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Minimum Bit Error Rate Multiuser Transmission Designs
Using Particle Swarm Optimisation

W. Yao, S. Chen, S. Tan, and L. Hanzo

Abstract—We consider the downlink of a multiuser system
equipped with multiple antennas transmitting to multiple single-
antenna mobile receivers. Particle swarm optimisation (PSO) is
invoked to solve the constrained nonlinear optimisation problem
for the minimum bit error rate (MBER) multiuser transmitter
(MUT). The proposed PSO aided symbol-specific MBER-MUT
and average MBER-MUT schemes provide improved perfor-
mance in comparison to the conventional minimum mean-square-
error MUT scheme, while imposing a reduced complexity com-
pared to the state-of-the-art sequential quadratic programming
based symbol-specific MBER-MUT and average MBER-MUT
schemes, respectively.

Index Terms—Downlink, multiuser transmission, precoding,
minimum mean square error, minimum bit error rate, sequential
quadratic programming, particle swarm optimisation.

I. INTRODUCTION

IN the downlink (DL) of space-division multiple-access
(SDMA) system, non-cooperative mobile stations (MSs)

are unable to employ multiuser detection (MUD). In order
to facilitate the employment of low-complexity single-user-
receiver, the transmitted signals have to be preprocessed at
the base station (BS), leading to the appealing concept of
multiuser transmission (MUT) [1], provided that accurate
channel state information (CSI) is available at the transmitter.
The assumption that the DL channel impulse response (CIR)
is known at the BS may be deemed valid in time division
duplex (TDD) systems, where the uplink (UL) and DL signals
are transmitted at the same frequency, provided that the co-
channel interference is similar at the BS and MSs which is
not always the case. MUT-aided transmit preprocessing may
hence be deemed attractive, when the channel’s coherence
time is longer than the transmission burst interval. However,
for frequency division duplex systems, where the UL and DL
channels are expected to be different, CIR feedback from the
MS’s receivers to the BS transmitter is necessary [2].

In general, if the BS could not estimate the UL CIR matrix
and therefore could not use the UL CIR matrix as the DL
CIR matrix in MUT, the MS’s receivers have to signal their
DL CIRs to the BS transmitter via the UL channels [2].
Alternatively, blind channel estimation can be adopted at the
cost of increased complexity [3]. Precoding can also be em-
ployed to mitigate self interference caused by space division
multiplexing, as in the work [4], where the transmitter employs
two antennas while each receiver also has two antennas to
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provide multiplexing gain. A simple zero-forcing precoding
scheme is used at the transmitter in [4] for each user to combat
self interference caused by multiplexing1.

The MUT design based on the minimum mean-square-error
(MMSE) criterion is popular owing to its appealing simplicity
[2], [5]. However, since the bit error rate (BER) is the
ultimate system performance indicator, research in minimum
BER (MBER) based MUT techniques has intensified recently.
A MBER-MUT scheme was proposed in [6] for the TDD
code-division multiple-access DL designed for frequency-
selective channels and this work was extended to multiple
transmit and receive antennas in [7]. A chip-level MBER-
MUT scheme was proposed in [8]. The precoder’s weight
matrix of the above-mentioned MBER-MUT techniques [6]–
[8] is calculated specifically for each transmit symbol vector.
Since the coefficients of the MUT have to be recalculated
individually for every transmit symbol vector, we refer to
this type of MBER-MUT techniques as the symbol-specific
MBER-MUT scheme. To mitigate the complexity imposed,
an average MBER-MUT design was proposed for both binary
phase shift keying (BPSK) [9] and quadrature phase shift
keying (QPSK) [10], where the coefficients of the precoder
only have to be recalculated when the channel coefficients
change substantially. All the MBER-MUT designs invoke a
constrained nonlinear optimisation [9]–[11] and, as a state-of-
the-art, the sequential quadratic programming (SQP) algorithm
[12] is typically used to obtain the precoder’s coefficients
[9]–[11]. However, the computational complexity of the SQP
based MBER-MUT solution may be excessive for high-rate
systems [11].

