

Exact identification of lossless systems

Paolo Rapisarda

**Information: Signals, Images, Systems group
School of Electronics and Computer Science
University of Southampton**

**Open and Interconnected Systems
Modeling and Control
Brugge/Bruges, 16th-17th September 2009**

Joint work with Harry L. Trentelman

Department of Mathematics, University of Groningen

Outline

Problem statement

Background

Behaviors

Losslessness

Main result

Problem statement

**u and y exactly measured:
no noise**

Problem statement

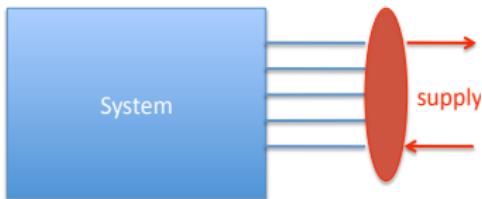
u and y **exactly measured:**
no noise

Exact identification: find LTI system producing u, y

Problem statement

**u and y exactly measured:
no noise**

Exact identification: find LTI system producing u, y

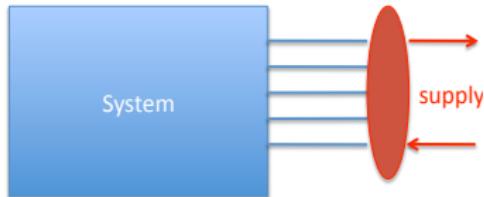


Supply rate: e.g. power

Problem statement

**u and y exactly measured:
no noise**

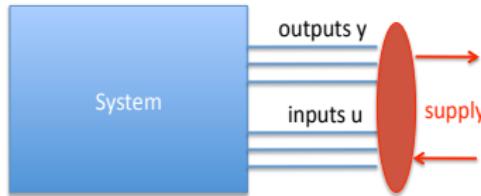
Exact identification: find LTI system producing u, y



Supply rate: e.g. power

Lossless system: $\int_{\mathbb{R}} \text{supply in} - \int_{\mathbb{R}} \text{supply out} = 0$
beginning at rest, ending at rest

Problem statement



Given (infinite) exact measurements of u and y of system lossless w.r.t. (known) supply rate Q_Φ , find state representation

$$\sigma x = Ax + Bu$$

$$y = Cx + Du$$

of a system compatible with the measurements.

Outline

Problem statement

Background

Behaviors

Losslessness

Main result

Outline

Problem statement

Background

Behaviors

Losslessness

Main result

Behaviors

**System \rightsquigarrow behavior \mathcal{B} , set of trajectories
compatible with the dynamical laws of the system**

Behaviors

System \leadsto behavior \mathfrak{B} , set of trajectories compatible with the dynamical laws of the system

In this talk, \mathfrak{B} is:

- **linear subspace of $(\mathbb{R}^w)^\mathbb{Z} := \{w : \mathbb{Z} \rightarrow \mathbb{R}^w\}$;**
- **shift-invariant:** $\sigma\mathfrak{B} \subseteq \mathfrak{B}$, with σ the forward shift;
- **complete:**
 $w \in \mathfrak{B} \Leftrightarrow w|_{\mathbb{Z} \cap [t_0, t_1]} \in \mathfrak{B}|_{\mathbb{Z} \cap [t_0, t_1]} \quad \forall -\infty < t_0 \leq t_1 < \infty$
- **'controllable'**
($\implies \mathfrak{B} \ni$ compact support trajectories)

Behaviors

System \leadsto behavior \mathfrak{B} , set of trajectories compatible with the dynamical laws of the system

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{D} \in \mathbb{R}^{p \times m}$, then

$$\begin{aligned}\mathfrak{B} = \{(\mathbf{u}, \mathbf{y}) \in (\mathbb{R}^{m+p})^{\mathbb{Z}} & \mid \exists \mathbf{x} \in (\mathbb{R}^n)^{\mathbb{Z}} \\ \text{s.t. } \sigma \mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}\}\end{aligned}$$

Behaviors

System \leadsto behavior \mathcal{B} , set of trajectories compatible with the dynamical laws of the system

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$, $\mathbf{B} \in \mathbb{R}^{n \times m}$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, $\mathbf{D} \in \mathbb{R}^{p \times m}$, then

$$\begin{aligned}\mathcal{B} = \{(\mathbf{u}, \mathbf{y}) \in (\mathbb{R}^{m+p})^{\mathbb{Z}} &| \exists \mathbf{x} \in (\mathbb{R}^n)^{\mathbb{Z}} \\ \text{s.t. } \sigma \mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}\}\end{aligned}$$

