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Abstract. In this paper, we present GLARE, a domain-independent
system for acquiring, representing and executing clinical guidelines.
GLARE is characterized by the adoption of Artificial Intelligence (AI)
techniques at different levels in the definition and implementation of the
system.
First of all, a high-level and user-friendly knowledge representation lan-
guage has been designed, providing a set of representation primitives.
Second, a user-friendly acquisition tool has been designed and imple-
mented, on the basis of the knowledge representation formalism. The
acquisition tool provides various forms of help for the expert physicians,
including different levels of syntactic and semantic tests in order to check
the “well-formedness” of the guidelines being acquired.
Third, a tool for executing guidelines on a specific patient has been made
available. The execution module provides a hypothetical reasoning fa-
cility, to support physicians in the comparison of alternative diagnos-
tic and/or therapeutic strategies. Moreover, advanced and extended AI
techniques for temporal reasoning and temporal consistency checking are
used both in the acquisition and in the execution phase.
The GLARE approach has been successfully tested on clinical guidelines
in different domains, including bladder cancer, reflux esophagitis, and
heart failure.

1 Introduction

Clinical guidelines represent the current understanding of the best clinical prac-
tice, and are now one of the most central areas of research in Artificial Intelli-
gence (AI) in medicine and in medical decision making (see, e.g. [5, 7, 8, 12]).
Clinical guidelines play different roles in the clinical process: for example, they
can be used to support physicians in the treatment of diseases, or for cri-
tiquing, for evaluation, and for education purposes. Many different systems and
projects have been developed in recent years in order to realize computer-assisted
management of clinical guidelines (see e.g., Asbru [15], EON [10], GEM [16],
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GLARE [19, 20, 21], GLIF [11], GUIDE [14], ONCOCIN [22], PROforma [4],
T-HELPER [9], and also [6, 2]).

The overall challenge of designing and implementing such tools is very com-
plex. In this paper we show how in the GLARE system the adoption of AI
techniques provides relevant advantages, especially from the point of view of
the user-friendliness of the approach (a more detailed description of GLARE’s
basic features can be found in [20]). GLARE’s architecture is sketched in sec-
tion 2. In section 3, we highlight GLARE’s representation formalism. Section 4
and section 5 describe the acquisition tool and the execution tool functionalities
respectively, with specific attention to the treatment of temporal constraints.
Section 6 sketches some testing results. Finally, section 7 presents comparisons
and conclusions.

2 Architecture of GLARE

The overall GLARE’s architecture is a three-layered one (see figure 1).
The highest layer (system layer) is composed by two main modules, the acqui-

sition tool and the execution tool. Both tools need to access data stored into a set
of databases. In particular, the acquisition tool manages the representation of
clinical guidelines, which are physically stored into a dedicated database, called
CG DB. Moreover, it interacts with: the Pharmacological DB, storing a struc-
tured list of drugs and their costs; the Resource DB, listing the resources that
are available in a given hospital (it is therefore used to represent the context-
dependent version of a guideline); the ICD DB, containing an international cod-
ing system of diseases; the Clinical DB, providing a “standard” terminology to
be used when building a new guideline, and storing the descriptions and the
set of possible values of clinical findings. The interaction with the Clinical DB
during acquisition allows for standardization (since experts are forced to use

Fig. 1. GLARE’s three-layered architecture
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the same vocabulary) and for correctness (since only values for findings that
are compatible with the range of values fixed in the Clinical DB itself can be
specified).

The execution module executes a guideline for a specific patient, taking into
account the patient’s data (automatically retrieved from a database called Pa-
tient DB). This tool stores the status of the execution in the Instance DB and
interacts with the user-physician via a user-friendly graphical interface.

The lowest layer of the architecture (DBMS layer) is made by the DBMS,
that physically stores the different databases described above. However, in
GLARE, the interaction between the acquisition and the execution tools with
such databases is not a direct one, since it is mediated by the introduction of
an intermediate layer (XML layer). The XML layer consists of a set of XML
documents (one for each database). XML acts as an interlingua between the
system layer and the DBMS layer: the acquisition and execution modules actu-
ally interact only with the XML layer, through which they obtain the knowledge
stored into the DBMS. The use of XML as an interlingua allows us to express
the guidelines in a format with characteristics of legibility, and to publish them
on the Web, rendering easy their dissemination. On the other hand, the DBMS
layer grants a homogenous management of the data, by integrating the guideline
representation with the pre-existent Hospital Information System in the same
physical DBMS.