Hence, as an attractive design alternative, in this con-
tribution we invoke the particle swarm optimisation (PSO)
algorithm [13] to find the MBER-MUT’s coefficients in order
to reduce its complexity. PSO constitutes a population based
stochastic optimisation technique [14], which is inspired by
the social behaviour of bird flocks or fish schools. The
algorithm commences with random initialisation of a swarm
of individuals, referred to as particles, within the specific
problem’s search space. It then endeavours to find a globally
optimum solution by gradually adjusting the trajectory of each
particle towards its own best location and towards the best
position of the entire swarm at each evolutionary optimisation
step. The PSO method is popular owing to its simplicity in
implementation, ability to rapidly converge to a “reasonably
good” solution and to “steer clear” of local minima. It has been
successfully applied to wide-ranging optimisation problems

1The scheme of [4] is not a MUT, as precoding is not used for mitigating
multiuser interference. User separation is provided by code spreading, i.e.
CDMA.
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Fig. 1. Schematic diagram of the downlink of a SDMA system using
preprocessing at the BS. The MUT-aided system employs 𝑁 DL transmit
antennas to communicate with 𝐾 non-cooperative mobile devices.

[15]–[17]. More particularly, many researchers have applied
PSO techniques to multiuser detection (MUD) [18]–[21].
However, to the best of our knowledge, no work to date
has applied the PSO method to MUT design. We will show
that the proposed PSO approach is capable of finding the
optimal MBER MUT solution at a lower complexity than the
benchmark state-of-the-art SQP based MBER MUT design.

Throughout our discussions we adopt the following nota-
tional conventions. Boldface capitals and lower-case letters
stand for matrices and vectors, respectively. The (𝑝, 𝑞)th
element ℎ𝑝,𝑞 of H is also denoted by H∣𝑝,𝑞. Furthermore, ( )𝑇

represents the transpose operator, while ∥ ∥2 and ∣ ∣ denote the
norm and the magnitude operators, respectively. 𝐸 [ ] denotes
the expectation operator, while ℜ[ ] and ℑ[ ] represent the real
and imaginary parts, respectively. Finally, 𝑗 =

√−1.

II. SYSTEM MODEL

The DL of a SDMA system considered is depicted in
Fig. 1. The BS is equipped with 𝑁 transmit antennas and
communicates over flat fading channels with 𝐾 MSs, each
employing a single-receive antenna. Frequency selective chan-
nels can be converted to a multiplicity of parallel narrowband
channels using for example the orthogonal frequency division
multiplexing technique [22]. In the system model of Fig. 1, the
vector of information symbols transmitted in the DL is given
by x = [𝑥1 𝑥2 ⋅ ⋅ ⋅𝑥𝐾 ]𝑇 , where 𝑥𝑘 denotes the transmitted
symbol to the 𝑘th MS and the symbol energy is given by
𝐸[∣𝑥𝑘∣2] = 𝜎2

𝑥, for 1 ≤ 𝑘 ≤ 𝐾 . The MUT’s (𝑁 ×𝐾)-element
precoder matrix P is defined by

P = [p1 p2 ⋅ ⋅ ⋅ pK], (1)

where p𝑘, 1 ≤ 𝑘 ≤ 𝐾 , is the precoder’s coefficient vector for
the 𝑘th user’s data stream. Given a fixed total transmit power
ET at the BS, an appropriate scaling factor should be used to
fullfill this transmit power constraint, which is defined as

𝛼 =
√
ET/𝐸[∥Px∥2]. (2)

At the receiver, the reciprocal of the scaling factor, namely
𝛼−1, is used to scale the received signal to ensure unity-gain
transmission. The channel matrix H is given by