\mathcal{B} is external behavior of the full behavior (w/ state)

$$\begin{aligned}\mathcal{B}_f = \{(\mathbf{u}, \mathbf{y}, \mathbf{x}) \in (\mathbb{R}^{m+p+n})^{\mathbb{Z}} &| \\ \sigma \mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}, \mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}\}\end{aligned}$$

Behaviors

System \leadsto behavior \mathfrak{B} , set of trajectories compatible with the dynamical laws of the system

Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$, then

$$\begin{aligned}\mathfrak{B} = \{ (u, y) \in (\mathbb{R}^{m+p})^{\mathbb{Z}} &| \exists x \in (\mathbb{R}^n)^{\mathbb{Z}} \\ \text{s.t. } \sigma x = Ax + Bu, y = Cx + Du \} \end{aligned}$$

\mathfrak{B} is external behavior of the full behavior (w/ state)

$$\begin{aligned}\mathfrak{B}_f = \{ (u, y, x) \in (\mathbb{R}^{m+p+n})^{\mathbb{Z}} &| \\ \sigma x = Ax + Bu, y = Cx + Du \} \end{aligned}$$

Minimal state: $\dim(x) = n(\mathfrak{B})$, McMillan degree of \mathfrak{B} .

Exact identification

Given measurements D , \mathfrak{B} is **unfalsified by D** if

$$D \subseteq \mathfrak{B}$$

Exact identification

Given measurements D , \mathfrak{B} is **unfalsified by D** if

$$D \subseteq \mathfrak{B}$$

$f = \mathbb{Z}_+ \rightarrow \mathbb{R}^{\mathfrak{f}}$ **persistently exciting of order L** if

$$\text{rank} \begin{bmatrix} f(0) & f(1) & \cdots & f(T-L) & \cdots \\ f(1) & f(2) & \cdots & f(T-L+1) & \cdots \\ \vdots & \vdots & & \vdots & \vdots \\ f(L-1) & f(L) & \cdots & f(T+1) & \cdots \end{bmatrix} = L\mathfrak{f}$$

Exact identification

Given measurements D , \mathfrak{B} is unfalsified by D if

$$D \subseteq \mathfrak{B}$$

$f = \mathbb{Z}_+ \rightarrow \mathbb{R}^{\mathfrak{f}}$ persistently exciting of order L if

$$\text{rank} \begin{bmatrix} f(0) & f(1) & \cdots & f(T-L) & \cdots \\ f(1) & f(2) & \cdots & f(T-L+1) & \cdots \\ \vdots & \vdots & & \vdots & \vdots \\ f(L-1) & f(L) & \cdots & f(T+1) & \cdots \end{bmatrix} = L\mathfrak{f}$$

Very nice consequences. Work of Ivan Markovsky.

Outline

Problem statement

Background

Behaviors

Losslessness

Main result

Losslessness

Let $\Phi = \Phi^\top \in \mathbb{R}^{w \times w}$. \mathfrak{B} is **lossless** w.r.t. supply rate

$$Q_\Phi(w) := w^\top \Phi w$$

if exists $\{\Psi_{i,j} \in \mathbb{R}^{w \times w}\}_{i,j=0,\dots,L}$ such that

$$Q_\Psi(w) := \sum_{i,j=0}^L \sigma^i w^\top \Psi_{i,j} \sigma^j w$$

satisfies

$$\nabla Q_\Psi(w)(k) := Q_\Psi(w)(k+1) - Q_\Psi(w)(k) = Q_\Phi(w)(k)$$

for all $w \in \mathfrak{B}$, for all $k \in \mathbb{Z}$.

Losslessness

Let $\Phi = \Phi^\top \in \mathbb{R}^{w \times w}$. \mathcal{B} is **lossless** w.r.t. supply rate

$$Q_\Phi(w) := w^\top \Phi w$$

if exists $\{\Psi_{i,j} \in \mathbb{R}^{w \times w}\}_{i,j=0,\dots,L}$ such that

$$Q_\Psi(w) := \sum_{i,j=0}^L \sigma^i w^\top \Psi_{i,j} \sigma^j w$$

satisfies

$$\nabla Q_\Psi(w)(k) := Q_\Psi(w)(k+1) - Q_\Psi(w)(k) = Q_\Phi(w)(k)$$

for all $w \in \mathcal{B}$, for all $k \in \mathbb{Z}$.

