
The Complex Dynamics of Sponsored Search Markets?Valentin Robu? ? ?, Han La Poutré, and Sander BohteCWI, Center for Mathematics and Computer ScienceKruislaan 413, NL-1098 SJ Amsterdam, The Netherlandsfrobu, hlp, sbohteg@cwi.nlAbstract. This paper provides a comprehensive study of the structure and dy-namics of online advertising markets, mostly based on techniques from the emer-gent discipline of complex systems analysis. First, we look at how the displayrank of a URL link in�uences its click frequency, for both sponsored search andorganic search. Second, we study the market structure that emerges from thesequeries, especially the market share distribution of different advertisers. We showthat the sponsored search market is highly concentrated, with less than 5% of alladvertisers receiving over 2/3 of the clicks in the market. Furthermore, we showthat both the number of ad impressions and the number of clicks follow powerlaw distributions of approximately the same coef�cient. However, we �nd thisresult does not hold when studying the same distribution of clicks per rank posi-tion, which shows considerable variance, most likely due to the way advertisersdivide their budget on different keywords. Finally, we turn our attention to howsuch sponsored search data could be used to provide decision support tools forbidding for combinations of keywords. We provide a method to visualize key-words of interest in graphical form, as well as a method to partition these graphsto obtain desirable subsets of search terms.1 IntroductionSponsored search, the payment by advertisers for clicks on text-only ads displayedalongside search engine results, has become an important part of the Web. It repre-sents the main source of revenue for large search engines, such as Google; Yahoo!;and Microsoft's Live.com, and sponsored search is receiving a rapidly increasing shareof advertising budgets worldwide. But the problems that arise from sponsored searchalso present exciting research opportunities, for �elds as diverse as economics, arti�cialintelligence and multi-agent systems.In the �eld of multi-agent systems, researchers have been working for some timeon topics such as designing automated auction bidding strategies in uncertain and com-petitive environments (e.g. [4, 21]). Another emergent �eld which studied such topicis agent-based computational economics (ACE) [15], where signi�cant research efforthas focused on the dynamics of electronic markets through agent-based simulations.One particular topic of research for the ACE community is how order and macro-levelmarket structure can emerge from the micro-level actions of individual users. However,? ? ? Currently in the Intelligence, Agents, Multimedia Group, University of Southampton, UK.? This work was performed based on a Microft Research �Beyond Search� award. The authorswish to thank Microsoft Research for their support.



2 V. Robu, H. La Poutré, S. Bohtemost existing work has been based on simulations, as there are few sources of large-scale, empirical data from real-world automated markets. In this context, empirical datamade available from sponsored search provides an excellent opportunity to test the as-sumptions made in such models in a real market.In this paper,which is based on large-scaleMicrosoft sponsored search data, we pro-vide a detailed empirical analysis of such data. To do this, we make use of several tech-niques derived from computational economics, and especially complex systems theory.Complex systems analysis (which we brie�y review below) has been shown to be anexcellent tool for analyzing large social, technological and economic systems, includingweb systems [19, 11, 6].1.1 The data setThe study provided in this paper is based on a large dataset of sponsored search queries,obtained from the website Live.com1. The search data provided consists of two distinctdata sets: a set of sponsored search dataset (URLs returned are allocated to advertisers,through an auction mechanism) and an organic search dataset (standard, unbiased websearch). The sponsored search data consists of 101,171,081 distinct impressions (i.e.single displays of advertiser links, corresponding to one web query), which in total re-ceived 7,822,292 clicks. This sponsored dataset was collected for a roughly 3-month pe-riod in the autumn of 2007. The organic search data set consists of 12,251,068 queries,and was collected in a different 3-month interval in 2006 (therefore the two data setsare chronologically disjoint).It is important to stress that in the results reported in this paper are based mostly onthe sponsored search data set2. Furthermore, the sponsored search data we had availableonly provides partial information, in order to protect the privacy of Microsoft Live.comcustomers and business partners. For example, we have no information about �nancialissues, such the prices of different keywords, how much different advertisers bid forthese keywords, the budgets they allocate etc. Furthermore, while the database providesan anonymized identi�er for each user performing a query, this does not allow us totrace individual users for any length of time.Nevertheless, one can extract a great deal of useful information from the data. Forexample, the identities of the bidders; for which keyword combinations their ads wereshown (i.e. the impressions); for which of these combinations they received a click; theposition their sponsored link was in when clicked etc... Insights gained from analyzingthis information forms the main topic of this paper.2 Complex systems analysis applied to the web and economicsComplex systems represents an emerging research discipline, at the intersection of di-verse �elds such as AI, economics, multi-agent simulations, but also physics and biol-ogy [2]. The general topic of studies in the �eld of complex systems is how macro-level1 This data was kindly provided to us by Microsoft research through �Beyond Search� award2 The only exception is a plot on the distribution number of clicks vs. display rank in Sect. 3,included for comparison reasons.