H = [h1 h2 ⋅ ⋅ ⋅ hK], (3)

where h𝑘 = [ℎ1,𝑘 ℎ2,𝑘 ⋅ ⋅ ⋅ℎ𝑁,𝑘]
𝑇 , 1 ≤ 𝑘 ≤ 𝐾 , is the

𝑘th user’s spatial signature. The channel taps ℎ𝑖,𝑘 for 1 ≤
𝑘 ≤ 𝐾 and 1 ≤ 𝑖 ≤ 𝑁 are independent of each other and
obey the complex-valued Gaussian distribution associated with

𝐸[∣ℎ𝑖,𝑘∣2] = 1. The additive white Gaussian noise vector n is
defined by n = [𝑛1 𝑛2 ⋅ ⋅ ⋅𝑛𝐾 ]𝑇 , where 𝑛𝑘, 1 ≤ 𝑘 ≤ 𝐾 , is a
complex-valued Gaussian random process with zero mean and
𝐸[∣𝑛𝑘∣2] = 2𝜎2

𝑛 = No. The signal-to-noise ratio (SNR) of the
DL is defined as SNR = Eb/No, where Eb = ET/(𝑁 log2𝑀)
is the energy per bit per antenna for 𝑀 -ary modulation. Thus,
the baseband model of the system can be described as

y = H𝑇Px + 𝛼−1n, (4)

where y = [𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦𝐾 ]𝑇 denotes the received signal vector,
and 𝑦𝑘, 1 ≤ 𝑘 ≤ 𝐾 , constitutes sufficient statistics for the 𝑘th
MS to detect the transmitted data symbol 𝑥𝑘 . Thus, the 𝑘th
MS equipped with a conventional matched filter can simply
estimate 𝑥𝑘 by quantising 𝑦𝑘.

III. MBER MULTIUSER TRANSMISSION

For notational simplicity, we consider the QPSK modulation
with 𝑀 = 4. Extension to the generic quadrature amplitude
modulation can be achieved by considering the minimum
symbol error rate criterion, as in the MUD case [23]. Two
MBER-MUT design strategies exist in the literature. The first
design [11] may be referred to as the symbol-specific MBER
MUT, while the other one [9], [10] can be termed as the
average MBER MUT.

A. Symbol-Specific MBER-MUT

This approach is developed based on the fact that the
information symbols to be transmitted are known exactly at
the transmitter, and hence the precoding matrix can be chosen
specifically for the given QPSK symbol vector so that the
probability of error or BER is minimised for this specific
transmission of symbol vector [11]. Given the DL QPSK
symbol vector x, the average BER of the in-phase component
of y at the receivers is [7]

𝑃𝑒𝐼 ,x =
1

𝐾

𝐾∑
𝑘=1

𝑄

(
sgn(ℜ[𝑥𝑘])ℜ[h𝑇

𝑘 Px]
𝜎𝑛

)
, (5)

where 𝑄(∙) is the standard Gaussian error function. Similarly,
given the symbol vector x, the average BER of the quadrature-
phase component of y is [7]

𝑃𝑒𝑄,x =
1

𝐾

𝐾∑
𝑘=1

𝑄

(
sgn(ℑ[𝑥𝑘])ℑ[h𝑇

𝑘 Px]
𝜎𝑛

)
. (6)

Thus, the resultant BER for the specific QPSK symbol x is

𝑃𝑒,x(P) =
(
𝑃𝑒𝐼 ,x(P) + 𝑃𝑒𝑄,x(P)

)
/2. (7)

Therefore, the symbol-specific MBER-MUT design is de-
fined as the solution of the following constrained optimisation

PTxMBER,x = argmin
P

𝑃𝑒,x(P) (8)

s.t. ∥Px∥2 = ET.

Since the precoder’s matrix PTxMBER,x depends on the sym-
bol vector x to be transmitted, it must be recalculated for
each transmitted symbol vector. To alleviate the complexity
imposed by this symbol-specific MBER MUT design, the
alternative average MBER MUT design chooses the precoder
matrix that remains optimal for all the legitimate transmission
symbol vectors.
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TABLE I
COMPUTATIONAL COMPLEXITY PER ITERATION OF FOUR MBER MUT DESIGNS FOR QPSK SIGNALLING, WHERE 𝑁 IS THE NUMBER OF TRANSMIT

ANTENNAS, 𝐾 THE NUMBER OF MOBILE USERS, 𝑀 = 4 IS THE SIZE OF SYMBOL CONSTELLATION AND 𝑆 IS THE PARTICLE SIZE.

