
DATA MINING APPLIED TO AGENT BASED SIMULATION 

KEYWORDS

Data Mining, Agent Based Simulation, validation, 
emergence, artificial intelligence 

ABSTRACT

Agent Based Modeling is the most interesting and 
advanced approach for simulating a complex system: in 
a social context, the single parts and the whole are often 
very hard to describe in detail. Besides, there are agent 
based formalisms which allow to study the emergency 
of social behavior with the creation and study of 
models, known as artificial societies. Thanks to the ever 
increasing computational power, it's been possible to 
use such models to create software, based on intelligent 
agents, which aggregate behavior is complex and 
difficult to predict, and can be used in open and 
distributed systems. 
Data mining is born in the last decades in order to help 
users in finding useful knowledge from the otherwise 
overwhelming amount of data available nowadays from 
the web and the data collected every day by companies. 
Data Mining techniques can therefore be the keystone 
to reveal non-trivial knowledge expressed by the initial 
assumption used to build the micro-level of the model 
and the structure of the society of agents that emerged 
from the simulation. 

INTRODUCTION

Nowadays the simulation is one of the best paradigms 
for modeling the behavior of complex systems even 
thought it has some leaks. Above all, the simulation 
model is only a rough approximation of the real system 
to study; each approximation produced will not cover 
the whole set of details we can actually study looking at 
the real system. The gap between model and reality is 
well known in fields like Computer Science and 
Mathematics but the situation is far from being 
desperate. The gap can be intentional since the realm of 
interest can be a small piece of the whole sensible 
world. Moreover the ability to create artificial worlds 
whose relations and states can be arbitrarily changed 
allows us to explore the full possibility of the real 
system. The fact to simulate a system under unnatural 
conditions can help us to study scenarios of 
unimaginable flexibility. 

The other side of the coin is that the procedure of 
modeling introduces a bias that it is difficult to detect. 
How reliable is a model? How to proceed in the model 
proposal? These are difficult questions to answer when 
there are no strong and formal fundamentals in model 
proposal.
Statistical techniques usually try to overcome such bias 
using distribution hypothesis and strong mathematical 
foundations for the procedures used during data 
analysis.
In the present paper the authors try to propose a cross 
fertilizations between Agent Based Simulation and 
Statistical Learning techniques (or more specifically 
Data Mining techniques) in order to handle and possibly 
overcome the limitations of both.        

AN INTRODUCTION TO DATA MINING 

Data Mining is the key element of the Knowledge 
Discovery in Databases (KDD) task. KDD is defined as 
“the process of identifying valid, novel, potentially 
useful and ultimately understandable patterns in data”.
We could finally add that such task involves usually 
great amount of data, usually stored in analysis oriented 
data stores called Data Marts. 
Data Mining is not a field in itself; it is more a 
collection of methods of data analysis coming from 
different fields of computer science, artificial 
intelligence and statistics. Just statistics supplies 
mathematical concreteness to many of the date mining 
methods. 
Data mining was born in the latest decades in order to 
help users in finding useful knowledge from the 
otherwise overwhelming amount of data available 
nowadays, both coming from the web and the data 
collected every day by companies. 
The kind of knowledge the users can extract from the 
raw data is heterogeneous and most depends on the 
nature of the data available. In fact the nature of the 
data and the kind of task guide the process of data 
analysis itself, that is more the production of an 
artigianal process guided by the experiences rather than 
the result of an automatic process. 
The types of tasks Data Mining could accomplish can 
be roughly divided in two categories: predictive tasks 
and descriptive tasks. The first type of tasks try to 
discover a model that drives the behavior of some 
variables in a system in order to be able to predict such 
values in zones not covered by the examples. The 
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second type of task tries to find some categorizations of 
the data producing a shrinked descriptor for wider 
segments of data. 

