratively). This approach has the advantage
that conversion of the lexical values of URIs and literals in a SPARQL query into IDs
can be performed by simply taking a hash. This means that no lexical form to ID index
is required, saving both time and space.

Hash generation of IDs is attractive on the surface. Unfortunately, it provides no guar-
antees that prevent the generation of duplicate IDs. A collision cannot be cheaply
detected, and so in the event of such a collision incorrect results will be retrieved from
queries. Stores typically use a large 64 bit ID space to minimise the likelihood of this,
but the probability of collision is unintuitively high: assuming a hash function with
perfect distribution, and a 64 bit ID space, a 200 million ID dataset has a probability
of experiencing a collision of around 0.1%, while a billion ID dataset is nearly 3%. A 72
bit ID space allows for 3 billion IDs while maintaining a collision probability of 0.1%,
while for 80 bit IDs this rises to nearly 50 billion. This behaviour is defined by the
mathematical problem known as the Birthday Paradox.

The alternative to hash generation, incrementing IDs, is safer but slower. It requires
a smaller ID space, and so can save space in this regard, but also requires an index to
allow conversion from lexical form to ID. This index needs to be consulted for every
RDF statement written into the store, and so can have a significant impact upon insert
performance. In general, most RDF stores use hash-based IDs, but this decision would
require review in mission-critical systems.

3.2.2.2 Updates and Deletion

Current RDF stores, particularly those that scale to very large numbers of triples, tend
towards read optimisation. While the initial bulk assert can be extremely fast, subse-
quent assertions, particularly while under query load, can exhibit much poorer perfor-
mance.

Deletions offer their own difficulties. In an RDF-only store there is little computational
difficulty in eliminating a statement from the system, but recovering the resources it has
used is a different matter. Assuming a normalised ID-based system, it is relatively time
or space consuming to keep track of when IDs are no longer in use, and there needs to
be a mechanism for ID recovery and reuse - whether it be an ongoing process or via bulk
operation (which requires a sufficiently large ID and storage space). This is a relatively
small problem in stores that do not experience significant deletions, but is important for
systems that experience loads with regular updates. Current stores tend to be optimised
for read operations, and do not perform ID deletion.
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There is even greater complexity in deletions when it comes to systems that support
inference (usually RDFS and/or OWL). Most RDF stores that offer inference do so
making some use of forward chaining, or calculating entailment in advance. While
this increases the amount of stored data, it usually dramatically reduces the cost of
queries. Unfortunately, such systems do not usually keep track of how statements were
inferred, meaning that when a statement is deleted, it is difficult to work out which
inferred statements to remove. Keeping track of how statements were inferred (keeping
in mind that this can happen more than once for any statement) is extremely expensive:
an implementation was attempted in Broekstra and Kampman (2003) for Sesame, but
resulted in significant performance issues as data sizes scaled up.

As it stands, then, RDF stores today are largely found in read-mostly environments,
which does not make use of RDF’s flexibility. Work on incremental update and delete
would provide a significant benefit.

3.2.3 Summary

Efficient physical representation of RDF is a significant challenge. RDF’s highly variable
structure does not lend itself to anything but the simplest of fixed schemas, and poses a
challenge for adaptive systems. Unmodified RDBMSs are generally not suitable for the
task of storing RDF: they are usually designed for wider, shorter tables, and issues like
tuple header sizes and correct statistic generation inhibit performance. The Virtuoso
ORDBMS is an example of a relational system that has RDF-specific modifications, and
performs extremely well.

Normalisation generally offers a significant performance improvement over storing a
triple table in lexical form. Most of the work in a query is performed on small, fixed
size integers rather than large variable length strings, offering a less complex workload,
smaller footprint, and a vast improvement in cache efficiency, as well as reduced I/O
time in many cases. Correct implementation of normalisation still presents something of
a challenge, with the most performant implementations suffering from the risk of data
corruption, and most implementations never deleting mappings from hash to lexical
form.

DBMSs researchers are finding that compression can provide a significant performance
benefit in disk based systems. I/O is now so much slower than the rest of the system
that it is cheaper to perform decompression than it is to transfer the uncompressed
data. In memory based systems this benefit is less obvious, but the goal of reducing
data size is certainly important: reduced data size generally improves the chance of
cache line colocation as well as the total amount of information that can be held in
cache, increasing overall performance. In addition, memory is a much more limited
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resource than disk, and so the goal of fitting more information into a given space is
particularly important.

3.3 Indexing: A Key to High Performance RDF Stores

Storing data in an optimal manner for writing or later retrieval is all very well, but
queries will still perform slowly if there is a requirement to scan through every row to
find relevant pieces of information. To mitigate this problem, databases are indexed on
columns of data (Date, 1990). This process creates a data structure that, for a column
or set of columns, quickly returns the location of specified datums within those columns.

The topic of indexes has special relevance to RDF stores, because these systems are
typically heavily reliant on them: the storage required for the indexes will often exceed
the storage required for the data itself. This makes it especially important that indexes
for RDF data are compact, fast, and easy to build and update.

There are a wide variety of indexing algorithms, each appropriate for different tasks. This
section discusses the most popular and relevant of these, along with their performance
characteristics, what applications they are suited to, and particularly their usefulness
with regard to RDF storage and query.

3.3.1 Binary Search Trees

Binary search trees (BSTs) are tree structures in which each node is comprised of one
given value, along with ‘left’ and ‘right’ pointers to subtrees that respectively contain
only items less and greater than the node value. In general, for a balanced (that is, the
height of any one leaf node in the tree is no more than one greater than any other leaf)
tree, as depicted in Figure 3.5, a match can be found in log2 N comparisons, where N is
the number of items in the tree. Likewise, an insertion or deletion can be performed in
O(log N) time.

Since a naive tree implementation will quickly go out of balance (and thus have a po-
tentially worst case retrieval time of O(N)), there are a variety of different algorithms
for trees that balance themselves automatically, and even (in the case of the Splay tree)
for automatically optimising for quick retrieval of regularly accessed members. These
algorithms include the Red-Black, AVL, Treap and Splay trees. This document does not
enter into great detail on each of these algorithms, but rather focuses on the broader
characteristics of BSTs in general.

Since each traversal of a node will require a seek to a different location, BST-based
indexes are fundamentally unsuited to storage on a hard disk. A BST indexing one
billion items will have a height of 30, meaning 30 seeks are required to retrieve one
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Figure 3.5: Balanced Binary Search Tree

datum. Algorithms such as the B-tree (described in Section 3.3.2) are more commonly
used for this purpose.

BSTs are often used in main memory-oriented systems. In this situation, this indexing
mechanism offers generally short retrieval times, high performance in-order traversal,
and potentially good space efficiency. The qualities of BSTs depend to a degree on
node size, however: if the node size is small, then the storage overhead of the left and
right pointers (in addition to any further information that a balancing tree will need to
store) becomes significant. Node size also has an impact on cache efficiency: if a node is
sufficiently small that more than one could fit into a cache line, a BST’s poor contiguity
of data access will often waste the opportunity.

BSTs, like all tree structures, also exhibit branch prediction issues: generally, unless the
nodes that are being searched for are exceptionally repetitive, the branch that will be
taken is unpredictable, with a corresponding impact on CPU pipeline performance.

Figure 3.6 shows an implementation of a BST for an RDF store. This diagram shows
a composite index in subject-predicate-object order: that is, the index is created over
all three columns of a triple store. Composite indexes in trees are ordered: that is, it is
impossible (or at least extremely inefficient) to determine who it is that ‘likes-food’ ‘beef’
using the tree in this example. To produce a truly comprehensive set of indexes using
this method, N ! indexes are required, where N is the number of columns. Typically,
however, a triple store will just use three indexes: Subject-Predicate-Object (SPO),
Predicate-Object-Subject (POS), Object-Subject-Predicate (OSP). It can be seen that
for any given combination of subject, predicate, or object, a corresponding index can be
found in this set that is suitable to retrieve related data. A second point of interest in
this design is that the table becomes unnecessary: the indexes contain all the data, so
all the work can be done within them.
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Figure 3.6: RDF stored using a BST

Since RDF stores typically have very small node sizes, BSTs cannot be considered an
effective index type. For 32 bit IDs, encoding a subject, predicate, and object will require
just 12 bytes, relative to a minimum overhead of 8 bytes for the left and right pointers.
This is a space efficiency of just 60%, without even considering additional overheads:
AVL trees, for example, require that a node store its height in the tree. In addition,
since RDF stores are mostly not subject to restricted range queries, in-order traversal is
a higher level guarantee than is strictly required, although sorted output may be helpful
for maintaining high performance joins.

Modified BSTs do see use in one notable RDF store: Kowari (and its derivative Mulgara)
extend the node size by storing a range of values within the node (Wood et al., 2005).
The left pointer is taken for values smaller than the minimum value in the node, and
the right for those that are greater than the maximum value. Any search between
the minimum and maximum results in a binary search for the search term within the
node. This approach results in near 100% space efficiency for large node sizes, and is
intended to maximise the utilisation of memory before being forced onto disk. It will
also, however, usually result in a much greater tree height and thus more total disk seeks
being required than in a comparable wide-node approach such as a B-tree.

3.3.2 B-trees

B-trees (Comer, 1979) are self-balancing tree structures in which each node can have
multiple children, with each node apart from the root being required to be at least half
full. This has the effect of offering a control over the height of a tree: the height of the
tree is proportionate to logn, where n is the minimum number of items in each node, or
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the fanout. While the height of the tree decreases as the fanout gets larger, the number
of in-node comparisons required to determine which child node to access increases.