Algorithm Flops

SQP(Symbol-specific MBER MUT) 𝒪(8×𝐾3 ×𝑁3) + 8×𝐾3 ×𝑁2 + 8×𝑁2 ×𝐾2 + 22×𝐾2 ×𝑁
+8×𝐾 ×𝑁2 + 14×𝐾2 + 18×𝐾 ×𝑁 − 2×𝑁2 + 2×𝐾 +𝑁 + 11

PSO(Symbol-specific MBER MUT) (38 ×𝑁 ×𝐾 + 8×𝑁 + 7×𝐾 + 3)× 𝑆 + 8

SQP(Average MBER MUT) 𝐾 × (8 ×𝑁2 ×𝐾2 + 6×𝑁 ×𝐾 + 6×𝑁 + 8×𝐾 + 4) ×𝑀𝐾

+𝒪(8×𝑁3 ×𝐾3) + 8×𝑁2 ×𝐾2 + 16×𝑁 ×𝐾2 + 8×𝑁2 ×𝐾
+12×𝑁 ×𝐾 + 6×𝐾2 − 2×𝑁2 +𝑁 − 2×𝐾 + 11

PSO(Average MBER MUT) ((16 ×𝑁 ×𝐾 + 7×𝐾 + 6×𝑁 + 1) ×𝑀𝐾 + 20×𝑁 ×𝐾 + 2)× 𝑆 + 8

B. Average MBER-MUT

The average BER of the in-phase component of y at the
receivers can be shown to be [24]

𝑃𝑒𝐼 =
1

𝐾𝑀𝐾

𝑀𝐾∑
𝑞=1

𝐾∑
𝑘=1

𝑄

(
sgn(ℜ[𝑥(𝑞)𝑘 ])ℜ[h𝑇

𝑘 Px(𝑞)]
𝜎𝑛

)
. (9)

Here 𝑀𝐾 = 4𝐾 is the number of equiprobable legitimate
transmit symbol vectors x(𝑞) for QPSK signalling and 𝑥

(𝑞)
𝑘 the

𝑘th element of x(𝑞), with 1 ≤ 𝑞 ≤ 𝑀𝐾 . Similarly, the average
BER of the quadrature-phase component of y is given by [24]

𝑃𝑒𝑄 =
1

𝐾𝑀𝐾

𝑀𝐾∑
𝑞=1

𝐾∑
𝑘=1

𝑄

(
sgn(ℑ[𝑥(𝑞)𝑘 ])ℑ[h𝑇

𝑘 Px(𝑞)]
𝜎𝑛

)
. (10)

Thus the average BER for QPSK signalling is given by

𝑃𝑒(P) =
(
𝑃𝑒𝐼 (P) + 𝑃𝑒𝑄(P)

)
/2, (11)

and the solution of the average MBER MUT is defined as

PTxMBER = argmin
P

𝑃𝑒(P) (12)

s.t. 𝐸[∥Px∥2] = ET.

The problems (8) and (12) are constrained nonlinear opti-
misation ones, and they are typically solved by an iterative
gradient based algorithm known as the SQP [9]–[11]. The
complexities per iteration of the SQP based symbol-specific
MBER MUT and average MBER MUT schemes, respectively,
are listed in Table I for QPSK modulation, where 𝒪(∙) stands
for order of ∙ complexity and we assume that the complex-
ity of a real-valued multiplication is equal to a real-valued
addition. The complexity per optimisation equals the number
of iterations that the algorithm required to arrive at a global
optimal solution multiplied by this complexity per iteration.
For the symbol-specific MBER-MUT, the precoding matrix
needs to be recalculated for every transmit symbol vector and
hence it exhibits much higher computational complexity in
the long run. On the other hand, it provides a slightly better
performance in comparison with the average MBER-MUT
design.