Predictive Data Mining 

One of the predictive tasks of Data Mining is the task of 
finding some form of classifications of the items 
contained in the data mart from a set of raw data. When 
there is a finite set of classes that describe the domain of 
the data, the classification can be carried on by some if-
then rules that help users to classify a new item in one 
of such predefined classes. Such classification process 
is based on the values of some characteristics of the 
item itself and can be deterministic (e.g. there is no 
doubt about the belonging of the item to the given class) 
or heuristic (e.g. the association of the item to one or 
more classes is given with a degree of certainty). 
The association model so far extracted can have the 
form of a decision tree, instead of a set of if-then rules, 
but the purposes of the model retrieved remains the 
same. When the classification domain is not finite (e.g. 
when the variable interested by the prediction process is 
a real number) the operation is called regression. The 
regression task helps the user to model an analytic 
function that describes the set of data submitted to the 
task and that can predict new, not submitted, values. 

Descriptive Data Mining 

In descriptive Data Mining the task is to discover 
interesting regularities in the data, to uncover patterns 
and find interesting subgroups in the bulk of data. 
Such kind of Data Mining produce a categorization of 
the initial amount of data uncovering patterns that were 
not evident before the execution of the task. Expert of 
the domain must then interpret the patterns so far 
uncovered in order to explain them. 
A typical product of this kind of task is the discovery of 
association rules that find untilled relationships between 
features’ values looking at the examples proposed as 
training.
Such association rules can be used as classifiers to find 
some subgroups dividing the population in relevant 
clusters. The division in clusters reflects some important 
division present in the data that could be crucial in order 
to reason using a small number of stereotypes instead of 
a huge number of single items. 
Another important task associated to Data Mining is the 
use of advanced techniques of visualization. In fact, 
since data analysts and domain specialists do most of 
the work of discovery, it is very important to find good 
visual metaphors to give users right intuitions to guide 
the analysis.
Naturally such metaphors are only useful to guide the 
intuition, in order to provide mathematical soundness 
the Data Mining is supported by statistical methods 
such as probabilities laws for the items values’ 
prediction, Bayesian theorems for defining some sort of 
causality and so on. The techniques of Data Mining, 
having their foundations in statistic, require a large 
number of items to build satisfying results. When only a 

small number of examples are available, techniques of 
Machine Learning, coming from AI and inductive logic 
fields, are suggested. Such techniques find their 
fundaments in symbolic reasoning and non-classical 
logics and do not require statistical tools for soundness 
checking.

AGENTS FOR SOCIAL SIMULATION 

The concept of software agent originates in the early 
fifties with J. McCarthy, while the term has been coined 
by O.G. Selfridge some years later, when both of them 
were working at the Massachusetts Institute of 
Technology. Their original project was to build a 
system which, given a goal, could be able to accomplish 
it, looking for human help in case of lack of necessary 
information. In practice, an agent was considered a 
software robot that lives and acts in a virtual world. In 
(Wooldridge and Jennings 1995): "... a hardware or 
(more usually) software-based computer system that 
enjoys the following properties:

autonomy: agents operate without the direct 
intervention of humans or others, and have some kind 
of control over their actions and internal state;

social ability: agents interact with other agents 
(and possibly humans) via some kind of agent-
communication language;  

reactivity: agents perceive their environment, 
(which may be the physical world, a user via a graphical 
user interface, a collection of other agents, the internet, 
or perhaps all of these combined), and respond in a 
timely fashion to changes that occur in it;  

pro-activeness: agents do not simply act in 
response to their environment, they are able to exhibit 
goal-directed behaviour by taking the initiative." The 
Wooldridge and Jennings definition, in addition to 
spelling out autonomy, sensing and acting, allows for a 
broad, but finite, range of environments. They further 
add a communications requirement. 