The three-layered architecture makes GLARE independent of the commer-
cial DBMS adopted by the particular hospital. In fact, the interaction between
the DBMS and the XML layer is devoted to a single software module (a Java
package). Changing the DBMS only requires to modify such module and these
changes are quite limited and well-localized.

3 Representation Formalism

In order to guarantee usability of GLARE to user-physicians not expert in Com-
puter Science, we have defined a limited set of clear representation primitives,
covering most of the relevant aspects of a guideline. In particular, we have focused
the attention on the concept of action, a basic primitive notion for describing
clinical guidelines. We use the notion of “action” in quite a broad sense, in order
to indicate the different activities which may characterize a diagnosis, or the
application of a given therapy, or the finding/retrieving of information, or other
clinical tasks. Given this notion, a guideline itself can be conceived as a complex
action, composed by a number of elementary actions. We distinguish between
atomic and composite actions. Atomic actions can be regarded as elementary
steps in a guideline, in the sense that they do not need a further de-composition
into sub-actions to be executed. Composite actions are composed by other ac-
tions (atomic or composite).

Four different types of atomic actions can be distinguished: work actions,
query actions, decisions and conclusions. Work actions are atomic actions which
must be executed at a given point of the guideline, and can be described in
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terms of a set of attributes, such as name, (textual) description, cost, time, re-
sources, goals. Query actions are requests of information, that can be obtained
from the outside world (physicians, databases, knowledge bases). Decision ac-
tions are specific types of actions embodying the criteria which can be used to
select from alternative paths in a guideline. In particular, diagnostic decisions
are represented as an open set of triples 〈diagnosis, parameter, score〉 (where,
in turn, a parameter is a triple 〈data, attribute, value〉), plus a threshold to be
compared with the different diagnoses’ scores. On the other hand, therapeutic
decisions are based on a pre-defined set of parameters: effectiveness, cost, side-
effects, compliance, duration. Finally, conclusions represent the explicit output
of a decision process (for instance, assuming a given diagnostic hypothesis is
a typical conclusion of a diagnostic decision action).

Composite actions are defined in terms of their components, via the has-part
relation (this supports for top-down refinement in the description of guidelines).
On the other hand, a set of control relations establishes which actions might be
executed next and in what order. We distinguish among four different control
relations: sequence, controlled1, alternative and repetition.

A distinguishing feature of GLARE is its capability of representing (and
treating) temporal constraints. Temporal constraints play a fundamental role in
both the description and the execution of clinical guidelines. We have worked to
design a temporal representation formalism as expressive as possible, still main-
taining the tractability of the temporal reasoning process. Our formalism allows
one to represent the (minimum and maximum) duration of each non-composite
action. Temporal constraints can also be associated with control relations be-
tween actions. In the sequence and alternative relations, one can indicate the
minimum and/or maximum delay between actions. In a controlled relation, one
can specify the minimum and/or maximum distance between any pair of end-
points of the actions involved. On the basis of such distances, one can express
both qualitative constraints between actions (however, only continuous pointiz-
able relations can be coped with [23]) and quantitative ones. Finally, two different
ways of specifying repetitions are defined (and can be combined): one can state
that the action has to be performed until a given exit condition becomes true,
or can specify duration (frame time) for the repetitions. In both cases, the fre-
quency of the repetitions in time has to be specified as well; then, several other
parameters must/can be provided.

Ex.1 For six months, perform action A twice each five days for twenty days,
and then suspend for ten days.

The frame time (henceforth called FT for short) can be defined as “the
interval which contains all the instances of the event” [3], (“for six months” in
Ex.1). The description of repeated periodic events splits FT into a sequence of
intervals when actions are performed (called action-times - AT ; “twenty days”

1 Controlled relations are used to represent temporally constrained actions, such as
“A during B”, “start of A at least 1 hour after the beginning of B”, and so on.



540 Paolo Terenziani et al.

in Ex.1) and “pause” intervals (delay time - DT ; “ten days” in Ex.1). In turn,
AT s are split into I-times (IT ; “five days” in Ex.1) where actions are actually
performed (if DT is null, AT coincides with IT ). Finally, we call the number of
actions in each I-time “frequency” (freq; two in Ex.1).

Besides these “explicit” constraints, also the implicit constraints implied by
the has-part relations between actions have to be taken into account [18].

4 Acquisition

The acquisition module is a user-friendly tool that provides expert physicians
with:

(i) a graphical interface, which supports primitives for drawing the control in-
formation within the guideline, and ad hoc windows to acquire the internal
properties of the objects;

(ii) facilities for browsing the guideline;
(iii) “intelligent” help and consistency checking (see next subsection).