IV. PSO ASSISTED MBER MUT

A penalty function approach is adopted to convert the
constrained optimisation processes (8) and (12) into the uncon-
strained ones and to automatically perform power allocation
in order to meet the transmit power constraint.

Fig. 2. Flowchart of the particle swarm optimisation algorithm.

For the symbol-specific MBER-MUT, we define the cost
function

𝐹 (P) = 𝑃𝑒,x(P) +𝐺x(P) (13)

with the penalty function given by

𝐺x(P) =

{
0, ∥Px∥2 − ET ≤ 0,

𝜆(∥Px∥2 − ET), ∥Px∥2 − ET > 0,
(14)

where the penalty factor 𝜆 > 0 should be chosen appropriately
so that the symbol-specific MBER-MUT design (8) becomes
the following unconstrained optimisation

PTxMBER,x = argmin
P

{𝑃𝑒,x(P) +𝐺x(P)}. (15)

For the average MBER-MUT, we define the cost function

𝐹 (P) = 𝑃𝑒(P) +𝐺(P) (16)

with the penalty function given by

𝐺(P) =

{
0, 𝐸[∥Px∥2]− ET ≤ 0,

𝜆(𝐸[∥Px∥2]− ET), 𝐸[∥Px∥2]− ET > 0.
(17)

With an appropriately chosen penalty factor 𝜆, the average
MBER-MUT design (12) can be obtained as the solution of
the following unconstrained optimisation

PTxMBER = argmin
P

{𝑃𝑒(P) +𝐺(P)}. (18)
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The flowchart of the PSO aided MBER-MUT design is
given in Fig. 2. A swarm of particles, {P̌(𝑙)

𝑖 }𝑆𝑖=1, that represent
potential solutions are evolved in the search space S𝑁×𝐾 ,
where

S = [−𝑃max, 𝑃max] + 𝑗[−𝑃max, 𝑃max] (19)

is the square area in the complex plan that defines the search
range for each element of the precoder coefficient matrix, 𝑆
is the swarm size and index 𝑙 denotes the iteration step.

a) The swarm initialisation. With 𝑙 = 0, set P̌(𝑙)
1 to the MMSE

solution, while the rest of the initial particles, {P̌(𝑙)
𝑖 }𝑆𝑖=2, are

randomly generated in the search space S𝑁×𝐾 .

b) The swarm evaluation. Each particle P̌(𝑙)
𝑖 has a cost 𝐹 (P̌

(𝑙)
𝑖 )

associated with it, which is evaluated according to either
(13) or (16), depending on whether the symbol-specific or
average MBER-MUT design is considered. Each particle P̌

(𝑙)
𝑖

remembers its best position visited so far, denoted as Pb(𝑙)
𝑖 ,

which provides the cognitive information. Every particle also
knows the best position visited so far among the entire swarm,
denoted as Gb(𝑙), which provides the social information.
{Pb(𝑙)

𝑖 }𝑆𝑖=1 and Gb(𝑙) are updated at each iteration:

For (𝑖 = 1; 𝑖 ≤ 𝑆; 𝑖++)
If (𝐹 (P̌

(𝑙)
𝑖 ) < 𝐹 (Pb(𝑙)

𝑖 )) Pb(𝑙)
𝑖 = P̌

(𝑙)
𝑖 ;

End for;
𝑖∗ = argmin1≤𝑖≤𝑆 𝐹 (Pb(𝑙)

𝑖 );
If (𝐹 (Pb(𝑙)

𝑖∗ ) < 𝐹 (Gb(𝑙))) Gb(𝑙) = Pb(𝑙)
𝑖∗ ;

c) The swarm update. Each particle P̌
(𝑙)
𝑖 has a velocity, de-

noted as V(𝑙)
𝑖 , to direct its “flying”. The velocity and position

of the 𝑖th particle are updated in each iteration according to

V
(𝑙+1)
𝑖 = 𝑤 ∗V(𝑙)