This format is particularly useful for block-based storage such as hard disks: keeping
the nodes sized to a block (typically around 4-8KB) makes good use of the disk’s char-
acteristics: relatively few seeks are required due to the low height of the tree, and while
each node is quite large, the cost of retrieving the whole disk block as opposed to a
partial block is the same. Assuming the file system makes some effort to keep logically
contiguous blocks physically contiguous, it is often worth expanding the node size to
more than one block, and increasing the fanout further, since this additional data can
be read very cheaply. By contrast, binary trees store a very small amount of data per
node, drawing particular attention to the latency issues that hard disks experience.

Figure 3.7: RDF IDs stored using a B+tree

The B+ variant of this tree (depicted in Figure 3.7) is particularly common, and modifies
the structure of the B-tree such that all pointers to actual data are stored in the leaf
nodes of the tree. This offers several significant advantages:

• Fanout can be increased somewhat without having to increase the size of the node,
as data pointers are eliminated from non-leaf nodes.

• Leaf nodes do not require child pointers, saving space and improving locality.

• Leaf nodes can be easily linked, allowing high performance sequential traversal.

For the purposes of string comparisons, B-trees will typically store a sufficient prefix of
the string to perform a comparison. Since RDF stores are usually performing compar-
isons of integer triple IDs, the entirety of each triple is stored in the index. This means
that for stores that offer comprehensive indexing, there is no need for a separate data
table at all, and thus no need for pointers from the leaf nodes! Another artifact of this
indexing over small datums is that the space used by child pointers is especially relevant,
because they are a significant fraction of the space used in a node. Attempts have been
made (Rao and Ross, 2000) to reduce the cost of these pointers, generally resulting in
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improved read performance due to increased opportunity for fanout and better cache
locality, but at the cost of an increase in update costs.

As a result of their flexibility and reliably good performance, B-trees, in particular the
B+tree variant, remain perhaps the most common algorithm for implementing disk-
based indexes (Comer, 1979). Most triple stores backed by existing RDBMSs will make
exclusive use of this index, and other dedicated systems such as Jena TDB (Owens et al.,
2008b) implement their own versions.

When considered for the purposes of main-memory DBMSs, the advantages of the B-tree
and its variants are less clear cut. In particular, maximising fanout is no longer especially
beneficial: the only analogy to ‘blocks’ in main memory are relatively small cache lines,
and binary chop across large nodes does not make efficient use of cache prefetching.
Further, since nodes are kept sorted, the larger the fanout, the more work required on
insert into a node. This is generally trivial next to the cost of a disk seek, but, in an
environment without such huge latencies involved, becomes significant. Smaller fanouts
tend to be more CPU-cache friendly: if cache prefetching can be brought to bear, a
small multiple of the size of a cache line offers optimal query performance in memory.

The B-tree and its variants are also guilty of wasting space, making their suitability for
in-memory indexing somewhat questionable (Wood et al., 2005). They do not usually fill
up each node with data (an average of 25% being wasted in a standard implementation),
each node of size n contains n + 1 pointers, and when used as composite indexes the
lower levels of the tree tend to contain a lot of repetition of data in the prefixes. This
latter issue can be mitigated through the use of compression techniques such as those
described in Section 3.2.1.1 and Lomet (2001), at the cost of increased update time and
complexity.

It should be noted, however, that contrary to conventional wisdom B-trees can offer
better performance than binary trees for in-memory indexing. If each datum held in a
B-tree node is sufficiently small, a B-tree node may hold several, including pointers, in
a single cache line. Doing extra processing on data already in the cache is extremely
cheap, so a correctly sized b-tree can mean fewer waits for main memory than with a
binary tree.

3.3.3 Bitmaps

Bitmap indexes are popular for applications which require extremely high read perfor-
mance. They are traditionally used for low-cardinality attributes such as ‘Gender’, or
‘Country’, but have been shown to be applicable even to columns with a high degree of
unique values (Date, 1990).
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A bitmap index simply creates a bitmap for each unique value that a field might take.
Conceptually, each bitmap contains a bit for every item in the column, showing whether
the field contains that value or not. Practically, a bitmap will usually encode a start
and stop point, assuming all values outside that range are 0. This reduces the storage
footprint, and also mitigates locking issues when updating these indexes.

The particularly useful feature of bitmap indexes is the manner in which the number of
required indexes grows with the number of columns in a table. Consider the example of
B-trees: if one wishes to implement a truly comprehensive index over a quad table, there
are 4!, or 24 different indexes that can be created. Analysis of typical queries allows the
removal of several relatively useless indexes, but as the number of columns grows (with
the addition of, for example, temporal data) it quickly becomes impossible to maintain
comprehensive indexing. With bitmap indexes, no such problem exists: it is only neces-
sary to create one index per column. To perform a query such as that described in Fig-
ure 2.5, it is necessary only to retrieve the bitmaps for <http://www.example.com/has-
gender> and <http://www.example.com/male>, AND them together, and examine the
table at all positions in which there is a 1 in the resultant bitmap. Bitmap process-
ing has excellent disk and cache performance: all work is done via sequential reads.
Bitmap indexing and the mechanism for performing selects across columns are depicted
in Figure 3.8.

Figure 3.8: Querying using a bitmap index
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In order to make bitmap indexes space efficient for high cardinality columns, compression
is necessary. Run Length Encoding (RLE) based algorithms such as Word Aligned
Hybrid are usually very simple and worthwhile (Wu et al., 2006), and result in high
space efficiency. Each bitmap in the index, once compressed, is quite small, tractable
to load into memory, and can be joined to other columns using fast modified ANDing
algorithms.

While bitmap indexes generally offer excellent read performance, they are more com-
putationally complex to create and maintain than B-tree or hash based indexes, and
demonstrate poor characteristics in terms of locking granularity: when performing an
update, all bitmaps that encode values in the range of the update must be locked.

From the point of view of disk-based RDF stores, Virtuoso has demonstrated that bitmap
indexes can produce excellent results (Erling, 2006). It should be noted, however, that
since bitmap indexes maintain only one sort order, accesses to the associated triple table
will often not be contiguous. This is in contrast to the comprehensive composite tree
indexes used in systems such as Jena TDB (Owens et al., 2008b) that can encode all
data within the index, and may significantly impact overall performance.

3.3.4 Hash Tables

A commonly used index for RAM-based storage is the hash table (or hash map) (Date,
1990). Using a hash map, one might take the hash of a piece of data, and then store in
a memory position corresponding to that hash a pointer to the location of that piece of
data in the database. This is an O(1) operation, and since hash indexes do not require
any comparisons, the problem of unpredictable branches is eliminated. It is, of course,
necessary to utilise a suitable hashing algorithm to ensure that there are not too many
hash collisions, and that the process as a whole offers good performance.

Unfortunately, it is often impractical to store indexes in RAM, and as soon as the index
does drop out of memory, hashes demonstrate less desirable characteristics. Hash indexes
do not, of course, guarantee that there is any proximity on disk of logically ordered data
(for example, sorted order). This means that if one were to perform a query that acts on
a range of values, a disk seek would likely be required for each different value, creating
massive efficiency issues. For this reason, particularly when indexing outside of memory,
hash indexes are usually used only in situations where queries are operating on discrete
specified values, not over a range. Unlike tree and bitmap indexes, hash indexes do not
support composite indexing: it is thus necessary to create a sub-index below the primary
level if one wishes to index over more than one column of data. Without careful design,
this can be both slow and space inefficient.

From the point of view of RDF/SPARQL, which rarely utilise range searches, hash
maps can be an appropriate solution for both disk and particularly memory storage.
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Indeed, the most popular in-memory RDF stores such as Jena (Seaborne, Andy, personal
communication, February 2009), Sesame, and SwiftOwlim (Ognyanoff et al., 2007) all
use hash maps to store data. The problem of lack of support for composite indexes will
become more significant as data sizes scale up, and might be resolved using subindex-
based techniques.

3.3.5 Space Filling Curves

A space filling curve (SFC) is essentially a continuous curve that fills up any given square
or cube (or even a hypercube of any dimension), assuming that object is constructed
of discrete units. SFCs are usually repeating patterns that are constructed iteratively.
Well-known examples of these are Z-order and Hilbert curves (Lawder and King, 2000),
the latter of which is illustrated in Figure 3.9.

Figure 3.9: The two dimensional Hilbert curve

SFCs can be applied to RDF storage and indexing: the TriStarp1 project has already
utilised SFCs to store and index data in a non-RDF triple store. Taking RDF as a
three dimensional storage problem (ignoring, for now, provenance), it can be imagined
as a cube, with each dimension being one of subject, predicate, and object. An RDF
triple is a point within the cube. The fact that RDF has more than one dimension is a
problem when attempting to store it contiguously - in a one dimensional manner. SFCs
can be applied to this problem: the curve passes through every point in the cube (or
every triple, in this case), so the triples can be stored on disk in the order in which they
are traversed by the curve. The result is a one dimensional representation of a three
dimensional structure.

1http://www.dcs.bbk.ac.uk/TriStarp/
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Indexing of this structure can occur through a tree-based system in curves such as the
Hilbert curve (Lawder and King, 2000). The repeating structure is evidenced at every
level of construction of the curve, and this repetition can be used to form a tree-based
index into the curve.

