
Gait Sequence Synthesis and Reconstruction

Muayed Al-Huseiny
mssah07r@ecs.soton.ac.uk

Sasan Mahmoodi
sm3@ecs.soton.ac.uk

Mark Nixon
msn@ecs.soton.ac.uk

School of Electronics and Computer Science,
University of Southampton,
University Road,
Highfield,
SO17 1BJ
UK

We describe a new technique to synthesize the boundary of a walking
subject, with ability to predict movement in missing frames.

The fact that real world images are mostly complex, noisy and oc-
cluded makes the implementation of a segmentation algorithms a serious
challenge due to the difficulty in segmentation of those images. Some of
these difficulties can be tackled via the introduction of prior knowledge,
due to its capacity to compensate for missing or misleading image infor-
mation [1, 2, 6, 7]. Accordingly a robust gait prior shape should enable
improved segment ation of walking subjects.

The construction of Human gait prior shape knowledge is inherently
more challenging, because the deformation of shapes is non-Gaussianand
gait is self occluding.

Two main directions under the title of statistical shape priors have
been suggested and employed so far in order to deal with these issues.
Some authors suggest the use of kernel density [3] to decompose a shape’s
deformation modes. The problem however with this approach is that the
kernel is chosen regardless of how the data is distributed in feature space
[4]. An alternative is to use traditional linear PCA, accompanied with
some mechanism to synthesize new shapes [2].

Motivated by the above, we describe a new approach to shape recon-
struction which can reconstruct moving shapes in image sequence: the
interpolation with cubic spline, and then the application of our proposed
method to estimate accurate shapes in a human gait sequences. In our

Figure 1: The First three coefficient vectors (eigenmodes) of 38 training
shapes

paper we use a level sets representation of the training shapes to compute
the statistical model of the shapes deformation. A set of coefficientsαi
(see Figure1) is computed to quantify the contribution of each eigenmode
to theith shape[5]:

αk(i) = (̺k)T (u(i)−µ), (1)

where̺k is the matrix of the firstk eigenvectors,u(i) is the ith training
shape, andµ is the mean shape.αk(i), the ith vector of k eigenmode
represents the shape metric.

Interpolating cubic spline is proposed to model the oscillation of the
eigenmodes and generate new shapes:

αk(t) = spline(αk(i)) for i := 1−N, t ∈ [1,N], (2)

whereαk(t) is the estimated vector of eigenmodes modeled by the cubic
spline at any time in the interval [1,N], and N is the number of training
shapes.

Accordingly an estimated valid shape ˆu(t) belonging to the class of
the training shapesu, can be estimated usingk principal components con-

Figure 2: The estimation of the training shapes. Top row is a sample of
the training sequence. Middle row is the same shapes reconstructed by
cubic spline. Bottom row is the shapes estimated by AR

strained by ak-dimensional vector of eigenmodes,αk(t):

û(t) = ̺k αk(t)+µ. (3)

Our contribution is to use a continuous representation of the feature
space variation with time.

The experimental results demonstrated in the paper (see Figure 2 for
example) show that this level set-based technique can be used reliably
in reconstructing the training shapes, estimating in-between frames to
help in synchronizing multiple cameras, compensating for missing train-
ing frames, and the recognition of subjects based on their gait.

In conclusion the interpolating cubic spline proposed in our paper per-
forms better by modeling the shape variations over one walking cycle.The
numerical results demonstrate that the accuracy of the present methodis
more superior than the autoregressive system used in the literature for the
same purpose. The technique proposed here succeeded in capturingthe
key variability modes which led to success in the reconstruction of walk-
ing cycle shapes identical to the training set.
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