𝑖 + 𝑟𝑎𝑛𝑑() ∗ 𝑐1 ∗ (Pb
(𝑙)
𝑖 − P̌

(𝑙)
𝑖 )

+𝑟𝑎𝑛𝑑() ∗ 𝑐2 ∗ (Gb(𝑙) − P̌
(𝑙)
𝑖 ), (20)

P̌
(𝑙+1)
𝑖 = P̌

(𝑙)
𝑖 +V

(𝑙+1)
𝑖 , (21)

where 𝑤 is the inertia weight, 𝑟𝑎𝑛𝑑() denotes the uniform
random number between 0 and 1, and 𝑐1 and 𝑐2 are the two
acceleration coefficients. In order to avoid excessive roaming
of particles beyond the search space [16], a velocity range,
V = [−𝑉max, 𝑉max] + 𝑗[−𝑉max, 𝑉max], is imposed on each
element of V(𝑙+1)

𝑖 so that

If (ℜ[V(𝑙+1)
𝑖 ∣𝑝,𝑞] > 𝑉max) ℜ[V(𝑙+1)

𝑖 ∣𝑝,𝑞] = 𝑉max;
If (ℜ[V(𝑙+1)

𝑖 ∣𝑝,𝑞] < −𝑉max) ℜ[V(𝑙+1)
𝑖 ∣𝑝,𝑞] = −𝑉max;

If (ℑ[V(𝑙+1)
𝑖 ∣𝑝,𝑞] > 𝑉max) ℑ[V(𝑙+1)

𝑖 ∣𝑝,𝑞] = 𝑉max;
If (ℑ[V(𝑙+1)

𝑖 ∣𝑝,𝑞] < −𝑉max) ℑ[V(𝑙+1)
𝑖 ∣𝑝,𝑞] = −𝑉max;

Moreover, if the velocity (20) approaches zero, it is reini-
tialised to proportional to 𝑉max with a small factor 𝛾

V
(𝑙+1)
𝑖 ∣𝑝,𝑞 = ±𝑟𝑎𝑛𝑑() ∗ 𝛾 ∗ (𝑉max + 𝑗𝑉max). (22)

Similarly, each element of P̌(𝑙+1)
𝑖 is checked to ensure that it

stays inside the search space S:

If (ℜ[P̌(𝑙+1)
𝑖 ∣𝑝,𝑞] > 𝑃max)

ℜ[P̌(𝑙+1)
𝑖 ∣𝑝,𝑞] = 𝑟𝑎𝑛𝑑() ∗ 𝑃max;

If (ℜ[P̌(𝑙+1)
𝑖 ∣𝑝,𝑞] < −𝑃max)

ℜ[P̌(𝑙+1)
𝑖 ∣𝑝,𝑞] = −𝑟𝑎𝑛𝑑() ∗ 𝑃max;

If (ℑ[P̌(𝑙+1)
𝑖 ∣𝑝,𝑞] > 𝑃max)

ℑ[P̌(𝑙+1)
𝑖 ∣𝑝,𝑞] = 𝑟𝑎𝑛𝑑() ∗ 𝑃max;

If (ℑ[P̌(𝑙+1)
𝑖 ∣𝑝,𝑞] < −𝑃max)

ℑ[P̌(𝑙+1)
𝑖 ∣𝑝,𝑞] = −𝑟𝑎𝑛𝑑() ∗ 𝑃max;

That is, if a particle is outside the search space, it is moved
back inside the search space randomly, rather than forcing it
to stay at the border. This is similar to the scheme given in
[16].

d) Termination condition check. If the maximum number of
iterations, 𝐼max, is reached, terminate the algorithm with the
solution Gb(𝐼max); otherwise, set 𝑙 = 𝑙+1 and go to Step b).