4.1 Consistency Checking

The acquisition tool provides an “intelligent” interface supporting expert physi-
cians in the acquisition of a guideline, relying on different forms of consistency
checking.

Name and range checking is automatically triggered whenever the expert
physician introduces a new term or value within the description of an action
in a guideline, and forces her/him to use only terms/values that have already
been defined within the Clinical DB. Whenever the expert physician introduces
a node or arc, different controls are automatically activated to check whether the
new element is consistent with several logical design criteria. For example, alter-
native arcs may only exit from a decision action. Finally, a “semantic” checking
regards the consistency of temporal constraints in the guideline. This checking is
automatically triggered whenever the expert physician saves a guideline. In fact,
alternative sequences of actions and sub-actions may form graph structures, and
the constraints on the minimum and maximum durations of actions and mini-
mum and maximum delays between actions have to be propagated throughout
the graph, to verify consistency.

While GLARE provides users with an interface high-level language to express
temporal constraints, the temporal reasoning facility maintains a homogeneous
internal representation of such constraints, on which the temporal reasoning al-
gorithms operate. We based the design of the internal representation formalism
on the “classical” bounds on differences approach and on the STP (Simple Tem-
poral Problem) framework [1]. This framework takes into account conjunctions
(sets) of bounds on the distance between pairs of time points (of the form c ≤
P1 - P2 ≤ d), and has very nice computational properties: correct and complete
temporal reasoning (e.g., for consistency checking) can be performed in cubic
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time by a classical all-to-all-shortest-paths algorithm (such as Floyd-Warshall’s
one), which also provides the minimal network of the temporal constraints [1].

Most of the temporal constraints provided by GLARE’s interface formalism
can be easily represented by the STP framework. Each action in a guideline
(including composite actions) can be represented by its starting and its ending
point. Thus, the duration of an action can be modeled as the distance between
its endpoints. Delays are directly modeled as distances between points, as well
as qualitative temporal constraints. Unfortunately, the STP framework must be
significantly extended if one wishes to deal with repetitions. We propose to repre-
sent the constraints regarding repetitions into separate STP frameworks, one for
each repeated action. Thus, in GLARE, the overall set of constraints in a guide-
line is represented by a tree of STP frameworks (STP-tree henceforth). The root
of the tree is the STP which homogeneously represents the constraints between
all the actions (composite and atomic) in the guideline, except repeated actions
(which are composite actions, by our definition). Each node in the STP-tree is
an STP, and has as many children as the number of repeated actions it contains.
Each arc in the tree connects a pair of points in an STP (the starting and end-
ing point of a repeated action) to the STP containing the constraints between
the related subactions, and is labeled with the list of properties describing the
temporal constraints on the repetitions (AT , DT etc.; see Ex.2 below). Figure 2
shows the STP-tree representing the temporal constraints in Ex.2.

Ex.2 One possible therapy for multiple mieloma is made by six cycles of 5-day
treatment, each one followed by a delay of 23 days (for a total FT of 24
weeks, divided into six repetitions of an AT of 5 days, followed by a DT
of 23 days. The overall therapy is reported as the root of the STP-tree in
figure 2). Within each 5-day cycle, 2 inner cycles can be distinguished: the
melphalan treatment, to be provided twice a day (AT=IT ), for each of the 5
days (FT ), and the prednisone treatment, to be provided once a day, for each
of the 5 days. These two treatments must be performed in parallel (see the
temporal constraints in node N2 in figure 2), and are shown as leaves of the
STP-tree (nodes N3 and N4 respectively).

Temporal consistency checking proceeds in a top-down fashion, starting from
the root node of the STP-tree. The root is a “standard” STP, so that Floyd-
Warshall’s algorithm can be applied. Then, we proceed towards the leaves of the
tree. For each node in the tree other than the root, we apply ALGO1 (see [18]
for more details):

ALGO1: temporal consistency of guidelines

1. the consistency of the constraints used to specify the repetition taken in
isolation is checked;

2. the “extra” temporal constraints regarding the repetition are mapped onto
bounds on difference constraints;

3. Floyd-Warshall’s algorithm is applied to the constraints in the STP plus the
“extra” bounds on difference constraints determined at step 2.
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Fig. 2. STP-tree for the multiple mieloma chemotherapy guideline. Arcs be-
tween nodes in a STP are labeled by a pair [n, m] representing the minimum
and maximum distance between them. Arcs from a pair of nodes to a child STP
represent repetitions

Property 1. ALGO1 is correct, complete, and tractable (since it operates in
O(N3), where N is the number of actions in the guideline).