The Complex Dynamics of Sponsored Search Markets 3structure can emerge from individual, micro-level actions performed by a large numberof individual agents (such as in an electronic market). For web phenomena, complexsystems techniques have been successfully used before to study phenomena such ascollaborative tagging [11, 10] or the formation of online social groups [1].One of the phenomena that are indicative to such complex dynamics is the emer-gence of scale-free distributions, such as power laws. The emergence of power laws insuch a system usually indicates that some sort of complex feedback phenomena (e.g.such as a preferential attachement phenomena) is at work. This is usually one of the cri-teria used for describing the system as �complex� [2, 6]. Research in disciplines such aseconophysics and computational economics discusses how such power laws can emergein large-scale economic systems (see [6, 19] for a detailed discussion).2.1 Power laws: de�nitionA power law is a relationship between two scalar quantities x and y of the form:y = cx� (1)where � and c are constants characterizing the given power law. Eq. 1 can also bewritten as: log y = � logx+ log c (2)When written in this form, a fundamental property of power laws becomes appar-ent; when plotted in log-log space, power laws appear as straight lines. As shown byNewman [19] and others, the main parameter that characterizes a power law is its slopeparameter �. (On a log-log scale, the constant parameter c only gives the �vertical shift�of the distribution with respect to the y-axis.). Vertical shift can vary signi�cantly be-tween different phenomenameasured (in this case, click distributions), which otherwisefollow the same dynamics. Furthermore, since the logarithm is applied to both sides ofthe equation, the size of the parameter � does not depend on the basis chosen for thelogarithm (although the shifting constant c is affected). In the log-log plots shown in thispaper, we have chosen the basis of the logarithm to be 2, since we found graphs withthis low basis the more graphically intuitive. But, in principle, the same conclusionsshould hold if we choose the logarithm basis to be, e.g. e or 10.3 In�uence of display rank on clicking behaviorThe �rst issue that we studied (for both sponsored and organic search data) is how theposition that a URL link is displayed in in�uences its chances of receiving a click. Notethat this particular issue has received much attention in existing literature [8]. To brie�yexplain, Microsoft's Live.com search interface (from which the data was collected), isstructured as follows:� For sponsored search there are up to 8 available slots (positions) in which sponsoredURL links can be placed. Three of these positions (ranked as 1-3) appear at the topof the page, above the organic search results, but delimited from those by a differentbackground. In addition, the page can display up to 5 additional links in a side barat the right of the page.
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Fig. 1. Distribution of clicks received by a URL, relative to its position on the display, for spon-sored and organic search. A(left-side, sponsored search): There are up to 8 sponsored advertiserlinks displayed: 3 on the top of the page, and 5 in a side bar. B(right, organic search): There areusually 10 positions displayed per page, with multiple result pages appearing as plateaus.� The �organic� search results are usually returned as 10 URL links/page (a user canopt to change this setting, but very few actually do).All the sponsored links are allocated based on an auction-like mechanism betweenthe set of interested advertisers (such a display, in any position is called in �impres-sion�). However, the advertisers only pay if their link actually gets clicked - i.e. �payper click� model. The exact algorithm used by the engine to determine the winners andwhich advertiser gets which position is a complex mechanism design problem and notall details are made public. However, in general, it depends on such factors as the pricethe bidder is willing to pay per click, the relevance of the query to her set of terms, andher past performance in terms of �clickthrough rate� (i.e. how often links of that userwere clicked in the past, for a given keyword). By contrast, in organic search, returnedresults are ranked simply based on relevance to the user's query.3.1 Results on display position bias and interpretationResults for the position bias on click distribution are plotted in Fig. 1: part A (left side)for sponsored search and part B (right side) for the organic search. Note that both ofthese are cumulative distributions: they were obtained by adding the number of clicksfor a link in each position, irrespective of the exact context of the queries or links thatgenerated them. Furthermore, both are drawn in the log-log space.There are two main conclusions to be drawn from these pictures. For the sponsoredsearch results (Fig. 1.A), the distribution across the 8 slots seems to resemble a straightline, with a slope parameter aprox. � = 2. However, such a conclusion would be toosimplistic: there is, in fact, a difference between the slope between the �rst 3 positions(up to log23, on the horizontal axis), and the last 5 positions. The slope for the �rst 3



