Can Selfish Symbioses Effect Higher-level Selection?

Watson, Richard, Palmius, Niclas, Mills, Robert, Powers, Simon T and Penn, Alexandra, Kampis, George and Szathmáry, Erös(eds.) (2009) Can Selfish Symbioses Effect Higher-level Selection? Proceedings of 10th European Conference on Artificial Life (ECAL 2009)


[img] PDF watson_et_al_ecal09_selfish_camera.pdf - Accepted Manuscript
Download (515kB)


The role of symbiosis in macro-evolution is poorly understood. On the one hand, symbiosis seems to be a perfectly normal manifestation of individual selection, on the other hand, in some of the major transitions in evolution it seems to be implicated in the creation of new higher-level units of selection. Here we present a model of individual selection for symbiotic relationships where individuals can genetically specify traits which partially control which other species they associate with – i.e. they can evolve species-specific grouping. We find that when the genetic evolution of symbiotic relationships occurs slowly compared to ecological population dynamics, symbioses form which canalise the combinations of species that commonly occur at local ESSs into new units of selection. Thus even though symbioses will only evolve if they are beneficial to the individual, we find that the symbiotic groups that form are selectively significant and result in combinations of species that are more cooperative than would be possible under individual selection. These findings thus provide a systematic mechanism for creating significant higher-level selective units from individual selection, and support the notion of a significant and systematic role of symbiosis in macro-evolution.

Item Type: Article
Keywords: symbiosis, modularity, evolved associations
Organisations: Agents, Interactions & Complexity, EEE
ePrint ID: 268068
Date :
Date Event
August 2009Accepted/In Press
Date Deposited: 20 Oct 2009 14:22
Last Modified: 17 Apr 2017 18:38
Further Information:Google Scholar

Actions (login required)

View Item View Item