Franklin and Graesser (1997) also try to find the typical 
features of agency, deriving them from the word itself: 
an “agent” is 1) one who acts, or who can act, and 2) 
one who acts in place of another with his permission. 
Since "one who acts in place of " acts, the second usage 
requires the first. Humans act, as do most other animals. 
Also, some autonomous mobile robots act, for example 
Brooks' Herbert (Brooks 1990; Franklin 1995). All of 
these are real world agents. Software agents "live" in 
computer operating systems, databases, networks, 
MUDs, etc. 
Finally, artificial life agents "live" in artificial 
environments on a computer screen or in its memory 
(Langton 1989, Franklin 1995). 
Each is situated in, and is a part on some environment. 
Each senses its environment and act autonomously upon 
it. No other entity is required to feed it input, or to 
interpret and use its output. Each acts in pursuit of it's 
own agenda, whether satisfying evolved drives as in 
humans and animals, or pursuing goals designed in by 



some other agent, as in software agents. (Artificial life 
agents may be of either variety.) Each acts so that its 
current actions may effect its later sensing, that is its 
actions effect its environment. Finally, each acts 
continually over some period of time. A software agent, 
once invoked, typically runs until it decides not to. An 
artificial life agent often runs until it's eaten or 
otherwise dies. Of course, some human can pull the 
plug, but not always. Mobile agents on the Internet may 
be beyond calling back by the user. 
These requirements constitute for sure the essence of 
being an agent, hence the definition by Franklin and 
Graesser (1997): 

An autonomous agent is a system situated within and a 
part of an environment that senses that environment 
and acts on it, over time, in pursuit of its own agenda 
and so as to effect what it senses in the future. 

And the very general, yet comprehensive one by 
Jennings (1996): 

…the term is usually applied to describe self-contained 
programs which can control their own actions based on 
their perceptions of their operating environment. 

Agents themselves have traditionally been categorized 
into one of the following types (Woolridge and 
Jennings, 1995):

Reactive
Collaborative/Deliberative
Hybrid

When designing any agent-based system, it is important 
to determine how sophisticated the agents' reasoning 
will be. Reactive agents simply retrieve pre-set 
behaviors similar to reflexes without maintaining any 
internal state. On the other hand, deliberative agents 
behave more like they are thinking, by searching 
through a space of behaviors, maintaining internal state, 
and predicting the effects of actions. Although the line 
between reactive and deliberative agents can be 
somewhat blurry, an agent with no internal state is 
certainly reactive, and one that bases its actions on the 
predicted actions of other agents is deliberative.
In Mataric (1995) we read that reactive agents maintain 
no internal model of how to predict future states of the 
world. They choose actions by using the current world 
state as an index into a table of actions, where the 
indexing function's purpose is to map known situations 
to appropriate actions. These types of agents are 
sufficient for limited environments where every 
possible situation can be mapped to an action or set of 
actions.
The purely reactive agent's major drawback is its lack of 
adaptability. This type of agent cannot generate an 
appropriate plan if the current world state was not 
considered a priori. In domains that cannot be 
completely mapped, using reactive agents can be too 
restrictive.

Different from reactive agents are the deliberative ones. 
The key component of a deliberative agent is a central 
reasoning system (Ginsberg, 1989) that constitutes the 
intelligence of the agent. Deliberative agents generate 
plans to accomplish their goals. A world model may be 
used in a deliberative agent, increasing the agent's 
ability to generate a plan that is successful in achieving 
its goals even in unforeseen situations. This ability to 
adapt is desirable in a dynamic environment.  
The main problem with a purely deliberative agent 
when dealing with real-time systems is reaction time. 
For simple, well known situations, reasoning may not 
be required at all. In some real-time domains, such as 
robotic soccer, minimizing the latency between changes 
in world state and reactions is important.  
Hybrid agents, when designed correctly, use both 
approaches to get the best properties of each (Bensaid 
and Mathieu, 1997). Specifically, hybrid agents aim to 
have the quick response time of reactive agents for well 
known situations, yet also have the ability to generate 
new plans for unforeseen situations. 

Multi Agent Systems (MAS) 

A multi agent system can be thought of as a group of 
interacting agents working together to achieve a set of 
goals. To maximize the efficiency of the system, each 
agent must be able to reason about other agents' actions 
in addition to its own. A dynamic and unpredictable 
environment creates a need for an agent to employ 
flexible strategies. The more flexible the strategies 
however, the more difficult it becomes to predict what 
the other agents are going to do. For this reason, 
coordination mechanisms have been developed to help 
the agents interact when performing complex actions 
requiring teamwork. These mechanisms must ensure 
that the plans of individual agents do not conflict, while 
guiding the agents in pursuit of the goals of the system. 

