The University of Southampton
University of Southampton Institutional Repository

Cross-Platform Analysis with Binarized Gene Expression Data

Tuna, Salih and Niranjan, Mahesan (2009) Cross-Platform Analysis with Binarized Gene Expression Data At Pattern Recognition in Bioinformatics. , pp. 439-449.

Record type: Conference or Workshop Item (Paper)

Abstract

With widespread use of microarray technology as a potential diagnostics tool, the comparison of results obtained from the use of different platforms is of interest. When inference methods are designed using data collected using a particular platform, they are unlikely to work directly on measurements taken from a different type of array. We report on this cross-platform transfer problem, and show that working with transcriptome representations at binary numerical precision, similar to the gene expression bar code method, helps circumvent the variability across platforms in several cancer classification tasks. We compare our approach with a recent machine learning method specifically designed for shifting distributions, i.e., problems in which the training and testing data are not drawn from identical probability distributions, and show superior performance in three of the four problems in which we could directly compare.

PDF tuna_prib.pdf - Other
Download (204kB)

More information

Published date: September 2009
Additional Information: Event Dates: September 2009
Venue - Dates: Pattern Recognition in Bioinformatics, 2009-09-01
Organisations: Southampton Wireless Group

Identifiers

Local EPrints ID: 268188
URI: http://eprints.soton.ac.uk/id/eprint/268188
ISBN: 978-3-642-04030-6
PURE UUID: ecd4ec68-b0a9-4ef7-b57b-f423b4b66023

Catalogue record

Date deposited: 11 Nov 2009 14:27
Last modified: 18 Jul 2017 06:56

Export record

Contributors

Author: Salih Tuna

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×