Q_Ψ is called a **storage function** for \mathcal{B} w.r.t. Q_Φ .

Outline

Problem statement

Background

Behaviors

Losslessness

Main result

The Stein matrix

Proposition: Let \mathcal{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathcal{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathcal{B})$.

The Stein matrix

Proposition: Let \mathcal{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathcal{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathcal{B})$.

Define the **Stein matrix**

$$[S(w)]_{i,j=0,\dots,N} := \sum_{k=0}^{\infty} (\sigma^i w)(k) \Phi(\sigma^j w)(k)$$

The Stein matrix

Proposition: Let \mathfrak{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathfrak{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathfrak{B})$.

Define the **Stein matrix**

$$[\mathbf{S}(w)]_{i,j=0,\dots} := \sum_{k=0}^{\infty} (\sigma^i w)(k)^\top \Phi (\sigma^j w)(k)$$

Let \mathfrak{B}_f be a minimal state system with state x and external behavior \mathfrak{B} . Then $\exists K = K^\top \in \mathbb{R}^{n(\mathfrak{B}) \times n(\mathfrak{B})}$ s.t.

$$\mathbf{S}(w) = \begin{bmatrix} x(0)^\top \\ x(1)^\top \\ \vdots \end{bmatrix} K \begin{bmatrix} x(0) & x(1) & \dots \end{bmatrix}$$

The Stein matrix

Proposition: Let \mathfrak{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathfrak{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathfrak{B})$.

Define the **Stein matrix**

$$[\mathbf{S}(w)]_{i,j=0,\dots} := \sum_{k=0}^{\infty} (\sigma^i w)(k)^\top \Phi (\sigma^j w)(k)$$

Let \mathfrak{B}_f be a minimal state system with state x and external behavior \mathfrak{B} . Then $\exists K = K^\top \in \mathbb{R}^{n(\mathfrak{B}) \times n(\mathfrak{B})}$ s.t.

$$\mathbf{S}(w) = \begin{bmatrix} x(0)^\top \\ x(1)^\top \\ \vdots \end{bmatrix} K \begin{bmatrix} x(0) & x(1) & \dots \end{bmatrix}$$

Proof: “Every storage function is a quadratic function of the state.” Thanks Jan, thanks Harry!

The Stein matrix revisited

Proposition: Let \mathfrak{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathfrak{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathfrak{B})$. Partition

$$\Phi = \begin{bmatrix} \Phi_{uu} & \Phi_{uy} \\ \Phi_{uy}^\top & \Phi_{yy} \end{bmatrix} \in \mathbb{R}^{(u+y) \times (u+y)}.$$

The Stein matrix revisited

Proposition: Let \mathfrak{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathfrak{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathfrak{B})$. Partition

$$\Phi = \begin{bmatrix} \Phi_{uu} & \Phi_{uy} \\ \Phi_{uy}^\top & \Phi_{yy} \end{bmatrix} \in \mathbb{R}^{(u+y) \times (u+y)}.$$

Assume Φ_{yy} sign-definite; then $\text{rank}(S(w)) = n(\mathfrak{B})$.

The Stein matrix revisited

Proposition: Let \mathfrak{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathfrak{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathfrak{B})$. Partition

$$\Phi = \begin{bmatrix} \Phi_{uu} & \Phi_{uy} \\ \Phi_{uy}^\top & \Phi_{yy} \end{bmatrix} \in \mathbb{R}^{(u+y) \times (u+y)}.$$

Assume Φ_{yy} sign-definite; then $\text{rank}(S(w)) = n(\mathfrak{B})$.

E.g.

$$\Phi = \begin{bmatrix} I_u & 0 \\ 0 & -I_y \end{bmatrix}$$

The Stein matrix revisited

Proposition: Let \mathfrak{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathfrak{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathfrak{B})$. Partition

$$\Phi = \begin{bmatrix} \Phi_{uu} & \Phi_{uy} \\ \Phi_{uy}^\top & \Phi_{yy} \end{bmatrix} \in \mathbb{R}^{(u+y) \times (u+y)}.$$

Assume Φ_{yy} sign-definite; then $\text{rank}(S(w)) = n(\mathfrak{B})$.