AGENT BASED SIMULATION 

The most diffused simulation paradigms are: Discrete 
Event (DE) Simulation, System Dynamics (SD) and 
Agent Based (AB) Simulation. 
The term DE simulation applies to the modeling 
approach based on the concepts of entities, resources 
and block charts describing entity flow and resource 
sharing. DE simulation is usually applied to process 
modeling, hence the definition of “process simulation”, 
which is a sub-set of the DE one. 
According to Jay W. Forrester in the 1950s, SD is “the
study of information-feedback characteristics of 
industrial activity to show how organizational structure, 
amplification (in policies), and time delays (in decisions 
and actions) interact to influence the success of the 
enterprise”. SD heavily relies upon systems of 
differential equations, which best represents the 
feedback loops typical of this approach. 
In (Ostrom 1988), agent based simulation is described 
as a third way to represent social models, being a 



powerful alternative to other two symbol systems: the 
verbal argumentation and the mathematical one. The 
former, which uses natural language, is a non 
computable way of modelling though a highly 
descriptive one; in the latter, while everything can be 
done with equations, the complexity of differential 
systems rises exponentially as the complexity of 
behaviour grows, so that describing complex individual 
behaviour with equations often becomes an intractable 
task. Simulation has some advantages over the other 
two: it can easily be run on a computer, through a 
program or a particular tool; besides it has a highly 
descriptive power, since it is usually built using a high 
level computer language, and, with few efforts, can 
even represent non-linear relationships, which are tough 
problems for the mathematical approach. According to 
(Gilbert, Terna 2000): 

“The logic of developing models using computer 
simulation is not very different from the logic used for 
the more familiar statistical models. In either case, 
there is some phenomenon that the researchers want to 
understand better, that is the target, and so a model is 
built, through a theoretically motivated process of 
abstraction. The model can be a set of mathematical 
equations, a statistical equation, such as a regression 
equation, or a computer program. The behaviour of the 
model is then observed, and compared with 
observations of the real world; this is used as evidence 
in favour of the validity of the model or its rejection”

In Remondino (2003) we read that computer programs 
can be used to model either quantitative theories or 
qualitative ones; simulation has been successfully 
applied to many fields, and in particular to social 
sciences, where it allows to verify theories and create 
virtual societies. In order to simulate the described 
problem, multi-agent technique is used. Agent Based 
Modelling is the most interesting and advanced 
approach for simulating a complex system: in a social 
context, the single parts and the whole are often very 
hard to describe in detail. Besides, there are agent based 
formalisms which allow to study the emergency of 
social behaviour with the creation and study of models, 
known as artificial societies. Thanks to the ever 
increasing computational power, it's been possible to 
use such models to create software, based on intelligent 
agents, which aggregate behaviour is complex and 
difficult to predict, and can be used in open and 
distributed systems. The concept of Multi Agent System 
for social simulations is thus introduced: the single 
agents have a very simple structure. Only few details 
and actions are described for the entities: the behaviour 
of the whole system is a consequence of those of the 
single agents, but it's not necessarily the sum of them. 
This can bring to unpredictable results, when the 
simulated system is studied. 
In an AB model, there is not a place where the global 
system behavior (dynamics) would be defined. Instead, 
the modeler defines behavior at individual level, and the 
global behavior emerges as a result of many (tens, 
hundreds, thousands, millions) individuals, each 

following its own behavior rules, living together in 
some environment and communicating with each other 
and with the environment. That is why AB modeling is 
also called bottom-up modeling. 
The agent-based view takes a different approach to 
modeling. Instead of creating a simple mathematical 
model, the underlying model is based on a system 
comprised of various interacting agents. Therefore, its 
structure and behavior have potential to resemble the 
actual economic theory and reality better than simple 
mathematical models. Especially, when the underlying 
real relationships are complex. 

In (Bonabeau, 2002), we read that AB paradigm can be 
used successfully to model different situations, like 
flows, markets, organizations, social diffusion of 
phenomena. 