The Complex Dynamics of Sponsored Search Markets 5positions is around �1 = 1:4, while for the last 5 is around �2 = 2:5. The most likelyreason for this drop comes from the way the Live.com search interface is designed.The �rst 3 slots for sponsored search links are shown on the top of the page, above theorganic search results, while the last 5 are shown in a side bar on the right of the page.Fig. 1.B corresponds to the same plot for organic search results, the main effectone notices is the presence of several levels (thresholds), corresponding to clicks ondifferent search pages. We stress that, since this is a log-log plot, the drop in attentionbetween subsequent search pages is indeed very large - about two orders of magnitude(i.e. the top-ranked link on the second search page is, on average, about 65 times lesslikely to be clicked than the last-ranked link on the �rst page). The distribution of intra-page clicks, however, at least for the �rst page of results, could be roughly approximatedby a power law of coef�cient � = 1:25.All this raises of course the question: what do these distributions mean and whatkind of user behaviour could account for the emergence of such distributions in spon-sored search results? First, we should point out that the fact that we �nd power lawdistributions in this context is not completely surprising. Such distributions have beenobserved in many web and social phenomena (to give just one example, in collabora-tive tagging systems, in the work by one of the co-authors of this paper [11] and others).In fact, any model of �top to bottom� probabilistic attention behaviour, such as a userscanning the list of results from top to bottom and leaving the site with a certain prob-ability by clicking one of them could give rise to such a distribution. Of course, more�ne-grained models of user behavior are needed to explaining click behavior in thiscontext (an example of such a model is [8]). But for now we leave this issue to furtherresearch, and we look at the main topic of this paper which is examining the structureof the sponsored search market itself.4 Market structure at the advertiser levelIn this Section, we look at how sponsored search markets are structured, from the per-spective of the participants (i.e. advertisers that buy search slots for their URLs). Morespeci�cally, we study how relative market shares are distributed across link-based ad-vertisers. We note that in many markets, an often cited rule, also informally attributedto Pareto, is that 20% of participants in a market (e.g. customers in a marketplace) drive80% of the activity. Here, we call this effect the �market concentration�.In a sponsored search market, the main �commodity� which produces value formarket participants (either advertisers and the search engine) is the number of clicks.Therefore, the �rst thing that we plotted (�rst, using normal, i.e. non-logarithmic axes)is the cumulative share of different advertisers (see Fig. 2. A. - left side graph). Fromthis graph, one can already see that just the top 500 advertisers get roughly 66% (orabout two-thirds) of the total 7.8 million clicks in the available data set3.3 Note that an advertiser was taken, following the available data, by the domain URL of thesponsored link. This is a reasonable assumption, in this case. For example, Ebay uses manysponsored links to different products. However, using this technique, Ebay is taken as oneadvertiser, regardless of how many different items its URLs point to.
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Fig. 2. A (left-side): Cumulative percentage distribution of the number of clicks advertisers inthe market receive, wrt. to their rank position, considering the top 5000 advertisers in the market(normal scales). B (right): Log-log scale distributions of the number of impressions, respectivelynumber of clicks, received by the top 10000 advertisers in the market. Note that both distributionsfollow approximately parallel power laws, but the click distributions levels off in a �long tail�after the �rst 4000 advertisers, while the impression distribution has a much longer tail (not allappearing in the �gure).Since in our data, there are at least 10000 distinct advertisers (most likely, there aremany more, but we only considered the top 10000), this means that a percentage of lessthan 5% of all advertisers have a two-thirds market share. This suggests that sponsoredsearch markets are indeed very concentrated, perhaps even more so than �traditional�real-world markets.4.1 Distribution of impressions vs. distribution of clicks for the top advertisersNext, we studied the detailed distribution of the numbers of impressions (i.e. displayedURLs) and clicks on these impressions, for the top 10000 distinct advertisers. Resultsare shown in Fig. 2.B. (right-hand side graph), using a log-log plot.Themain effect that one can see from Fig. 2.B. is that the distribution of impressionsand the distribution for clicks received by the advertisers form two approximately paral-lel, straight lines in the log-log space (i.e. they are two power laws of approximately thesame slope coef�cient �). There is one important difference, though, which is the sizeof the �long tail� of the distribution. The distribution of the number of clicks (lowerline), levels off after about 4000-5000 positions. Basically, in data terms, this meansthat advertisers beyond the top 5000 each receive a negligible number of clicks, at leastin the dataset we examined. The reason for this may be that their ads almost alwaysappear in the lower display ranks, or simply that they bid on a set of rarely used (orhighly specialised) search keywords. By contrast, the distribution of impressions stillcontinues for many more positions (although we only represent the top 10000 distinctadvertiser IDs here, as the rest do not play any signi�cant role in the click market).