Indexing via SFCs has the important property that no one dimension is dominant, as is
the case with some more common techniques such as B-trees (Lawder and King, 2000).
It is possible to retrieve data by any combination of dimensions (for example, fixing
subject and property and searching for all related objects, or fixing object and searching
for all related subject and properties). The particular dimensions that are supplied make
no theoretical difference to query time (although if two dimensions are supplied, this will
clearly be quicker under normal circumstances than if only one is). This property means
that a single index can be used for all lookups, and makes SFC-based indexes vastly
more space efficient for RDF storage than the more common practice of using several
conventional indexes.

SFC-based indexes are most often used in situations that require range selections over
more than one dimension. Traditional DBMSs perform poorly at this task, since it
is necessary to scan all datums that satisfy one of the ranges, and then restrict the
resultant output by the other specified ranges. In the case where several broad ranges
are required, or data is of low cardinality, this is extremely inefficient. Using SFC-based
techniques, a volume is designated for retrieval, the points at which the curve intersects
that volume computed, and these matching points retrieved (Ramsak et al., 2000). This
property is of little relevance, however, to RDF stores, the queries for which usually
come down to a fixed term (or set of terms), or the entire range of a dimension.

There appears to be little evaluation of the performance of SFC-based techniques as
applied to triple graphs in the TriStarp system. It is possible to draw some inferences,
however. While a good curve will keep spatially related datums somewhat close to each
other on disk, it is clearly impossible to maintain perfect locality, particularly as the
amount of information expands. This is not a large problem for queries over a small
range, but becomes a greater issue in RDF where, as noted above, queries of restricted
range are not a common commodity. This property means that SFC-based indexes will
inevitably involve a higher proportion of non-contiguous accesses than indexes with a
single dimension: this is particularly important for disk storage, where the costs of a
seek are crippling. Combined with potentially high costs for calculating the location of a
datum, this makes SFC-based indexes an extremely space efficient but potentially slow
solution, meriting further investigation for the purposes of high capacity memory stores.
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3.3.6 Summary

Indexing is of critical importance to RDF stores: indexes offer vast benefits when at-
tempting to retrieve a few values from a very long table, which is a common situation
in RDF storage. Indeed, some RDF stores exhibit such comprehensive indexing that
there is no longer a need for the original data table. Maintenance of such a strategy is
sustainable for triple stores, but becomes more challenging as more attributes, such as
provenance or temporal information, are required.

Traditional B-tree indexes perform well for disk based storage. They are simple to
implement, and require a small number of seeks compared to other tree-based methods
to find any given item. They do waste a certain amount of space through their partially-
filled nature and the repetition of prefixes, but this latter can be mitigated through
correct application of compression. Bitmap indexes have also proved effective for RDF
storage, and although they typically will require more disk seeks than a dedicated B-tree,
they have the advantage of scaling much more effectively to larger numbers of attributes.

For memory-based RDF systems, trees in general are not a good solution. While they
provide strong guarantees as regards sorted order, this is more than is required for RDF,
which does not generally require in-order traversal. Trees generally waste too much
space in pointers and/or empty space, and offer very poor characteristics with regards
to contiguity of access. Hash indexes are generally more appropriate in this scenario,
as they offer O(1) retrieval and update, and explicit management of large blocks is not
required in memory. Hash indexes bring with them their own issues. Care must be
taken to ensure efficient use of space when creating hash indexes, and it should be noted
that hash indexes do not support prefixes.

3.4 Operator Implementation: The Importance of the Join

in RDF Query

As noted in Section 2.4, the relational model implements several operators: most no-
tably select, project, and join. Typically, with the aid of suitable indexes, performing
a selection is quite cheap (Date, 1990). If a relevant index is available, it is possible to
simply navigate directly to an item, and retrieve all subsequent tuples containing that
data value. In this case, select scales linearly with the number of items that have been
selected, and at worst logarithmically with overall table size, depending on what sort of
index is used. Retrieval is complicated if the data is not clustered on the index: in this
case, if no index is available, the operation scales linearly with overall data size. This
can quickly become prohibitively expensive on large tables.

Projection is generally a brute-force algorithm, restricting a table to certain columns,
and removing all duplicate values. Clearly, as the size of the data being projected over
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increases, the cost of projection increases in linear fashion. If data is in sorted order,
little memory is required to perform the operation otherwise, it is necessary to remember
previously seen values.

The operation of special relevance to RDF is the join: answering a SPARQL query over
a traditional triple table schema implies joining the table onto itself repeatedly, once
for each triple in the query. This can quickly become very expensive if the working
set of information is allowed to grow too large. There are thus two areas of particular
importance when attempting to reduce time spent in joins: a high-performance join
algorithm, and minimising the set of data to be joined in the first place.

This section provides a brief overview of query optimisation to illustrate the importance
of the order and manner in which operations are performed. The various mechanisms
for joining are then explored further in Section 3.4.2, followed by a brief exploration of
precalculation as a method for reducing time spent in joins.

3.4.1 Query Optimisation

In the leap from procedural database systems to RDBMS, a switch was made to declar-
ative query languages: that is, the agent specifying the query merely specifies what data
is desired, not how to retrieve it. Working out how to retrieve the data is the job of the
query optimiser and is, as Youssefi and Wong (1979) notes, of critical importance: while
the same overall result will be obtained whatever order operations are performed in, a
bad query execution plan can potentially cause data retrieval to be orders of magnitude
slower than it ought to be.

Automatic query satisfaction is not a trivial task. However, while a programmer may
intuitively know the most efficient manner in which to process a query, this is by no
means guaranteed, and requires significant insight and expertise. An automatic query
optimiser can evaluate many different plans before settling on one with a low cost, and
can do so without the input of a knowledgeable human. As noted in Date (1990), there
are four steps to query optimisation:

1. Cast the query into internal form.

2. Convert to canonical form.

3. Choose candidate low-level procedures.

4. Generate query plans and choose the cheapest.

The first two stages essentially transform the query from a textual representation such
as SQL or SPARQL into an internal form that is easier for a machine to process, per-
forming trivial optimisations such as eliminating irrelevant statement ordering on the
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way. Step 3 is more complex, and involves working out low-level operations that can sat-
isfy parts of the query. This attempts to produce worthwhile operations by considering
such information as physical data structure on disk, availability of indexes to speed the
operation, and so on. Each potential operation will have an associated cost calculated
for it, at the minimum specifying number of disk accesses required, but possibly also
including information such as memory and CPU usage. This data may be estimated
where hard figures are not available or easily calculated. Depending on whether the
operation has prerequisites for other operations to be performed first, it may well be
possible to perform them simultaneously across multiple processor cores, processors, and
disks to enhance performance.

Finally, step 4 involves the creation of a set of potential plans from the procedures
generated in step 3. Clearly, there could be overwhelmingly many plans produced if
there were a significant set of candidate procedures generated, so a heuristic to create
only plausible plans is of great use in this situation. The order in which operations
are performed has a vast impact on query performance: if the correct operations are
performed early in the query, the working set can be cut down to the point that later,
more challenging operations only have to work on a small amount of data.

While this overview gives a broad explanation of query processing, the implementation of
these steps is quite difficult. SQL, the standard for most modern RDBMS, is extremely
complex, and the creation of a high-quality optimiser for most cases is a difficult task,
accomplished in a wide variety of manners. The cost of operations is usually calculated
from statistics stored for each table, and the columns within them. Examples of this
include cardinality of the table as a whole and the number of pages it occupies, as well
as the number of distinct items in each column, and average values for each column.
These statistics are quite simple, but can make a significant difference to the creation of
an optimal strategy. Since they are so small, they can be stored in memory and accessed
with great ease.

Satisfaction of SPARQL queries does not differ in concept, but has some differences in
terms of implementation. RDF stores typically have a very few extremely long tables.
This means that the statistics on each of those tables need to be very much more in
depth than is normal for an RDBMS to in order to provide adequate results: otherwise
the information available may be insufficient to provide good cost estimates. Virtuoso
(Erling and Mikhailov, 2008) goes as far as performing real time sampling of the data
rather than expending large amounts of storage on the necessary statistics.

In practice, it is reasonable to make some assumptions about the nature of RDF data:
typically, there are many fewer properties than subjects or objects. This means that
property-oriented subqueries should be pushed late into the query plan. It is also gen-
erally practical to store information about the cardinality of every property. This helps
avert the worst-case situations that are of special importance when answering a query.
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3.4.2 Types of Join

Joining can be an expensive operation, involving as it does two different tables. There
are a variety of algorithms, depending on the state of the data as regards sorting. This
ranges from the very basic brute force algorithm, with a scaling of O(n2) with the size
of the data being examined, to more useful techniques, such as merge, sort/merge, and
hash joins (Date, 1990). These are described below.

3.4.2.1 Nested Loop

At its simplest level, the nested loop joins is the O(n2) algorithm mentioned above. It
takes a pair of join inputs (tables, or outputs from another operator), and designates
one the outer, and one the inner input. The inner input is then scanned for matches
once for each item in the outer. This approach guarantees that all matches are found,
and is practical for small datasets.

Since RDF stores will potentially be working with extremely large tables, this naive
approach cannot be considered advisable. A more commonly utilised solution is the
index nested loop join. In this join, if an index is available on the inner join input, the
index is consulted for matches against each row of the outer join input.

Index nested loop joins require very little memory, and are highly effective for some
situations: if the outer join input is small and is being matched against a very large
inner join input, the selectivity of the index is brought to bear, returning only relevant
results and thus reducing computation. It should be noted, however, that in disk-based
stores the looped accesses to the index will have a cost in terms of repeated disk seeks.