DATA MINING IN AGENT BASED SIMULATION 
TASKS

While in the process simulation the focus is on the 
function description of the single parts that are modeled 
in detail, in agent based simulation the most important 
facet is the interaction among entities. In fact it is such 
interaction that produce a variety of behavior that was 
not explicitly described in the model of the single parts. 
In agent based simulation there are therefore two main 
levels that use distinct languages with distinct purposes. 
A micro-level used to describe a simple local behavior 
and a macro-level whose effects derive in part from the 
micro-level and in part from the interaction of more 
elements. Such emergent behaviors could be revealed 
by non-explicit patterns in the simulation data and a 
following phase to the simulation can be needed in 
order to reveal the model that subtend the data 
production. Data Mining techniques can therefore be 
the keystone to reveal non-trivial knowledge expressed 
by the initial assumption used to build the micro-level 
of the model and the structure of the society of agents 
that emerged from the simulation. 
Data Mining, and Machine Learning in general can be 
used in a number of ways in agent-based simulation, we 
can classify these contributions in two main tasks: 

Endogenous modeling. Where Machine Learning 
and Data Mining techniques can be used to provide the 
single agent a sort of intelligent behavior that analyze 
the data of past executions of the simulation learning 
from experience and tuning some initial parameters of 
the simulation in order to reach some local maximum 
(Remondino, 2003).  

Exogenous modeling. Where the final results of a 
simulation are analyzed using Data Mining techniques 
in order to reveal interesting patterns in data that could 
help to better model the behavior of the overall systems. 
Note that the system’s behavior is usually more that the 
sum of the parts and it is not described in the first phase 
of the simulation task. Data Mining could be used to 
build a model supported by statistical evidence that 



could validate or refuse some initial hypothesis on the 
system. 

Endogenous Modeling 

A lot of models used in agent-based simulation tries to 
capture the emergent unpredictable behavior of rational 
agents when they interact with a population of peers. 
The machine learning algorithms allows an agent to 
learn from its past history in a human similar way, that 
is to say, by induction. we can choose to create agents 
with the ability to compute rules and strategies, and 
evolve according to the environment in which they act; 
in order to model them, we can use some methods 
derived from the studies on artificial intelligence, such 
as artificial neural networks and evolutionary 
algorithms. While the former is a collection of 
mathematical functions, trying to emulate nervous 
systems in the human brain in order to create learning 
through experience, the latter derives from observations 
of biological evolution. Genetic Algorithms derive 
directly from Darwin's theory of evolution, often 
explained as "survival of the fittest": individuals are 
modelled as strings of binary digits and are the encode 
for the solution to some problem. The first generation of 
individuals is often created randomly, and then some 
fitness rules are given (i.e. better solutions for a 
particular problem), in order to select the fittest entities. 
The selected ones will survive, while the others will be 
killed; during the next step, a crossover between some 
of the fittest entities occurs, thus creating new 
individuals, directly derived from the best ones of the 
previous generation. Again, the fitness check is 
operated, thus selecting the ones that give better 
solutions to the given problem, and so on. In order to 
insert a random variable in the genetic paradigm, that’s 
something crucial in the real world, a probability of 
mutation is given; this means that from one generation 
to the next one, one or more bits of some strings can 
change randomly. This creates totally new individuals, 
thus not leaving us only with the direct derivatives of 
the very first generation. Genetic Algorithms have 
proven to be effective problem solvers, especially for 
multi-parameter function optimization, when a near 
optimum result is enough and the real optimum is not 
needed. This suggests that this kind of methodology is 
particularly suitable for problems which are too 
complex, dynamic or noisy to be treated with the 
analytical approach; on the contrary, it’s not advisable 
to use Genetic Algorithms when the result to be found 
is the exact optimum of a function. The risk would be a 
convergence to some results due to the similarity of 
most the individuals, that would produce new ones that 
are identical to the older ones; this can be avoided with 
a proper mutation, that introduces in the entities 
something new, not directly derived from the crossover 
and fitness process. In this way, the convergence should 
mean that in the part of the solution space we are 
exploring there are no better strategies than the found 
one. It’s crucial to choose the basic parameters, such as 