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Fig. 3. Distribution of advertiser market share, based on their ordered rank vs. the number ofclicks their links receive (log-log scales). The left-hand side plot (part A) gives the total numberof clicks an advertiser received for all impressions of her links, regardless of the position theywere in. The right-hand side (part B) gives the number of clicks received, both in total, but alsowhen her ads were displayed on a speci�c position on the page (among the 8 ranked slots of thesponsored search interface).4.2 Distribution of market share per display rank positionThe previous Section examined the power law distributions of the number of clicks eachadvertiser gets in aggregate (i.e. over all display ranks his/her links are shown in). Here,we look how an advertiser's market share distribution is affected when broken down perdisplay rank (an issue we already touched on in Sect. 3).However, we �rst make a slight restriction in the number of advertisers we consider.As shown in Sect 4.1 above, there is a power law distribution in the clicks received bythe top 4000 advertisers, advertisers ranked beyond this position each receive a negligi-ble number of clicks. Therefore, in this Section, we restrict our attention to the top 4000advertisers. As these 4000 advertisers receive over 80% of all 7.8 million clicks in thedata set (see Fig. 2.A), we do not risk loosing much useful information.Results are shown in Fig. 3. First, in Fig. 3.A. we show again, more clearly, thepower law distribution of the number of clicks for the top 4000 advertisers. Note thatthis is a �wide� distribution, in the sense that it covers 4000 positions and several ordersof magnitude. On the right-hand side graph (Fig. 3.B), we show the same graph, butnow, for each advertiser, we also break down the number of clicks received by theposition his/her sponsored URL was in when it was clicked.Surprisingly, perhaps, the smooth power law shape is not followed at the level ofthe display rank - in fact, for the lower levels the variance becomes so great that the dis-tribution breaks down, at the display rank level. We hypothesize the most likely reasonfor this variance is the way each individual advertiser does the bidding for the pre-ferred keywords at different points in time, or the way he speci�es the way his keywordbudget could be used in different periods. For example, some advertisers may have ashort-running sale campaign, when they will bid aggresively for the preffered keyword,



8 V. Robu, H. La Poutré, S. Bohtehence getting the top spot. By contrast, others may prefer to have longer-running ads,even if they don't get the top spot every time. Some anecdotal evidence from onlinemarketing suggests that even just the repeated display of a link of a certain merchanton the screen may count: if a user sees an ad repeatedly in his/her attention space, thatmay establish the brand as more trustworthy.In Fig. 3.B, by loking the the top 4 advertisers in this dataset, one can already seethat users ranked 2 and 3 utilize a rather different strategy than �the trend� representedby users 1 and 4.While their total numer of clicks does follow, approximately the powerlaw, they seem to get, proportionally speaking, more clicks on the top-ranked slot on thepage than the rest. While, in order to preserve the privacy of the data, we cannot men-tion who these companies are, it does seem that users 2 and 3 are actually �aggregators�of advertising demand. By this, we mean online advertising agencies or engines (or au-tomated services offered by the platform itself) that aggregate demand from differentadvertisers and do the bidding on their behalf. Apparently, this allows them to cap-ture, proportionally, more often the top slot for the required keyword. Unfortunately,however, we cannot investigate this aspect further, since the dataset provided does notcontain any information about bidding, budgets or �nancial information in general.In the following and last Section of this paper, we turn our attention to a somewhatdifferent problem: how could we use insights gained from analyzing this query data toprovide a bidding decision support for advertisers taking part in this market.5 Using click data to derive search term recommendationsThe previous Sections of this paper used complex systems analysis to provide a high-level examination of the dynamics of sponsored search markets. In this Section, welook at how such query log data could be used to output recommendations to individualadvertisers. Such an approach should lead to answers to questions such as: What kind ofkeyword combinations look most promising to spend one's budget on, such as to attracta maximum number of relevant user clicks? While the previous analysis of power-lawformation was done at a macro-level, in this Section we take a more local perspective.That is, we do not consider the set of all possible search terms, but rather a set that isspeci�c to a domain. This is a reasonable model: in practice, most advertisers (whichare typically online merchants), are only concerned with a restricted set of keywordswhich are related to what they are actually trying to sell.For the analysis in this paper, we have chosen as a domain 50 keywords relatedto the tourism industry (i.e. online bookings of tickets, travel packages and such). Thereason for this is that much of this activity is already fast moving online (e.g. a verysubstantial proportion of, for example, �ight tickets and hotel reservations are now car-ried out online). Furthermore - and perhaps more important - there are low barriers ofentry and the �eld is not dominated by one major player. This contrasts, for example,other domains, such as the sale of Ipods and accessories, where Apple Stores can beexpected to have a dominant position on the clicks in the market.