3.4.2.2 Merge and Sort/Merge

Merge joins assume that both inputs are sorted in order on the columns that are being
joined on. With this being the case, a simple scan of both inputs can perform a join
in linear time with the amount of data being joined, if the join is one to many, or near
linear if it is many-many. Merge join is always the fastest join if data is sorted correctly.
For this reason, query optimisers in an RDBMS will usually keep track of the sort order
of the current working set of data, and will order joins to allow as much use of merge
joining as possible.

Sort/Merge joins simply sort the inputs as required, and then perform a merge join on
the resulting data. This approach is clearly constrained by the performance of the sort.
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3.4.2.3 Hash

A hash join performs a single scan over each input. It creates a hash table on the first
input, with a pointer to the corresponding tuple on disk. When scanning the second
input, it compares against that hash table to produce the joined output. This technique
scales in linear fashion with the amount of data scanned, and does not require inputs to
be sorted to work efficiently (although, of course, sorting will ensure better contiguity
of access and cache utilisation). It is, however, likely to be slower than merge join, since
operations such as hashing require a degree of computational expense. Further, it is less
tractable to hold all the intermediate data on disk if no memory is available.

3.4.3 Join Minimisation

As previously noted, reducing time spent in joins is an excellent method for improving
overall RDF store performance. One method for achieving this is to perform the work
in advance. Abadi et al. (2007) describes the concept of ’materialised path expressions’,
in essence the process of pre-calculating joins such that they do not have to be per-
formed at run time. The authors note that this can afford an orders of magnitude level
improvement in performance on suitable queries.

Join precalculation is generally very attractive for read optimised disk-based systems.
If a given join is performed regularly, a great deal of time can be saved by storing the
completed join on disk. There are, however, a variety of complications to this approach.
The precalculated data needs to be updated every time a related piece of information
is added or removed, which can be expensive. In addition, it is necessary to determine
what precalculated information would actually offer a significant benefit, which can be a
complex process. Doing this work manually would be difficult, so it becomes necessary to
maintain accurate usage statistics (or batch-processable logs) to allow the determination
of what joins should be precalculated. Finally, precalculated joins are clearly not suitable
for systems where storage space is very limited.

3.4.4 Summary

RDF does not offer an unusual problem with regards to operator implementation, and
the usual rules of thumb for which join to use apply equally well to RDF. Thanks to
the sheer quantity of data points in a typical RDF store, however, RDF does require
a special emphasis on minimising the time spent in joins. This can be achieved by a
combination of intelligent query optimisation, and join precalculation. The former is
important for ordering queries appropriately, such that the working set stays as small
as possible. This is a challenging problem, relying on high quality statistics to estimate
the size of each data retrieval, and by extension the effect on the working set. Since it is
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difficult to generate high quality statistics about RDF data thanks to its large quantity
of data points, there is room for research in this area.

Join precalculation is clearly attractive for the large corpus, read-mostly use case. There
is a clear need to be able to determine what precalculation is necessary, which again offers
an opening for new work in the area.

3.5 Scaling to Extremely Large Systems Through Distri-

bution

The most powerful single machine RDF stores are currently capable of storing up to
around two billion triples2. Clearly, it is possible to buy more expensive, more powerful
machines to improve scalability and response times. Unfortunately, buying ever-faster
machines yields diminishing returns as one escapes the commodity market. To realise
very practical, large scale improvements it is necessary to allow RDF stores to make use
of the power of multiple machines. Traditional DBMSs underwent a similar evolution,
as ever-increasing dataset sizes required the development of DBMSs with better scaling
characteristics, and this research into prior distributed systems is of interest in the
creation of a highly scalable RDF store.

When considering the distribution of RDF stores, it is important to draw the distinction
between ‘federated’ and ‘clustered’ stores. A clustered store is, to all outside appear-
ances, a single system: there is only one point of query, and no guarantee that any single
system within the cluster will hold meaningful data. By contrast, a federated store is a
system that amalgamates several existing stores: each one of those stores can be indi-
vidually and meaningfully queried. One might desire this approach for (for example),
providing the ability to query all museums in the UK about what artefacts they hold
from a particular period of time. In this situation, each museum will have its own store,
and will want to control its own data, but may be willing to share it such that it can be
accessed from a federated system.

The differences between these two paradigms is significant from the point of view of
performance. In a clustered system, the DBMS has the freedom to place data wherever
it wishes, making it possible to distribute data based on a known function. This makes it
possible to know trivially where a given datum will be located. In a federated system, it
is necessary to either record where information is located, or have some kind of discovery
mechanism. In either case, this has a serious impact on performance: there is no way
to control data placement such that it is optimally located, and finding information
has an additional cost in space and/or time. Federated systems are not considered in

2http://esw.w3.org/topic/LargeTripleStores
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this document, as it is focused on using multiple machines to the end of improving the
performance of an individual store.

The desired performance improvements in distributed DBMSs can be categorised as
follows (Boral et al., 1990; DeWitt and Gray, 1992):

• Scaleup: An increase in the number of machines leads to the ability to store more
data.

• Speedup: An increase in the number of machines leads to a reduction in the
amount of time taken to serve an individual query, all other factors being equal.

• Throughput Scaleup: An increase in the number of machines leads to the ability
to perform more transactions in a given time frame.

While ideally both speedup and scaleup will be linear with the amount of processing
power available, this is a practical impossibility in any database system: some algorithms
(such as sort) do not scale in linear time. There are other significant barriers to such a
perfect level of system scalability (DeWitt and Gray, 1992):

• Startup: the time needed to start a parallel operation - if a small operation
results in lots of processes being started across a lot of nodes, the cost of startup
can overwhelm any advantages gained through increased parallelism.

• Interference: The slowdown each new process creates when accessing shared
resources.

• Skew: The effect where one part of a parallelised operation takes much longer to
complete than the others: since the job is limited by the slowest process, this can
seriously affect performance.

A variety of hardware architectures have been utilised to create parallel database sys-
tems. These can be broadly grouped into three categories: shared memory (SM), shared
disk (SD) and shared nothing (SN) (Stonebraker, 1986). In SM systems all processors
share a common central memory, in SD they have a private memory but a common col-
lection of disks, and in SN they share only the ability to communicate with each other
via messages over a network.

Generally speaking, shared nothing systems are favoured today for their excellent char-
acteristics with regards to resource contention: the only shared resource is network
access, and there is no need for the complex resource locking methods seen in SM and
SD systems. This means that scaling up SN clusters has historically been easier than the
alternatives (DeWitt and Gray, 1992; Stonebraker, 1986). Further, SN clusters can be
built out of commodity parts, as seen in companies like Google (Brin and Page, 1998),
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offering an excellent price/performance profile. It should be noted, however, that today’s
multi-processor/multi-core designs effectively create a SM system on each machine in a
cluster, meaning that the complexities of shared memory systems are still relevant to
the design of today’s database systems.

The disadvantage of the SN approach is that there is greater complexity in deciding
where data is placed: it is important to place data such that each machine undergoes
a similar load profile to enable efficient scaling, and does not require excessive use of
network resources. Ongoing maintenance (whether manual or automatic) to the distri-
bution of data is necessary to prevent ‘hot spots’, or points at which data or query skew
has caused a machine to have too high a workload. When these hot spots occur, they
can usually be eliminated by redistribution of data on the machine.

3.5.1 Enabling Parallelism

Parallel execution can be enabled through a variety of strategies. Most obviously, it is
possible to partition (or decluster) information across more than one machine, such that
the time required to retrieve a large block of data is reduced, and the number of processes
that can retrieve data at any one time (assuming they are not both trying to access the
same data) is also increased. It should be noted that typically, when reading or writing
very small amounts of data, it is desirable to perform the work on one machine. This
is because the setup costs will dwarf any advantages gained from partitioning. Section
3.5.2 considers the problem of how to decluster data in more detail.

Another means of parallelising database systems is to cluster the execution of relational
operations, so that for a given operation (such as a join) each machine processes a defined
range of data values out of an overall dataset. This prevents one machine from doing
all the processing work and becoming a bottleneck.

Pipelining of operations can also provide a performance boost: many relational operators
do not need to complete before they start emitting results. In this sense they can be
viewed as a stream. The output of this stream can be directed to other operations,
which can start processing them in parallel with the first operation. The benefits of
this approach are somewhat limited, however: pipelines are terminated by the presence
of an operation (such as a sort) that cannot emit results until it is complete, rendering
most pipelines relatively short (DeWitt and Gray, 1992). Further, some operations take
much longer than others (an example of skew), thus causing some machines to have to
undertake much more work than others.

Finally, parallelism is supported by simply allowing multiple users to access a system,
and allowing the subqueries that form an individual query to run in parallel. This is
enabled by the likelihood that different users and subqueries will likely be accessing dif-
ferent pieces of information, so hardware resources can be shared between them and the
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queries run in parallel. Multi-user systems can exhibit greatly increased complexity with
regards to transactional behaviour and resource locking, depending on the behavioural
guarantees that are required.

These mechanisms for enabling parallelism can be characterised as occurring at three
levels (Khan et al., 1999)

• inter-query: The ability to run more than one query simultaneously.

• intra-query: The ability to run different subqueries in parallel and pipeline op-
erations.

• intra-operation: Distributing single operations over more than one node for
concurrent execution.

3.5.2 Data Partitioning

A standard approach to partitioning data in an RDBMS is horizontally partitioning (or
declustering) each relation in the system. In these systems, tuples of each relation in
the database are partitioned across the storage of each processing node on the network,
allowing multiple machines to scan a relation in parallel. It also addresses hotspot issues,
as the contents of regularly accessed relations are spread across multiple machines, and
more can be added as necessary.