crossover rate and mutation probability, in order to 
achieve and keep track of optimal results and, at the 
same time, explore a wide range of possible solutions. 
Classifier Systems derive directly from Genetic 
Algorithms, in the sense that they use strings of 
characters to encode rules for conditions and 
consequent actions to be performed. The system has a 
collection of agents, called classifiers, that through 
training evolve to work together and solve difficult, 
open-ended problems. They were introduced in 
(Holland 1976) and successfully applied, with some 
variations from the initial specifics, to many different 
situations. The goal is to map if-then rules to binary 
strings, and then use techniques derived from the 
studies about Genetic Algorithms to evolve them. 
Depending on the results obtained by performing the 
action corresponding to a given rule, this receives a 
reward that can increase its fitness. In this way, the rules 
which are not applicable to the context or not useful 
(i.e. produce bad results) tend to loose fitness and are 
eventually discarded, while the good ones live and 
merge, producing new sets of rules. In (Kim, 1993) we 
find the concept of Organizational-learning oriented 
Classifier System, extended to multi-agent 
environments with introducing the concepts of 
organizational learning. According to (Takadama 1999), 
in such environments agents should cooperatively learn 
each other and solve a given problem. The system 
solves a given problem with multi-agents’ 
organizational learning, where the problem cannot be 
solved simply by the sum of individual learning of each 
agent.

Exogenous Modeling 

In particular, the exogenous modeling can be an 
important task in agent-based simulation since it 
provides safe techniques to analyze the results of this 
kinds of simulation paradigm. In fact, one of the most 
debated issues in agent based simulation community is 
the absence of a safe technique for validate the results 
of the simulations. This kind of statistical analysis of the 
results of the simulation could provide a real added 
value to this kind of representation of social models. In 
fact, in modeling social systems, the first step is to 
create a metaphor of the real system. Such models of the 
reality suffer, as we said in the introduction, of some 
initial hypothesis that must test when the first results 
came up. The usual validation is based upon the 
matching of the simulation values; if the model predicts, 
to some extent, the values observed in reality then this 
is taken as a proof of validity of the model itself 
(Gilbert, Terna 1999). The goodness criterions follow 
usually statistical theories and make reference to the 
knowledge of hypothesis testing, where a distribution of 
values is compared to a reference distribution in order 
to come up with a fitness number.  
Using Data Mining we can use statistical foundations in 
order to deduce from the values of the simulation a 
model that well describe such values. Such models 
provided by statistical analysis are relative to the whole 
system; they try to describe, with simple and 



deterministic models, how the single entities cooperate 
in order to produce the observed behavior. 
There are many Data Mining tools that can be used in 
order to help the analysts to extract valuable knowledge 
about the reality whose drives the modeling phase or 
about the model itself. In the following we will provide 
a short overview of those whose are more interesting in 
our point of view, but the discussion is far from being 
closed. This is just a hint in order to stimulate the 
discussion.

Analysis of variance 

The analysis of variance is one method used in 
statistical analysis to discover unsaid relationships 
between variables of a system. In few words, variables 
are related if the distribution of their values 
systematically corresponds. For example, in a 
population, the height is related to weight because 
typically tall individuals are heavier than short ones. 
Analysis of variance can be a good starting point in 
model proposal. In fact, looking at the system to be 
modelled, the user can be prompted to recognize some 
relationships existents between internal variables trying 
to model such relationships accordingly. 

