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During a major transition, former free-living entities relinquish their own indi-
viduality and aggregate into groups, such that the group becomes an evolution-
ary individual in its own right (Maynard Smith and Szathmáry, 1995; Michod,
1999). Essential to this process is cooperation, for the group members must co-
operate to contribute to the success of the higher-level unit, rather than pursue
independent, competitive, interests. While it is well-known from social evolu-
tion theory that population structure can promote such cooperation (Hamilton,
1964; Wilson, 1975), little attention has been paid to how such structure can
itself arise via adaptive evolutionary mechanisms. We postulate here a process
by which selection on individual environment-modifying traits can create con-
ditions favourable for the evolution of cooperation, and, in extreme cases, for a
transition to a new level of individuality. We term such processes, by which an
individual evolves an influence over with whom it interacts, “social environment
construction”, which can be viewed as a type of niche construction (Odling-Smee
et al., 2003).

To support this argument, we have developed a two-locus model in which a
trait for social behaviour evolves concurrently with a trait that affects group size
(this trait could be, for example, the amount of extracellular matrix produced
in a biofilm; Penn et al., 2008). We have then shown that a smaller initial group
size can be selected for because it increases variance in fitness at the group-
level, and hence brings about increased cooperation through group selection
(Powers and Watson, 2009; Powers et al., 2007). Indeed, we have shown that if
the advantages of increased cooperation are strong enough then this can occur
even if there are some opposing advantages of larger size, demonstrating that
the benefits of increased cooperation can dominate the selective pressures on
the size locus. Significantly, this can occur despite the fact that selfish cheats
are also present and can themselves influence group size. We view this model
as being particularly relevant to the fraternal transitions (sensu Queller 1997,
2000), where trade-offs between individual and group reproductive output are
likely to be the key issue, such as in the transition from single- to multi-cellular
organisms (Michod, 1999). In particular, most multi-cellular organisms develop
from a single cell (i.e., an initial group size of 1), despite benefits of larger size
(such as better access to resources and predator defence). It is commonly held
that this is adaptive because growth from a single cell allows cheater cells to be
effectively purged through group-level selection, for it increases between-group
variance and reduces within-group variance (Maynard Smith and Szathmáry,



1995; Michod, 1999). Our model illustrates a pathway by which such adaptations
can evolve.

We have also modelled the evolution of traits that directly influence the types
with which an individual interacts. The evolution of such assortative interac-
tions is problematic if cooperation is altruistic, as exemplified by the Prisoner’s
Dilemma game (Axelrod, 1997), because cooperators and cheats would both like
to form groups with cooperators. However, this is not an issue if cooperation
involves coordination with other group members, rather than altruism, for then
there are multiple evolutionarily stable states (ESSs, sensu Maynard Smith 1982)
that can be selected between by group selection (Boyd and Richerson, 1990). In
such cases group structure need not be assumed, but instead “marker” traits can
evolve that control the types with which an individual interacts. The evolution
of these markers creates assortative trait groups (sensu Wilson 1975) and hence
effective group selection (Snowdon et al., 2009).

We view such coordination games (Van Huyck et al., 1990) as being partic-
ularly relevant to the egalitarian transitions (Queller, 1997), that is, those that
involve the formation of symbioses of different species or types (for example, the
packaging of genes onto chromosomes). A key difficulty in such cases is to ensure
coordination of function, by evolving sets of compatible types. We suggest that
types can evolve associations with other types that are beneficial to them (e.g.,
pollinating plants evolve adaptations to attract transport vectors, such as honey
bees), and thus ensure that they carry on interacting with those types down
through the generations. In particular, through modelling work based on a co-
ordination game with many ESSs (leading to different group fitnesses) we have
shown conditions under which specific groupings evolve whose members perform
complimentary functions, thereby allowing group fitness to be increased (Watson
et al., 2009; Mills and Watson, 2009, 2007). By evolving these groupings, indi-
viduals stabilise their selective environment, allowing coordination of function
to evolve. This work provides theory that begins to characterise the structure
of coordinated interactions that will evolve. Specifically, it argues that relation-
ships between organisms change in a manner that follows Hebbian principles
- behaviours that co-occur together under the same conditions ‘wire’ together
such that they co-occur together more in future. This has the effect of forming
an implicit associative memory at the ecosystem scale, such that the system ‘re-
calls’ past attractor states, enlarges high-utility ESSs in preference for low-utility
ESSs, and generalises over local attractors to find higher-utility attractors that
would not otherwise be visited.

Our models have also suggested that pre-existing environmental conditions
may act as a support for the processes described here. For example, a population
may from the outset exhibit some degree of interaction structure due to spatial
localisation. This existing interaction structure can then scaffold the evolution
of genetic traits that provide further structure and greater cooperation (Penn,
2006). This is significant because if there is already some structure and hence
cooperation present, then it is likely that a mutation that increases this structure
by only a small amount will lead to some increase in cooperation, and hence will



be selectively favoured (Powers and Watson, 2009). By contrast, if no interaction
structure is present then a large modification of the environment may be required
to produce any cooperation, and such a large adaptive modification may not be
plausible by mutation (Powers et al., 2008; Powers and Watson, 2009). Another
potential example of such a scaffolding process, which is significant to the major
transitions, concerns the evolution of higher-level heredity. Some of our mod-
els (Penn and Harvey, 2004; Penn, 2006) have shown that where within-group
interactions give rise to complex dynamics (for example, in Lotka-Volterra mod-
els), then the existence of multiple within-group attractors can act as a source
of limited heredity, for offspring groups will tend to return to the same state
as their parent, and selection can act between such stable states. We suggest
that this limited heredity, given simply by ecological dynamics, could bootstrap
the evolution of further heritability at the group level by processes analogous to
those discussed here (Penn, 2006).

In conclusion, we have shown through a series of models how genetic traits
that affect an individual’s social environment can evolve in such a way as to pro-
duce conditions favourable for the evolution of greater cooperation. Thus, while
most other work assumes the interaction structure that favours cooperation, we
have shown how such structure can evolve under natural selection.
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