DeWitt and Gray (1992) describes methods for horizontal partitioning of data, dividing
them into three common techniques:

• Round Robin: simply distributing the tuples in a round robin fashion to each
server. This approach works well for sequential scans, but is inefficient if there is
a desire to access tuples based on attribute values, since the location of a given
tuple is unknown.

• Hash Partitioning: distribution of tuples by applying a hash function to an at-
tribute value. The function emits a number which specifies a machine (and possi-
bly disk location) on which to store the information. This approach is effective if
tuples are accessed based on a fully specified attribute, but is much less effective
for range queries: hashing does not do a good job of clustering related data. Fur-
ther, hash partitioning suffers from difficulties with the addition of new machines
to a cluster, and addressing hot spots: in a naive implementation it is not possible
to repartition data.

• Range Partitioning: distribution of tuples by selecting a range over one attribute.
For example, all tuples with a value of ’surname’ between A-C go on one partition,
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D-E on another, and so on. This approach clusters data effectively. The major
issue with this is that it risks both data and execution skew: one part of the
range may have a disproportionately large quantity of the actual data, and one
part of the cluster may get accessed much more frequently than others (this being
particularly likely if it has to store more of the data).

Partitioning improves the response time of sequential scans, because more processors
and disks are used to perform the scan. It aids associative scans (scanning based on an
attribute value) because the number of tuples stored at each node is reduced, and hence
index sizes are reduced. In the case of RDF, scans are usually associative.

It is important to decluster data in a manner appropriate to both the dataset itself,
and the manner in which it will be accessed. In particular, the following factors have a
significant influence:

• Degree of declustering: it is important to decluster to an appropriate extent. If
a very small relation is partitioned over a very large number of machines, startup
costs and overheads (such as disk seeks) will overwhelm any advantages gained
from parallelism. In practise, parallel systems such as Bubba (Boral, 1988; Boral
et al., 1990) have found that full declustering is often inappropriate.

• Skew: it is important to ensure that each machine undergoes a comparable work-
load. A simple implementation will balance the quantity of information stored
on each server, but it is also important to take into account the possibility that
certain data ranges will be accessed much more regularly than others, creating
an excessive load on some servers. This type of skew (execution skew) can be
countered by balancing data distribution not by the amount of volume stored on
each machine in the cluster, but by the frequency with which each machine has to
access data, particularly that which is uncached.

• Declustering attribute: it is necessary to partition on an appropriate attribute:
the location of tuples is only known, if it is known at all, based on a function
of that attribute. Queries that reference a relation based on a different attribute
have to be flooded to all machines that store a portion of the relevant relation
(Hua and Lee, 1990). This presents no barriers in a store with comprehensive
indexing, since each index can be distributed based on its primary attribute, but
is of interest when considering other strategies.

3.5.3 Distributing RDF Stores

RDF stores offer a few elements of special case behaviour with regards to distribution.
Conveniently, the tendency of single system RDF stores to utilise quite a complete
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level of indexing is advantageous: each one of the SPO, POS, and OSP indexes can
be distributed based on their subject, predicate, and object respectively, eliminating
the issue of choosing a declustering attribute, and meaning that triples can be easily
discovered whatever portion of the triple is supplied. Bitmap and SFC indexes also
distribute effectively: since they index into a single attribute (the line number for bitmap
indexes) there only needs to be one data ordering. These indexes do not guarantee that
logically related data will be located on the same machine, however.

Perhaps the most significant issue when considering the clustering of RDF storage is
data distribution. Generally speaking, there is usually a relatively even distribution of
subjects and objects, each subject or object being used a relatively small number of
times. This makes it advisable to keep all data on a subject or object in an SPO or
OSP index on a single machine, as startup costs will remove any gains from increased
parallelisation. Properties, on the other hand, tend to be of much higher cardinality,
potentially resulting in individual machines having to do excessive amounts of work
and becoming hot spots. This is exhibited to an extreme extent in properties such as
rdfs:label, which is often used extremely regularly, and can result in certain machines
storing very large portions of the POS index. YARS2, one of the few existing clustered
triple stores, works around this problem by distributing property-ordered entries to a
random server, and flooding all property-oriented queries to every server in the system
(Harth et al., 2007). This approach is overly simplistic, removing contiguity of access
and making querying against lower cardinality properties unnecessarily expensive.

In Owens et al. (2008b) we proposed an alternative mechanism for dealing with these hot
spots: an ‘exception list’ that stores exceptions to the usual rules, distributed to every
machine in the cluster. Since the number of outliers are by definition relatively small,
this list requires only a small amount of memory. This allows low-medium cardinality
properties to be stored as normal on a single machine, high cardinality ones to be stored
over a subset of the cluster, and extreme cases such as rdfs:label to be stored over
the entire cluster. The latter two cases could have their distribution performed based
on P and O, so that queries that supply a property and object can still hit only one
machine, while P-only requests gain the benefit of parallelisation. Implementation work
is still proceeding on the prototype, but this approach should logically provide improved
results.

Aside from these issues, RDF stores usually distribute effectively using traditional tech-
niques. Since range searches are relatively unimportant in RDF query, distribution based
on a hash function is ideal. The main issue with hash-based distribution, that it does
not provide room for the addition and removal of machines from the cluster, is easily
solved (Erling and Mikhailov, 2008). If one pretends that a cluster has several thousand
machines, one can assign several of these virtual machines to each physical server. Each
server in the cluster holds a small amount of information describing where the virtual
machines are located, and store and retrieve commands are subsequently performed on
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the virtual machines. Virtual machines can then be moved between servers at will. This
process can create some issues with maintaining locality when required, but this can be
overcome, as described in Owens et al. (2008b).

Figure 3.10: Rates of assertion during a Clustered TDB load

Figure 3.10 shows the scaling with regards to assertion rates for 1, 2, and 3 machine
clusters for the work described in Owens et al. (2008b). As this figure indicates, assertion
time for large RDF files scales excellently using a hash partitioning approach. Query
performance depends on the types of queries being performed: some, such as those that
involve large index nested loops joins provide excellent opportunity for parallelisation,
while others offer more limited benefit. In systems such as this that normalise URIs
and literals into unique IDs, the process of converting IDs to URIs also affords excellent
parallelisation opportunities.

3.5.3.1 Distributing Memory Stores

There are no memory-only clustered RDF stores currently in existence. Distribution
in this scenario has slightly different requirements to a disk based environment: in
the latter case, the latency of the network is usually significantly lower than that of a
disk, so the latency is often hidden quite effectively. While it is generally beneficial to
perform as little network transfer as possible, it is not excessively expensive to do so.
In a memory-only or heavily memory-based scenario, the cost of network access is vast
compared to an access to the usual storage mechanism (Erling and Mikhailov, 2008).
Given this fact, it becomes more important to avoid network accesses wherever possible.
This may require compromises such as globally cached data, which impedes scalability,
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or avoidance of parallelisation-enabling techniques such as index nested loops joins in
favour of techniques which require fewer round trips.

3.5.4 Summary

This section presented a brief summary of clustering in RDF stores and other DBMSs,
including the author’s own work in the area. Realisation of extremely large improvements
in scalability will inevitably require a move towards clustered stores, the background of
which was described in this section. This trend is evident in the relatively recent release
of Virtuoso Cluster (Erling and Mikhailov, 2008), YARS2 (Harth et al., 2007), and the
author’s own work described in this chapter.

In general, RDF generally distributes fairly efficiently using existing techniques, and the
issues that do exist can be overcome: Section 3.5.3 describes the author’s work in this
area. Interesting research opportunities arise in the event of low latency storage such as
main memory or SSDs becoming popular. Currently, the latency cost of accessing data
over the network is not excessive in comparison to the cost of disk I/O, but this will
change with low latency storage. It will become more critical to globally cache regularly
accessed data, increasing update complexity and compromising linear scalability in the
aid of better absolute performance.

3.6 Opportunities

There are a variety of opportunities for research in the areas described in this chapter.
Valuable contributions can be made by minimising the time spent in joins through
improved query optimisation or work on precalculated joins, and there is certainly scope
for improving the deletion performance of stores that perform inference.

Other opportunities largely center around the upcoming availability of low latency stor-
age, a growing trend in the computing industry. RAM is becoming significantly cheaper,
with 32-64GB machines now fairly commonplace. In addition, solid state disks (SSDs)
are becoming increasingly common and practical.

Low latency storage can have a very significant impact on overall performance. In a disk
based environment, the cost of disk seeks is generally by far the largest cause of waiting
under normal circumstances. A simple example illustrates this: in an uncached system
based on B+trees, a billion triple index might have a tree height of 5. If an index nested
loops join is performed that joins over 10 items in the outer join input, and a disk seek
takes 10ms, the time taken for that one operation is 500ms. Now, clearly a realistic
system will cache most of the upper levels of the tree, but even if all but the final level
is cached, the minimum I/O latency for the join operation is 100ms.
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A typical SSD might have a random read latency of less than 0.1ms. The same join on
that hardware would have an I/O latency of just 1ms: a vastly significant improvement.
Main memory is, of course, much quicker again. Since SPARQL queries are very join-
heavy, this is excellent news from the point of view of performance.

Lower I/O latency changes the focus of research. On a single machine system, there is an
increased focus on efficient utilisation of the CPU and memory architecture, while in a
distributed system the latency of the network suddenly becomes a much more important
issue.

In a disk bound environment, poor cache utilisation or poor branching performance is
likely to be overlapped to some extent by disk latency, and in any case can generally be
considered much less significant by comparison. In an environment with low I/O latency,
less overlapping is likely, and more efficient use of CPU and memory will produce a
relatively much larger gain. With their small datum size, RDF stores have a particular
opportunity to benefit from improved cache utilisation.