Multiple regression 

In multiple regression, as well as in the analysis of 
variance, the goal is to find relationships between 
variables of a system. The difference in multiple 
regression, and in regression in general, is that such 
method tries to estimate such relationship rebuilding an 
equation that describe the behaviour of one or more 
dependant variables in function of one or more 
independent variables. There is more than one method 
in order to operate such regression whose main 
distinction can be seen from linear methods (where the 
equation obtained is linear in the input parameters) and 
non-linear methods (where the equation can be a 
polynomial or other functions). 
Pushing further the concept of preliminary analysis of 
the system to simulate, we can use multiple regression 
in order to: 

guiding the modeling phase proposing some 
algorithm that code the so far discovered behaviour 

make the tuning of some initial parameters of the 
simulation before the simulation starts 

use the multiple regression above the real system 
and the modelled one in order to provide a degree of 
adherence of the model to the real world 

Cluster analysis 

In cluster analysis the goal is to retrieve some 
collections of individuals whose description (or 
behaviour) is alike. In clustering analysis, the users can 
define a distance measure based on the properties of 
single agents. Moreover he can recognizes if, within the 
system, are present well-defined set of individuals that 
are similar, based of the given distance measure. 

This is useful in order to decrease the number of 
element to describe within the system. In fact, instead of 
focusing over the single agent behaviour in an object-
oriented way, the user could look at the system as a set 
of clusters whose elements are in some way equivalent. 
Recognizing the fact that the description of single 
elements can be summarized by the description of few 
clusters can help to decrease the heterogeneity of the 
system. 

Association rules 

In this method the aim is to find regular patterns that 
describe categorical data and express such patterns 
using “if then” rules that recall a causal semantics. The 
rationale used to extract these rules is quite simple, the 
hard part is to apply it to huge amount of data. The 
method records the frequencies of certain patterns 
within a load of observations. For example, if every 
time the variable “a” has value “1” then the variable “b” 
has the value “0” we can deduce that the rule “a=1 
b=0” holds. We are not able to say why it is like that, 
but the available observations give us a certain degree 
of certainty. 
The causal semantics associated to the results and its 
algorithmic nature provide us with a natural instrument 
to explore the hidden model followed by the system   

Iterative process in modeling phase

By using the above described methods, and many others 
not mentioned here, we can define a modeling and 
model revision process. Such process starts from the 
first task of model building (Model Building task in 
Figure 1) where a first proposal of model is done and 
will be tested after various runs. As we introduced in 
the first part of the paper, such task suffers from a set of 
initial hypothesis and it produces a first proposal of 
model used in the simulations. In this very first phase 
Data Mining (DM Analysis in Figure 1) can be used in 
order to make safe hypothesis over the real behavior of 
the system (or at least for that portion of the behavior 
that is observable, simulation is a good way to discover 
new scenarios that are not observed before). 
When the simulation has produced a good amount of 
observations to work with (Simulation task in Figure 1) 
a new phase of Data Mining analysis can be used to 
make hypothesis above the model produced (DM 
Analysis task in Figure 1). Such results could validate 
or refuse the initial hypothesis about the real world and 
could guide a revision process in order to refine our 
knowledge about the overall system (Model Revision 
task in Figure 1). 

Model
Building 

Real world Simulation 

DM Analysis Model
Revision



Figure 1: DM revision process applied to AB Simulation

Such iterative process could produce finer and finer 
model hypothesis until a desired convergence is found. 
Moreover, during the revision process the user could 
have a sound statistical theory as a guidance that 
provides him/her with a measure of the fitness of the 
model.   

CONCLUSIONS AND FUTURE DIRECTIONS 

In our work we explored the ways in which Data 
Mining techniques could be successfully applied to 
Agent Based Modeling and Simulation, in order to 
exploit hidden relations and emergent behavior. We 
found that Data Mining, and Machine Learning in 
general can be used in a number of ways in agent-based 
simulation, we can classify these contributions in two 
main tasks: Endogenous modeling, where Machine 
Learning can be used to provide the single agent a sort 
of intelligent behavior and Exogenous modeling, Where 
the final results of a simulation are analyzed using Data 
Mining techniques in order to reveal interesting patterns 
in data that could help to better model the behavior of 
the overall systems.  We provide an overview of the 
tools that we think could be useful to accomplish this 
task: Analysis of variance, Multiple regression, Cluster 
analysis, Association rules. By using the above 
described methods, and many others not described here, 
we can define a modeling and model revision process. 
In future works we plan to apply the techniques 
described here to simple agent based models and 
demonstrate they can be useful for model validation and 
hidden patterns analysis. 
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