Φ_{yy} sign-definite \implies minimal state sequence
computable from rank-revealing factorization of $S(w)$

$$S(w) = U^\top \Delta U \rightsquigarrow U = [x(0) \ x(1) \ \dots]$$

The Stein matrix revisited

Proposition: Let \mathfrak{B} controllable and Φ -lossless. Let $w = \text{col}(u, y) \in \mathfrak{B}_{|[0, \infty)} \cap \ell_2^w$, and assume u persistently exciting of order $n(\mathfrak{B})$. Partition

$$\Phi = \begin{bmatrix} \Phi_{uu} & \Phi_{uy} \\ \Phi_{uy}^\top & \Phi_{yy} \end{bmatrix} \in \mathbb{R}^{(u+y) \times (u+y)}.$$

Assume Φ_{yy} sign-definite; then $\text{rank}(S(w)) = n(\mathfrak{B})$.

State equations by solving for A, B, C, D

$$\begin{bmatrix} x(1) & x(0) & \dots \\ y(0) & y(1) & \dots \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x(0) & x(1) & \dots \\ u(0) & u(1) & \dots \end{bmatrix}$$

since $\sigma x = Ax + Bu$, $y = Cx + Du$.

Refinements and work in progress

- **Sign-definiteness of Φ_{yy} replaceable with half-line losslessness on \mathbb{R}_- and # positive eigenvalues of $\Phi=\#$ of inputs;**

Refinements and work in progress

- Sign-definiteness of Φ_{yy} replaceable with half-line losslessness on \mathbb{R}_- and # positive eigenvalues of $\Phi = \#$ of inputs;
- **Balanced** lossless realization obtainable via suitable factorization of $S(w) = X^\top X$;

Refinements and work in progress

- Sign-definiteness of Φ_{yy} replaceable with half-line losslessness on \mathbb{R}_- and # positive eigenvalues of $\Phi = \#$ of inputs;
- Balanced lossless realization obtainable via suitable factorization of $S(w) = X^\top X$;
- If dissipation rate Q_Δ known, **dissipative** case tackled in analogous way:

$$\begin{aligned} S(w) &= \left[\sum_{k=0}^{\infty} L_\Delta(\sigma^i w, \sigma^j w)(k) \right]_{i,j} \\ &= \begin{bmatrix} x(0)^\top \\ \vdots \end{bmatrix} K [x(0) \ \dots] \end{aligned}$$

Refinements and work in progress

- Sign-definiteness of Φ_{yy} replaceable with half-line losslessness on \mathbb{R}_+ and # positive eigenvalues of Φ =# of inputs;
- Balanced lossless realization obtainable via suitable factorization of $S(w) = X^\top X$;
- If dissipation rate Q_Δ known, dissipative case tackled in analogous way:

$$\begin{aligned} S(w) &= \left[\sum_{k=0}^{\infty} L_\Delta(\sigma^i w, \sigma^j w)(k) \right]_{i,j} \\ &= \begin{bmatrix} x(0)^\top \\ \vdots \end{bmatrix} K [x(0) \ \cdots] \end{aligned}$$

- **What if dissipation rate not known?**

Refinements and work in progress

- Sign-definiteness of Φ_{yy} replaceable with half-line losslessness on \mathbb{R}_- and # positive eigenvalues of $\Phi = \#$ of inputs;
- Balanced lossless realization obtainable via suitable factorization of $S(w) = X^\top X$;
- If dissipation rate Q_Δ known, dissipative case tackled in analogous way;
- ¿What if dissipation rate not known?
- **Lossless model reduction from data**

$S(w) \rightsquigarrow \text{lossless } (A, B, C, D)$

Approximation $S(w) \rightsquigarrow \text{lossless } (A_{\text{red}}, B_{\text{red}}, C_{\text{red}}, D_{\text{red}})$

Buon compleanno!

Feliz cumpleaños!

생일축하합니다

С днем рождения

Herzlichen Glückwunsch zum Geburstag

יום הולדת שמח

お誕生日おめでとう

Gelukkige verjaarsdag

كل سنة وانت طيب

ສຸຂລັນຕົວນເກີດ

Χρόνια Πολλά!

Feliz aniversário

Happy birthday!

Честит рожден ден

Wszystkiego najlepszego!

生日快樂

सालगिरह की हार्दिक शुभकामनाएँ

Joyeux anniversaire!