Systems with relatively low I/O latency enable a greater variety of strategies for physical
representation. Indexes based on SFCs, for example, are vastly more practical in an
environment with lower seek times. Adaptive index structures suited to RDF become
plausible in a memory based environment that does not mandate the use of large blocks.
Such index structures become particularly attractive since SSDs and RAM typically offer
much smaller amounts of space to work with than conventional disks, being significantly
more expensive per gigabyte. Space efficiency thus becomes a much greater priority.





Chapter 4

Measuring RDF Store

Performance

It is clearly important to be able to show that a given store lives up to its performance
claims, and that changes being made to a store actually result in overall performance
improvements. This need is satisfied by benchmarks. This chapter describes the back-
ground of benchmarking in (O)RDBMSs and RDF stores, and the work performed by
the author in this area. This serves as a means to determine the effectiveness of future
work.

When considering the benchmarking of RDF stores, or DBMSs in general, there are two
schools of thought with regards to how to perform the task. The pre-eminent benchmark
set in the DBMS world, that produced by the Transaction Processing Performance
Council (TPC) performs a set of high level queries based on a given use case. Benchmarks
exist with use cases based around OLTP (described in Council (2001)), and decision
support workloads. When a new workload type becomes popular, a new benchmark is
added.

These tests produce simple figures for total throughput (overall performance) and through-
put per unit cost of the machine. Developers running the tests are expected to provide
detailed reports of the hardware upon which the tests were run.

TPC-style benchmarks provide a convenient standard for judging the overall perfor-
mance of a system, but do not make an effort to individually test the components of
that system (DeWitt, 1991), or give a report of what exactly it is that makes the sys-
tem fast or slow. This is in some ways advantageous, since it simplifies the process of
comparison, but does not give much information to those who require information about
specific performance characteristics.

From the point of view of the system developer, it is important to be able to investigate
the performance of different aspects of the store. This allows the discovery of where most
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time is spent, and thus enables the targeting of optimisation: even if an improvement is
possible in a particular subsystem, it is important to know that sufficient time is spent
in that subsystem to make an improvement worthwhile. The TPC family of benchmarks
do not provide a sufficiently fine grain to allow such analysis.

An earlier RDBMS benchmark, the Wisconsin benchmark, provides such detailed tests.
This benchmark performs a large number of transactions in an attempt to test each
subcomponent of the system, such as the query optimiser, join mechanism, and so on.
This approach gives detailed feedback regarding the performance characteristics of the
DBMS, in particular the intelligence of the query optimiser (Cattell, 1991). It attracted
criticism for not reducing the reported figures to a single overall metric (DeWitt, 1991),
rendering results harder to interpret and not giving a clear winner when comparing two
DBMSs.

TPC-style benchmarks provide a clearer statement of overall performance than the Wis-
consin benchmark. Since this is what the majority of clients are interested in for making
purchasing decisions, Wisconsin-style benchmarks ultimately proved less popular. De-
tailed tests, however, are invaluable to developers, and so in Owens et al. (2008a) we
describe the creation of a detailed, Wisconsin-style benchmark (including testing soft-
ware) for RDF stores. This work will provide a foundation for analysing the output
produced over the next year.

4.1 Existing RDF Benchmarks

There are a variety of benchmarks currently in existence that are commonly used to
test RDF stores. As noted, the Lehigh University Benchmark (Guo et al., 2005)is the
most popular of these. LUBM allows the creation of an arbitrarily large amount of RDF
data based on a variable number of iterations over a simple OWL ontology. The number
of properties attached to any class instance is varied by the use of simple bounded
randomisation.

While this benchmark is effective for the purposes of testing OWL inference performance,
it is not designed for the purpose it is often used for currently: testing stores based
on their RDF query performance. The data produced has a small, heavily repeated
structure with few predicates (Weithoner et al., 2006).

The method LUBM uses for querying the stores does not reflect likely use cases for
RDF stores: each query is repeated ten times, with the average response time being the
result (Guo et al., 2005). This mechanism gives query caches a large influence over the
final result. Further, one query is performed at a time, with no provision for concurrent
access. This testing mechanism does not accurately reflect the reality of an open data
node on the Semantic Web, where a system might expect to be processing many highly
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unpredictable queries concurrently, potentially requiring the ability to perform updates
while under query load. Finally, it should be noted that LUBM is somewhat out of
date, and does not test all of the features (such as regular expression object matching)
available in SPARQL.

Alternative datasets to that provided by LUBM have emerged. Some of these utilise
real world information, such as the UNIPROT and DBpedia sets. While these have the
advantage of providing data that is realistic, they are of limited size and do not provide
the ability to easily scale the datasets involved.

During the course of the author’s work in this area, a new use case-based benchmark for
RDF stores was released: the Berlin SPARQL Benchmark (BSBM)1. This offers a more
comprehensive query set than LUBM, and also tests multi-user scenarios. Explanation
is given of the rationale behind each query, and it offers useful overall results. Further, it
makes the effort to make minor alterations to SPARQL queries during query repetition,
reducing unrealistic caching effects.

Despite these advantages, certain features are missing in BSBM. Little study is made
of the effect of changing the dataset, due to its fixed schema. Simple changes such as
the sort order of data being input, or the quantity of properties, can have a significant
impact on assertion performance. There is no study of deletions, assertions beyond the
initial bulk assert, or other features such as multi-user assertions or assertion while under
query load. In addition, since the benchmark is use-case based, there is no incremental
change in queries: more than one factor is changed at a time between query sets.

These newer test sets can be expected to fill important roles in offering a wider variety
of tests of clear format, testing a greater proportion of the features available in SPARQL
than are seen in LUBM. It should be noted, however, that they cannot be expected to
provide a highly detailed assessment of the stores that they test: they offer a limited
number of queries, and a limited structure to their datasets.

4.2 A New RDF Test Set

In designing a new RDF test set, a large number of useful test cases were developed.
The entire set of these can be found in Appendix A. These test cases were then applied
to an automatically generated dataset, using a set of test scripts that simulated a given
number of users. The scripts subsequently generated useful statistics regarding test
runtime, average CPU utilisation and average IO utilisation.

Data generation in RDF benchmarks is usually performed by taking a given data schema
(or ontology) and generating an amount of data based on a ‘scale factor’. The work

1http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
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described in this chapter proceeded along similar lines, with the exception that it was
possible to alter the schema for the data. This offers the benefit of testing stores over
a variety of different graph shapes, as illustrated in Figure 4.1. An interesting result
occurred as a result of this method of data generation: The assertion time of one of
the three systems under test, Virtuoso, was affected by the sort order produced by the
script, such that it was impossible to complete tests. On the other hand, AllegroGraph
and BigOWLIM (the other stores under examination) were able to cope with it.

Figure 4.1: Configurable RDF Graph Shapes

The benchmarks showed several more interesting results that might not be clearly ex-
posed by TPC-style benchmarks: BigOWLIM performed very poorly when retrieving
data based on a known object. This exposes a relatively slow index over objects. Al-
legroGraph, which takes advantage of ‘inlining’ (see Section 3.2.2.1), was capable of
answering FILTER queries over a huge number of integers extremely quickly, while
BigOWLIM was unable to produce a result. On the other hand, BigOWLIM produced
superior assertion times, particularly in situations where concurrent writes were being
performed. Full results are available in Owens et al. (2008a).

This test set will be useful in the development of an RDF store, and in the author’s
proposed future work, as it informs the development process: it is possible to quickly
determine how even small design changes affect a particular subsystem.

4.3 A Use-Case Based Test

The mSpace (schraefel et al., 2005) browser provides an excellent real world use case
for a large scale RDF application that requires extremely low latency queries. mSpace
relies on AJAX to provide a highly interactive system that users expect to respond
quickly. The author developed an automatic test system for the purposes of comparing
mSpace’s performance under 3Store and MySQL in Smith et al. (2007). In this case, it
was found that the RDF store’s performance lagged far behind a MySQL fixed-schema
implementation, a trend that has continued according to the latest BSBM result set.
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The mSpace test system does not yet offer the comprehensiveness of either BSBM or
the system described in Section 4.2, but it does accurately model a real world situation:
a variable number of users are simulated browsing an mSpace system, with configurable
average time between clicks, and statistics produced on average query time, CPU utili-
sation, and I/O utilisation. The test system understands how to browse an mSpace data
repository, so little configuration is required, and the dataset can be changed with ease.
The test sets are recorded for the sake of repeatability.
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Future Work

There is the potential for a great deal of work in the area of RDF storage. There are a
host of use cases: federated systems aggregating a large quantity of data from related
institutions, clustered stores designed to maximise performance from a single endpoint,
low latency stores designed for highly interactive applications, and smaller stores that
fill a role similar to that taken in the RDBMS world by such products as MySQL and
Postgres, operating highly efficiently on limited resources. These stores might be read
or write optimised: a knowledge repository might often be full of virtually static infor-
mation, but a store might also be implemented as support for an interactive application,
or as a local cache of knowledge on an individual’s computer, with information likely to
change regularly.

There is a clear need for high-performance RDF storage and retrieval. Recent events
such as the billion triples challenge at ISWC 2008 have highlighted the demand for
extremely scalable systems, and the scalability of disk-based RDF stores has improved
significantly over time. While early systems such as 3store experience limits around the
200 million triple mark, even with access to improved hardware, more advanced stores
such as Virtuoso, Jena TDB and BigOWLIM are capable of handling well over a billion
triples. These systems are founded on techniques that are familiar from the world of
(O)RDBMSs, modified to take into account the special needs of RDF.