The Complex Dynamics of Sponsored Search Markets 95.1 Deriving distances from co-occurrence in sponsored click logsGiven a large-scale query log, one of the most useful pieces of information it provides isthe co-occurence of words in different queries. Much previous work has observed thatthe fact that two search keywords frequently appear together in the same query givesrise to some implicit semantic distance between them [11].In this paper, we take a slightly different perspective on this issue, since, in com-puting the distances, we only use those queries which received at least one sponsoredsearch click for the text ads (i.e. URLs) displayed alongside the results. We argue thisis a subtle but very important difference from simply using co-occurence in organicsearch logs. The fact that queries containing some combination of query words leadto a click on a sponsored URL implies not only a purely semantic distance betweenthose keywords, more important for an advertiser, the fact that users searching on thosecombinations of keywords have the possible intention of buying things online.Formally, let N(Ti; Tj) denote the number of times two search terms Ti and Tjappear jointly in the same query, if that query received at least one sponsored searchclick. Let N(Ti) and N(Tj) denote the same number of queries leading to a click, inwhich terms Ti, respectively Tj appear in total (regardless of other terms they co-occurwith). The cosine similarity distance between terms Ti and Tj is de�ned as:Sim(Ti; Tj) = N(Ti; Tj)pN(Ti) �N(Tj) (3)Note that cosine similarity is not the only way to de�ne such a distance, but it isa very promising one in many online application settings, such as shown in previouswork by these authors and others [11, 16, 23, 22].5.2 Constructing keyword correlation graphsThemost intuitive way to represent similarity distances is through a keyword correlationgraph. The results from our subset of 50 travel-related terms are shown in Fig. 4. Inthis graph, the size of each node (representing one query term) is proportional to theabsolute frequency of the keyword in all queries in the log. The distances between thenodes are proportional to the similarity distance between each pair of terms, computedEq. 3, where the whole graph is drawn according to a so called �spring embedder�-type algorithm. In this type of algorithm, edges can be conceived as �springs�, whosestrength is indirectly proportional to their similarity distance, leading to cluster of edgessimilar to each other to be shown in the same part of the graph.There are several commercial and academic packages available to draw such com-plex networks. The one we think is most suitable - and which was used for graph Fig.4 - is Pajek (see [3] for a description). Note that not all edges are considered in the�nal graph. Even for 50 nodes, there are �502 � = 1225 possible pairwise similarities(edges), one for each potential keyword pair. Most of these dependencies are, however,spurious (they represent just noise in the data), and our analysis bene�ts from usingonly the top fraction, corresponding to the strongest dependencies. In the graph shownin Fig. 4, containing 50 nodes, only the top 150 strongest dependencies were consideredin the visualization.
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Fig. 4. Visualization of a search term correlation graph, for a set of search terms related to thetourism industry. Each search term is assigned one colored dot. The size of the dots gives itsrelative weight (in total number of clicks received), while the distances between the dots areobtained through a spring-embedder type algorithm and are proportional to the co-occurrence ofthe two search terms in a query. Each dot is marked with its success rate (percentage of the totalnumber of impressions associated with that query word that received a click).5.3 Graph correlation graphs: resultsThere are several conclusions that can be drawn from the visualization in Fig. 4 con-structed based on the Live.com sponsored search query logs. First, notice that eachnode was labelled not only with the term or keyword it corresponds to, but also withthe aggregate click-through rate (CTR), speci�c for that keyword. Basicallly, this is thepercentage of all the queries that used the term which generated at least one click to asponsored search URL displayed with that query.Note that these click-through rates may, at a �rst glance, seem on the low side:in general only a few percent of all queries actually lead to a click on an sponsored(i.e. advertiser) link. Nevertheless, as a search engine receives millions of queries in arather short period of time, even a 5%-10% click-through rate can be quite signi�cant.Note that some keywords (such a �cheap�) have a higher click-through rate than others.The reason for this may be that people searching for �cheap� things (e.g. cheap airlinetickets, cheap holiday packages, hotel rooms etc.) may already have the intention to buysomething online, and therefore are more likely to [also] click on sponsored links.