5 Execution

The typical use of our execution tool is “on-line”: a user physician executes
a guideline applied to a specific patient (i.e., s/he instantiates a general guideline
considering the data of a given patient). However, we also envision the possibility
of adopting our execution tool for “off-line” execution (this might be useful in
different tasks, including education, critiquing and evaluation). In both cases,
temporal reasoning and decision support facilities may be resorted to (see next
subsections).

5.1 Temporal Reasoning Facilities

The execution tool exploits temporal consistency checking as well. Each action in
a guideline represents a class (set) of instances of actions, in the sense that it will
have specific instantiations for specific executions of the guideline itself. When
a guideline is executed on a specific patient, specific instances of such actions are
performed at specific times. We suppose that the exact times of all the actions
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in the guideline which have been executed are given in input to our system.
Thus, we have to check that they respect (i.e., are consistent with) the temporal
constraints they inherit from the classes in the general guideline. Moreover, also
the (implicit) temporal constraints conveyed by the has-part relations between
actions in the guideline must be respected, as well as those involved by periodicity
and repetitions.

In a broad sense, periodic events are special kinds of classes of events, i.e.,
classes whose instances must respect a periodic temporal pattern. However, while
inheritance of constraints about duration, delays and ordering regards single
instances (duration) or pairs of instances (delays, precedence), periodicity con-
straints concern whole sets of instances, imposing constraints on their cardinality
and on the temporal pattern they have to respect. Finally, notice that the in-
terplay between part-of relations and periodic events might be quite complex to
represent and manage. In fact, in the case of a composite periodic action, the
temporal pattern regards the components, which may be, recursively, composite
and/or periodic actions (see Ex.2).

Finally, notice that, when considering instances, one should also take into
account the fact that guidelines have a “predictive” role. E.g., if one has observed
a given action E1 which is an instance of a class of actions E in a guideline,
and the class E′ follows E in the guideline itself, one expects to observe an
instance of E′ in a time consistent with the temporal constraints between the
classes E and E′. We assume that, as regards the treatment of hospitalized
patients, we have complete observability, i.e., that each execution of an action of
the guideline is reported in the clinical record of the patient, together with its
time of occurrence. Thus the consistency checking must consider “prediction”,
since not having observed an instance of an action indicates an inconsistency,
unless the temporal constraints impose that it may also be executed in a time
after NOW.

Our temporal reasoning algorithm can be schematized as follows:

ALGO2: temporal consistency on guidelines’ execution

1. the existence of non-observed instances whose occurrence is predicted by the
guideline is hypothesized;

2. all the constraints in the general guidelines are inherited by the correspond-
ing instances (considering both observed and hypothesized instances). This
step also involves “non-standard” inheritance of constraints about periodic-
ity;

3. constraint propagation is performed on the resulting set of constraints on
instances (via Floyd-Warshall’s algorithm), to check the consistency of the
given and the inherited constraints;

4. if constraints at step 3 are consistent, it is further checked that such con-
straints do not imply that any of the “hypothesized” instances should have
started before NOW.

Property 2. Our consistency checking algorithm ALGO2 is correct, complete,
and tractable (since it operates in O((N + M)3), where N is the number of
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actions in the guideline and M the number of instances of actions which have
been executed.

A detailed analysis of our temporal reasoning algorithm, and of Property 2
is outside the goals of this paper, and can be found in [17].

5.2 Hypothetical Reasoning Facility

GLARE’s execution tool also incorporates a decision support facility (called
hypothetical reasoning), able to assist physicians in choosing among different
therapeutic or diagnostic alternatives. The default execution of decision actions
works as follows. As regards diagnostic decisions, the execution module automat-
ically retrieves the parameter values from the Patient DB, evaluates the scores
for every alternative diagnosis, and then compares them with the correspond-
ing threshold. All alternative diagnoses are then shown to the user-physician,
together with their scores and the threshold, and the tool lets the user choose
among them (a warning is given if the user chooses a diagnosis which does not
exceed the threshold). The execution of a therapeutic decision simply consists in
presenting the effectiveness, cost, side-effects, compliance, and duration of each
alternative to the physician, thus allowing her/him to select one of them. On
the other hand, through the adoption of the hypothetical reasoning facility, it is
possible to compare different paths in the guideline, by simulating what could
happen if a certain choice was made. In particular, users are helped in gathering
various types of information, needed to discriminate among alternatives. As a
matter of fact, in many cases, therapeutic and/or diagnostic decisions should
not be taken on the basis of “local information” alone, i.e. by considering just
the decision criteria associated with the specific decision action at hand, but
one should also take into account information stemming from relevant alterna-
tive paths. In particular, the resources needed to perform all the actions found
along each alternative path (starting from the decision at hand), the costs and
the times required to complete them, are meaningful selection parameters. The
unique feature of this tool is its capability of retrieving such “global informa-
tion”. This facility can be used both in the on-line and in the off-line execution
mode.