Less obviously prominent, yet of significant importance, is a demand for extremely per-
formant, low latency systems to drive flexible RDF-based UIs such as mSpace (Smith
et al., 2007). mSpace requires very low latency over queries of significant complexity,
with multiple concurrent users. For datasets of any significant size, mSpace has been
forced to move from RDF stores to more restrictive RDBMSs in order to attain accept-
able performance. The problem in this case is not one of the ability to assert very large
numbers of triples, but of being able to perform nontrivial queries in an extremely short
period of time.

65
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Other use cases for this kind of store exist. Backward chaining reasoners require ex-
tremely high performance backing stores to operate effectively, and heavily read oriented
DBMSs like C-Store (Stonebraker et al., 2005) (and its descendant, Vertica) use sup-
plemental very low latency memory-based systems to allow incremental assertions and
updates. These systems have to be extremely fast in order to not create a noticeable
drag on the overall system performance. Such a subsystem would be of use in existing
highly read optimised RDF stores such as YARS2.

Main memory RDF stores present an attractive alternative for systems such as mSpace.
They offer much higher performance over datasets that will fit in RAM, and with clus-
tering can be expanded almost indefinitely. In the enterprise, there is a trend towards
main memory DBMSs as RAM prices fall: enterprise systems commonly contain 32-
64GB of RAM (Seaborne, Andy, personal communication, August 2008), which makes
main memory DBMSs practical for an increasingly large variety of tasks. 32GB of RAM
is sufficient to store 200 million statements in the SwiftOWLIM (Kiryakov et al., 2005)
memory store, and better space utilisation could lead to even larger capacity. This
represents sufficient storage space for current mSpace workloads.

For the remainder of the PhD program, the author proposes to investigate main memory
RDF stores as a solution for systems that require extremely performant data access, such
as semantic UIs and backward chaining inference engines. This work will be carried out
in the context of a performance analysis of the mSpace browser, with the aim of making
it practical for such systems to operate at scale on RDF stores. The focus of this
work will be in-memory representation, and managing the space/performance tradeoff,
the concerns for each of which are described in Sections 5.1 and 5.2. The prototype
should be designed such that it is feasible to extend into a distributed system, to enable
scalability to even larger datasets.

5.1 Performance

There has been relatively little work on improving the performance of main memory
RDF stores. Thanks to changing processor architectures and the increasing importance
of processor caches, the model of RAM as purely random access is no longer truly valid.
Work in the DBMS field has highlighted the increasing gap between the performance
that modern processors are theoretically capable of providing, and the performance that
is actually delivered by DBMSs (Ailamaki et al., 1999). Much of this disparity can be
traced to two issues: inefficient use of processor caches, and architectures that are not
aware of the demands of modern superscalar, pipelined processors. As a result, even
relatively recent DBMSs can spend less than half of their time performing actual useful
computation. (Ailamaki et al., 1999).
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As noted in Section 3.2, cache conscious algorithms and the minimisation of unpre-
dictable branches can result in significantly improved performance for common database
workloads, and significantly reduce wasted CPU time. This work will attempt the im-
plementation of cache-friendly indexing mechanisms, while paying attention to storage
space requirements. As part of this work, it will be necessary to characterise the per-
formance of a system like Jena in order to discover where most time is spent, such that
optimisations are not mistargeted.

5.2 Storage Capacity

Since memory is a much more expensive (and limited) commodity than disk space, it
becomes important to minimise the space required by any physical representation. It
is potentially challenging to optimise for both storage capacity and high query perfor-
mance: the ability to store multiple different physical representations of the same data,
for example, will improve query performance, at the cost of storage capacity. Simi-
larly, application of compression, popular in disk-based DBMSs for reducing I/O costs
and storage footprint (Stonebraker et al., 2005), can result in increased CPU usage
and reduced performance in memory stores. A significant portion of this work will be
examining the tradeoff between storage capacity and performance.

Fortunately, these concerns are not always in opposition. Cache-friendly algorithms, for
example, favour the reduction of data footprint as a way to fit more information on a
cache line. The smaller the working set of a given application, the more likely it is to
fit into L2 cache, a critical issue for maintaining performance. Smaller working sets also
improve utilisation of the Translation Lookaside Buffer, a CPU cache that is important
for maintaining the performance of main memory access.

5.3 DBMSs on a Virtual Machine

The two major Semantic Web frameworks, Jena and Sesame, are both written in Java.
While it is possible to interface to other languages using Java Native Invocation (JNI),
this is complex and has a relatively high overhead (Rao and Ross, 2000), making its
suitability for our goals questionable. This means that any new storage and indexing
system is likely to be written in Java.

Java is a virtual machine-based language, which can result in different behaviour com-
pared to a compiled application running on the bare hardware. While Java has the
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overhead of dynamic code compilation and garbage collection, there are associated per-
formance benefits, such as the extremely cheap memory allocation that garbage collec-
tion provides (Blackburn et al., 2004), and the ability to dynamically recompile code
when it might be beneficial.

An example of this can be seen in some early experimentation performed as a test
of Java’s branch prediction and cache performance. When performing a binary chop
of varying predictability over an extremely large array, as illustrated in Table 5.1 and
Table 5.1, Java exhibited much better worst case performance and significantly worse
best case performance than a similar C implementation. Note that these results were
experienced on Sun’s reference implementation under Linux, and different implementa-
tions may yield different results. The code for these implementations, along with the
compilation flags, can be found in Appendix B

Array Size (ints) Java C

150000000 44106 67540
15000000 17963 20660
1500000 9293 9610
150000 2514 2200

Table 5.1: Comparison of Java and C on an unpredictable large scale binary chop

Array Size (ints) Java (ms) C (ms)

150000000 1723 1270
15000000 1481 1090
1500000 1308 960
150000 1123 820

Table 5.2: Comparison of Java and C on a predictable large scale binary chop

In addition, Java has very high space overheads in certain situations: each object has
an overhead: in a typical VM, this might be in the order of two words. If a program
produces a lot of small objects, as is the case with existing RDF memory stores, space
efficiency can be significantly impaired. Paying attention to this issue can result in
significantly reduced overhead.

Little study has been made of the details of implementing a DBMS on a virtual machine-
based language like Java. A major contribution of this work will be an analysis of the
differences between implementing a physical representation on a virtual machine-based
language versus a compiled one.
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5.4 Work Packages

This section describes the packages of work that will be performed up to the end of this
PhD program. The work packages will focus upon the development and testing of the
ideas mentioned in this chapter. It is expected that there will be a significant need for
prototype-level testing of these ideas, for which it is proposed to build upon the Jena
framework, a commonly used standard with which the author is already familiar.

5.4.1 WP1 - Characterisation of the Jena Framework

Before commencing the work, it is important to ensure that it will provide a noticeable
benefit. While it has been clearly established that a high performance physical represen-
tation is critical in a disk-based system, a study has not been made of memory stores to
show the same. This work package will examine in detail the Jena system when backed
by a memory store, in order to determine where time is spent, and whether an improved
memory store would actually result in significantly better performance.

Tasks (4 weeks total)

• Discovery of and familiarisation with profiling tools (1 week)
Tools suitable for performance profiling with Java will be determined, installed,
and time will be spend gaining familiarity with them.

• Determination of appropriate testing strategies (1 week)
Existing mechanisms for testing RDF stores will be briefly surveyed, and an ap-
propriate one chosen for examining Jena’s performance.

• Profiling of Jena (2 weeks)
Time will be spent profiling the Jena system under load, in order to determine
where most time is spent.

5.4.2 WP2 - Investigation into Coding for a Virtual Machine

This work package will further the author’s existing knowledge in the area of high perfor-
mance coding for virtual machine based languages. While virtual machines can clearly
differ between implementations, high performance virtual machines generally share many
common characteristics.

The work will contribute an evaluation of the differences that are relevant to DBMSs
between coding for virtual machines and compiled languages. This is a significant con-
tribution, given that historically DBMSs have been coded in low level languages, and
existing literature focuses on how to optimise in those languages. While an effort will
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be made to make this study relevant to a broad cross-section of virtual machine-based
languages, the focus will be on Sun’s reference implementation for Linux. In this work
package, small-scale evaluations will be performed in an attempt to confirm expected
results.

Tasks (6 weeks total)

• Literature Search (3 weeks)
Time will be spent reviewing literature on virtual machines (particularly Java),
and on code optimisation for such machines, to reinforce the author’s existing
knowledge.

• Tests (3 weeks)
Tests will be performed, where feasible, to confirm the knowledge discovered during
the literature review.

5.4.3 WP3 - Design and Implementation of Prototype(s)

Work package 3 focuses on the design and creation of the prototype. It is expected
that this prototype ought to able to achieve significant improvements in space utilisa-
tion and/or performance. In the worst case, a minimum of 10% improvement in space
efficiency is desired, but the expected result is an additional 20% improvement in query
latency over the existing Jena memory store, along with increased space efficiency. This
improvement parallels that found in Rao and Ross (2000). The results of this work
package should also be of interest when considering the implementation of a physical
representation on an SSD, since these share RAM’s relatively low latency.

Tasks (22 weeks total)

• System design (4 weeks)
The author will build upon existing thoughts on the design for the system, in order
to produce an overall system design with the flexibility to be adjusted for space
utilisation or performance.

• Prototype Implementation (18 weeks)
The prototype will be implemented. If time is available, a more basic prototype
in a low level language such as C will be produced for the purposes of comparison,
and furthering the contribution of WP2.