It was reported in [15] that using a time varying acceleration
coefficient (TVAC) enhances the performance of PSO. We
adopt this mechanism, in which 𝑐1 is reduced from 2.5 to 0.5
and 𝑐2 varies from 0.5 to 2.5 during the iterative procedure
according to

𝑐1 = (0.5− 2.5) ∗ 𝑙/𝐼max + 2.5,

𝑐2 = (2.5− 0.5) ∗ 𝑙/𝐼max + 0.5.
(23)

This TVAC mechanism works well in our application. We also
remove the influence of the previous velocity by setting 𝑤 = 0,
as suggested in [15]. Our empirical results suggest that the
search limit can be set to 𝑃max = 1 for our application. With
this choice of position bound, the velocity limit can be set to
𝑉max = 1. An appropriate value of the small control factor
𝛾 in (22) for avoiding zero velocity is found to be 𝛾 = 0.1
by experiments. The computational complexity per iteration
for the PSO based symbol-specific MBER-MUT and average
MBER-MUT schemes, respectively, are also listed in Table I.

V. SIMULATION STUDY

The DL of the multiuser system considered employed 𝑁 =
4 transmit antennas at the BS to communicate over the (4×4)-
element flat Rayleigh fading channels to 𝐾 = 4 single-receive-
antenna MSs. The swarm size was chosen to be 𝑆 = 20,
which was found empirically to be appropriate for our PSO-
aided MBER-MUT design problems. The maximum number
of iterations, 𝐼max, was so chosen such that the PSO-based
MBER-MUT algorithm with the chosen 𝐼max and 𝑆 = 20
arrived at the same MBER performance also achieved by the
SQP-based MBER-MUT design. It was found empirically that
an adequate 𝐼max was in the range of 20 to 40, depending on
the value of the channel SNR. All the simulation results were
obtained by averaging over 100 channel realisations.

Fig. 3 compares the BER performance of the MMSE-MUT
scheme with those of the PSO-based symbol-specific MBER-
MUT and average MBER-MUT schemes, assuming a perfect
CSI knowledge at the BS. It is seen that the PSO aided
symbol-specific MBER-MUT achieved an SNR gain of 4.5 dB
over the MMSE-MUT at the target BER of 10−4, while the
PSO aided average MBER-MUT provided an SNR gain of
3 dB over the MMSE-MUT scheme at the same target BER
level. The robustness of the two PSO-aided MBER-MUT
schemes to channel estimation error was also investigated
by adding a Gaussian white noise with a standard deviation
of 0.05 per dimension to each channel tap ℎ𝑖,𝑘 to represent
channel estimation error. The BERs of the MMSE-MUT and
the two PSO based MBER-MUT schemes under this channel
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Fig. 3. BER versus SNR performance of the PSO aided symbol-specific
MBER-MUT and average MBER-MUT communicating over flat Rayleigh
fading channels using 𝑁 = 4 transmit antennas to support 𝐾 = 4 QPSK
mobile users, in comparison with the benchmark MMSE-MUT.

Fig. 4. Convergence performance of the SQP as well as PSO aided symbol-
specific and average MBER-MUT schemes for the system employing 𝑁 = 4
transmit antennas to support 𝐾 = 4 QPSK mobile users over flat Rayleigh
fading channels at Eb/No=10 dB and 15 dB, repsectively.

estimation error are also plotted in Fig. 3. It can be seen that
both the symbol-specific and average MBER-MUT designs
were no more sensitive to channel estimation error than
the MMSE-MUT design. Fig. 4 compares the convergence
performance of the SQP as well as PSO based symbol-specific
and average MBER MUT schemes, operating at the SNR
values of 10 dB and 15 dB, respectively.