Technically speaking, to provide a projection of what could happen in the
rest of the guideline in case the user selected a given alternative, the tool works
as follows. Through the execution tool graphical interface, the physician is asked
to indicate on the graph the starting node (normally the decision at hand) of
the paths to be compared and (optionally) the ending nodes (otherwise all pos-
sible paths exiting the starting node will be taken into consideration). Relevant
decision parameters (costs, resources, times) will be gathered from the selected
portions of the guideline in a semi-automatic way. In particular, whenever a de-
cision action is reached within each path, the user is allowed to choose a subset
of alternatives, by checking the corresponding buttons in a pop up window. For
a diagnostic decision, s/he may want to allow all alternatives to be considered,
or s/he could limit the search to the diagnoses that obtained a score exceeding
the threshold, or to a subset of these diagnoses themselves. When dealing with
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a therapeutic action, again the user could allow all alternatives to be evaluated,
or could mark the therapies s/he expects to be equivalent for the patient un-
der examination, or a subset of them. Making a restriction means that, on the
physician’s opinion, the other paths are not interesting for comparison, and they
will be ignored by the hypothetical reasoning process. If a composite action is
found, it is expanded in its components, and the hypothetical reasoning facil-
ity is recursively applied to each of them, by analyzing all the decision actions
that appear at the various decomposition levels. At the end of this process, the
tool displays the values of the collected parameters for each one of the selected
paths. The final decision is then left to the physician. Note that while resources
in a path are simply listed, and costs are summed up (in the case that an exit
condition is specified, the cost of each iteration will be calculated), the temporal
constraint propagation techniques discussed so far are necessary in order to deal
with the temporal parameters.

6 Testing

We have already tested our prototype acquisition and representation system
considering different domains, including bladder cancer, reflux esophagitis and
heart failure. In the case of bladder cancer, the expert physicians started design-
ing the guideline algorithm from scratch, directly using our acquisition tool (after
a brief training session), and exploiting the facilities (e.g., consistency checking)
it provides.

In the cases of reflux esophagitis and heart failure, the physicians started
with guideline algorithms previously described on paper (using drawings and
text), and used our acquisition tool to introduce them into a computer format.
The acquisition of a clinical guideline using our system was reasonably fast (e.g.,
the acquisition of the guideline on heart failure required 3 days).

In all the tests, our representation formalism (and the acquisition tool) proved
to be expressive enough to cover the clinical algorithms.

7 Comparisons and Conclusions

In this paper, we highlighted the most innovative features of GLARE, a domain
- independent framework to acquire, represent and execute clinical guidelines.
In the latest years, many approaches agreed that providing a semi-automatic
treatment of clinical guidelines is very advantageous, and that AI techniques
can be fruitfully applied to achieve such a goal.

Among the approaches in the literature, we think that PROforma [4] and
Asbru [15] are the closest ones to GLARE. However, two distinguishing features
of the GLARE approach, that clearly highlight the advantages of applying AI
techniques to clinical guideline tools, can be outlined:

(i) GLARE provides “intelligent” mechanisms for consistency checking (see
however [13], where the correctness and completeness of the activation con-
ditions of subtasks are automatically checked). Specific attention is devoted
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to the treatment of temporal constraints between atomic, periodic and/or
repeated actions in both the acquisition (section 4) and in the execution
(section 5) phases;

(ii) GLARE provides user physicians with the hypothetical reasoning facility,
a practical way of comparing alternative paths in a guideline on the basis
of a chosen set of parameters (see section 5).

In particular, (i) and (ii) are also the innovative features of the approach
we described in this paper (together with the introduction of the “intermediate”
XML layer in the architecture; see section 2) with respect to our initial approach,
as described in [20].

More generally, GLARE, as well as PROforma, Asbru, and many other ap-
proaches, shows that the adoption of AI techniques can provide relevant advan-
tages in the (semi-)automatic treatment of clinical guidelines, especially regard-
ing the user - friendliness of the tools being built. In turn, user-friendliness seems
to be one of the most crucial aspects in the dissemination and actual adoption
of computer science tools within the medical community.
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