5.4.4 WP4 - Testing Against mSpace

This work package performs validation of the prototype, and as such will at some points
be executed in parallel with WP3. Previous work aimed at performance testing the
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mSpace RDF browser in a multi-user situation will be reused and updated in order to
determine the effectiveness of the prototype, and the results will be compared to existing
RDF memory stores, in particular the standard Jena implementation.

Tasks (8 weeks total)

• Updating mSpace benchmarks (2 weeks)
Time will be spent updating the author’s existing mSpace benchmarks in order to
ensure that they provide a reasonably realistic user simulation, and that they can
interface correctly with the prototype.

• Tests over RDF memory stores (6 weeks)
Tests will be run over the prototype and selected RDF memory stores (in particular
the existing Jena memory backend) in order to validate the prototype. Profiling
will also be performed in order to show where gains are being made.
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Conclusions

The Semantic Web offers the potential to vastly improve the manner in which we retrieve
and interact with data. RDF stores represent a critical requirement for the emergence
of this vision: the importance of high performance storage and query over unpredictable
RDF data is clear, and has been articulated during the course of this report.

This document has described in detail the author’s work in the area of RDF storage
and query, with a particular focus on physical representation and indexing, and getting
the most out of modern computer architectures. It offers several contributions: the
report contains a detailed insight into the relationship between traditional RDBMSs
and RDF stores, including an explanation of the applicability of techniques from the
DBMS world to the problem of storing RDF, and an analysis of where new work is
required. This is used to determine and inform the author’s future work: in-memory
RDF storage structures that will show that application of knowledge regarding the
underlying machine architecture can provide significant improvements in both space
efficiency and performance of RDF stores.

In addition, the report discusses work performed by the author in the area of clus-
tered RDF storage and RDF store benchmarking, including prototype implementations
of each. The work on benchmarking will be used to test and develop the author’s re-
search into in-memory RDF storage, offering as it does the ability to break down the
performance of different components of the tested systems in a manner not supported
by existing benchmarks. Further details on each of these areas of research can be found
in Owens et al. (2008a), Owens et al. (2008b) and Smith et al. (2007).

The future work described in this report provides an avenue for significant new research
that will benefit the Semantic Web community. High performance memory stores have
received relatively little attention, despite the requirements for low latency RDF storage
found in interactive applications and reasoners, and the hardware trends that are making
main memory storage increasingly practical. This future work will provide significant
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improvements in performance and storage efficiency of RDF memory stores, thanks to
attention being paid to optimisation for modern architectures and virtual machines.
Little study has previously been made of implementing a DBMS on a virtual machine,
leading to more than one significant contribution from this work.



Appendix A

Test Cases

This appendix details the tests proposed for the benchmarking system described in
Chapter 4.

Assertion:

• Bulk assertion time from scratch: this metric tests the stores performance when
asserting a new data graph (including creation of appropriate indexes), assuming
that the store is under no other activity.

• Assertion time for a significant addition to a previously existing data graph.

• Assertion time for multiple simultaneous writes: This examines the stores locking
mechanisms: some schemes require a greater or lesser portion of indexes to be
locked to perform an update, which can affect read/write times.

• Assertion time when operating under query load: This again tests locking mecha-
nisms.

Deletion:

• Deletion of entire graphs: most stores offer the ability to create multiple graphs,
or models, to separate distinct datasets. If the store does not perform cross-model
inference, deletion of a model and its associated statements ought to be simple.

• Deletion of statements: deletion of individual (or patterns of) statements ought to
be a relatively simple process for an RDF-only store. If the store produces forward
chained entailments for RDF-S or OWL, it becomes a complex issue due to the
need to determine how the inferred statements need to be altered (Broekstra and
Kampman, 2003).
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Query:

• Simple queries that match against a specified subject, predicate, or object (or
pair of these), returning a moderate number of results. This provides baseline
information, as well as testing storage/indexing methodology: many stores will
be indexed and sorted on subjects, and may exhibit decreased performance when
testing over predicate or object. The choice of relatively disconnected URIs keeps
the result set small for this simple query.

• Repeat of the above, using queries that return large numbers of results. This
examines the effect of the number of results returned on query performance, which
can be a particular significant bottleneck in stores that internally use id/hash
mappings to describe URIs and literals.

• Queries that specify multi-triple graph patterns. These patterns should provide a
large capacity for optimisation: one triple should result in the retrieval of very few
results compared to the others. This tests the query optimisers intelligence.

• Repeat of the above, specifying the triples in another order. If the same queries
are to be used, this test should be run some time after the above, to reduce any
effect of caching.

• Queries that specify multi-triple graph patterns, returning many results, not amenable
to optimisation, that is, each graph pattern returns many results: this is a test of
the stores ability to perform joins over large quantities of data.

• Complex queries that specify many triple patterns. This tests join performance
and query optimisation.

• Performance of the system in an environment where it experiences multiple simul-
taneous queries: does it degrade in performance gracefully as the load increases,
or not?

• Queries that return no result. This again tests the query optimisers ability to
perform operations in an optimal manner: if the triple that causes no result to be
found is run early, this should return very quickly.

• The effect of specifying OPTIONAL sections within a query.

• The effect of the use of the REGEX expression when searching for a range of object
values within a result set.

• Performance of numerically restrictive FILTER statements.

• Performance of LIMITed queries versus their non-LIMITed equivalents, and the
time taken to retrieve subsequent ranges of information from previously run LIM-
ITed queries.
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• Performance of cached queries versus their non-cached equivalents.





Appendix B

Binary Chop Tests

This appendix contains the code for both the Java and C implementations for the tests
described in Section 5.3.

B.1 Java Implementation

Run using: java -server -Xmx2048M <filename>

public class TestClass {

final static int size = 150000000;

final static int iterations = 10000000;

final static int step = 10;

int[] cmparr;

int[] arr1;

int[] arr2;

/* arr1 is an array of sorted , randomly increasing integers

arr2 is filled with 1s. cmparr contains a pregenerated array

of random numbers to search for in these arrays.

Note that this implementation of binary chop does not complete early ,

so it will not finish after one comparison on the predictable data.

*/

public TestClass () {

init ();

long time;

time = System.currentTimeMillis ();

dosearch(arr2 ,cmparr ,iterations );

System.out.println(System.currentTimeMillis () - time);

time = System.currentTimeMillis ();

dosearch(arr1 ,cmparr ,iterations );

System.out.println(System.currentTimeMillis () - time);

}
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public void init() {

for(long l = 0; l < iterations;l++) {

}

int incr = 0;

arr1 = new int[size];

for(int i = 0; i < size; i++) {

incr +=(int)(Math.random ()* step);

arr1[i] = incr;

}

arr2 = new int[size];

for(int i = 0; i < size; i++) {

arr2[i] = 1;

}

cmparr = new int[iterations ];

for(int i = 0; i < iterations; i++) {

cmparr[i] = (int)(Math.random ()* arr1[arr1.length -1]);

}

}

public int dosearch(int[] arr , int[] cmparr , int iterations) {

for(int i = 0; i < iterations;i++) {

int max = size -1;

int min = 0;

while(min < max) {

int pos = min +((max -min )/2);

if(arr[pos] > cmparr[i]) {

max = pos;

} else {

min = pos +1;

}

}

}

return 0;

}

public static void main (String [] args) {

new TestClass ();

}

}

B.2 C Implementation

Compiled using: gcc -Wall -Werror -O3 -std=c99 <filename>

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

#define SIZE 150000000

#define ITERATIONS 10000000

#define STEP 10
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#define IN_OTHER 0

void * domalloc(int size)

{

void * mem = malloc(size);

if (mem == NULL)

{

exit (0);

}

return mem;

}

/* performs a binary chop on arr for each value in cmparr */

int runarr(unsigned int* restrict arr , unsigned int* restrict cmparr) {

int i;

clock_t starttime;

starttime = clock ();

for(i = 0; i < ITERATIONS;i++) {

unsigned int min = 0;

unsigned int max = SIZE -1;

while(min < max) {

int pos = min +((max -min )/2);

// printf (" Pos: %d Min: %d Max: %d\n",pos , min ,max );

if(arr[pos] > cmparr[i]) {

max = pos;

} else {

min = pos +1;

}

}

}

printf("ms: %d\n",(int )(( clock () - starttime )/( int)( CLOCKS_PER_SEC /1000)));

return 0;

}

/* numbers is an array of sorted , randomly increasing integers

numbers2 is filled with 1s. cmparr contains a pregenerated array

of random numbers to search for in these arrays.

Note that this implementation of binary chop does not complete early ,

so it will not finish after one comparison on the predictable data.

*/

#if IN_OTHER ==0

int main(int argc ,char *argv [])

{

unsigned int i;

unsigned int * restrict numbers;

unsigned int * restrict numbers2;

unsigned int * restrict cmparr;

unsigned int currnum = 0;

numbers = domalloc(SIZE * sizeof(int ));

numbers2 = domalloc(SIZE * sizeof(int));

cmparr = domalloc(ITERATIONS * sizeof(int ));
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for(i = 0; i < SIZE; i++) {

currnum += (rand ()/(( double)RAND_MAX +1))* STEP;

numbers[i] = currnum;

numbers2[i] = 1;

}

for(i = 0; i < ITERATIONS; i++) {

cmparr[i] = 1+( rand ()/((( double)RAND_MAX +1))* numbers[SIZE -1]);

}

runarr(numbers2 ,cmparr );

runarr(numbers ,cmparr );

free(numbers );

free(numbers2 );

free(cmparr );

return 0;

}

#endif
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