For the symbol-specific MBER MUT design at SNR=
10 dB, it can be seen from Fig. 4 that the SQP algorithm
converged to the optimal solution after 70 iterations, while
the PSO counterpart arrived at the same optimal solution after
20 iterations. In the case of average MBER-MUT design at
SNR= 10 dB, the SQP algorithm converged to the optimal
solution after 100 iterations, while the PSO algorithm arrived
at the same optimal solution after 20 iterations. Fig. 5 shows

Fig. 5. Complexity per optimisation comparison of the SQP as well as
PSO aided symbol-specific and average MBER-MUT schemes for the system
employing 𝑁 = 4 transmit antennas to support 𝐾 = 4 QPSK mobile users
over flat Rayleigh fading channels at Eb/No=10 dB.

the complexity per optimisation of the four MBER-MUT
designs studied at the SNR value of 10 dB. For the symbol-
specific MBER MUT at SNR= 10 dB, the SQP algorithm
required 3,180,170 Flops to converge to the optimal solution,
while the PSO aided algorithm converged to the same opti-
mal solution at the cost of only 268,560 Flops. Hence the
PSO-aided symbol-specific MBER-MUT design imposed an
approximately twelve times lower complexity than the SQP
counterpart for this case. For the average MBER MUT design
at SNR= 10 dB, the SQP algorithm needed 229,351,100 Flops
to converge to the optimal solution, while the PSO aided
algorithm converged to the same optimal solution at the cost of
34,561,760 Flops. Therefore, the PSO-aided average MBER-
MUT design imposed an approximately seven times lower
complexity than the SQP counterpart for this scenario. We also
recorded the run times for the four MBER-MUT schemes, and
the run-time saving achieved by a PSO based design over the
SQP counterpart agreed with the above complexity analysis.
Further investigation also showed that the convergence results
for SNR< 10 dB were similar to the case of SNR= 10 dB.

From Fig. 4, it can also be seen that at SNR= 15 dB the
SQP based symbol-specific MBER MUT converged after 80
iterations which required 3,634,480 Flops, while the PSQ-
aided symbol-specific MBER MUT achieved the convergence
after 30 iterations which required 402,840 Flops. Thus, the
PSO-aided symbol-specific MBER-MUT design imposed an
approximately nine times lower complexity than the SQP
counterpart for the SNR value of 15 dB. Similarly, it can be
seen from Fig. 4 that at SNR= 15 dB the SQP based average
MBER MUT algorithm took 140 iterations to converge at a
total cost of 321,091,540 Flops, while the PSO-aided average
MBER MUT design needed 40 iterations to converge at a
total cost of 63,541,120 Flops. It was then obvious that the
PSO-aided average MBER-MUT design imposed an approxi-
mately five times lower complexity than the SQP counterpart
for this scenario. The further convergence results obtained
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for SNR> 15 dB were seen to be similar to the case of
SNR= 15 dB.

VI. CONCLUSIONS

We have proposed a PSO assisted MBER-MUT design,
which offers a significantly lower complexity than the existing
state-of-the-art SQP based MBER-MUT approach. Specifi-
cally, our simulation results involving the system of four trans-
mit antennas and four QPSK mobile users over flat Rayleigh
fading channels have confirmed that the proposed PSO-aided
symbol-specific MBER-MUT scheme imposes approximately
nine to twelve times lower complexity than the SQP-based
symbol-specific MBER-MUT design, while the PSO-aided
average MBER-MUT scheme imposes approximately five to
seven times lower complexity than the SQP-based average
MBER-MUT counterpart.

REFERENCES

[1] L.-L. Yang, “Design of linear multiuser transmitters from linear mul-
tiuser receivers," in Proc. ICC 2007, Glasgow, UK, pp. 5258-5263, June
2007.

[2] D. Yang, L.-L. Yang, and L. Hanzo, “Performance of SDMA sys-
tems using transmitter preprocessing based on noisy feedback of
vector-quantized channel impulse responses," in Proc. VTC2007-Spring,
Dublin, Ireland, pp. 2119-2123, Apr. 2007.

[3] Z. Ding and L. Qiu, “Blind MIMO channel identification from second
order statistics using rank deficient channel convolution matrix," IEEE
Trans. Signal Processing, vol. 5, pp. 535-544, Feb. 2003.

[4] Y. Xiao, Y. Zhao, and M. H. Lee, “MIMO precoding of CDMA
systems," in Proc. 8th Int. Conf. Signal Processing, vol. 1, Guilin, China,
pp. 397-401, Nov. 2006.
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