The Complex Dynamics of Sponsored Search Markets 11However, the most interesting effect to observe in Fig. 4 are the term clusters thatemerge in different parts of the graph, from the application of the spring-embedder vi-sualization algorithm. For example, the leftmost part of the graph has 4 terms relatedto weather, such as �warm�, �tropical� and �exotic�. On the top left part of the graph,one can �nd terms such as �entertainment�, �nightlife�, �party� and �fun�, while verybottom part includes related terms as such �climbing�, �hiking� and �mountain�. Thetop-right part includes commercial terms such as: �ticket�, �tickets�, ��ight�, �cheap�,�last�, �minute�. The central part of the graph includes terms such a �beach�, �sand�,�sea�, �resort�, �ocean�, �island� etc. Additionally, pairs of terms one would naturallyassociate do indeed appear close together, such as �romantic� and �getaway� and �sun-set� and �sunrise� and �ocean�.In the following, we discuss an algorithm that can detect such clusters automatically.More precisely, we would like an algorithm that selects combinations of tags that lookpromising in attracting queries and clicks.5.4 Automatic identi�cation of sets of keywordsIn this Section, we show how keyword graphs could be automatically partitioned intorelevant keyword clusters. The technique we use for this purpose is the so called �com-munity detection� algorithm [20], also inspired by complex systems theory. In networkor graph-theoretic terms, a community is de�ned as a subset of nodes that are connectedmore strongly to each other than to the rest of the network (i.e. a disjoint cluster). If thenetwork analyzed is a social network (i.e. vertexes are people), then �community� hasan intuitive interpretation. However, the network-theoretic notion of community detec-tion algorithm is broader, has been succesfully applied to domains such as networks ofitems on Ebay [12], publications on arXiv, food webs [20] etc.Community detection: a formal discussion Let the network considered be repre-sented a graph G = (V;E), when jV j = n and jEj = m. The community de-tection problem can be formalized as a partitioning problem, subject to a constraint.Each v 2 V must be a assigned to exactly one group (i.e. community or cluster)C1; C2; :::CnC , where all clusters are disjoint.In order to compare which partition is �optimal�, the metric used is modularity,henceforth denoted byQ. Intuitively, any edge that in a given partition, has both ends inthe same cluster contributes to increasing modularity, while any edge that �cuts across�clusters has a negative effect on modularity. Formally, let eij ; i; j = 1::nC be the frac-tion of all edge weights in the graph that connect clusters i and j and let ai = 12Pj eijbe the fraction of the ends of edges in the graph that fall within cluster i. The modularityQ of a graph jGj with respect to a partition C is de�ned as:Q(G;C) =Xi (ei;i � a2i ) (4)Informally, Q is de�ned as the fraction of edges in the network that fall withinclusters, minus the expected value of the fraction of edges that would fall within thesame cluster, if all edges would be assigned using a uniform, random distribution.



12 V. Robu, H. La Poutré, S. BohteAlgorithm 1 GreedyQ Partitioning: Given a graph G = (V;E); jV j = n; jEj = mreturns partition< C1; :::CnC >1. Ci = fvig, 8i = 1; n2. nC = n3. 8i; j, eij initialized as in Eq. 54. repeat5. < Ci; Cj >= argmaxci;cj (eij + eji � 2aiaj)6. �Q = maxci;cj (eij + eji � 2aiaj)7. Ci = CiSCj , Cj = ; //merge Ci and Cj8. nC = nC � 19. until�Q � 010.maxQ = Q(C1; ::CnC )As shown in[20], if Q = 0, then the chosen partition c shows the same modularityas a random division. A value of Q closer to 1 is an indicator of stronger communitystructure - in real networks, however, the highest reported value is Q = 0:75. In prac-tice, [20] found (based on a wide range of empirical studies) that values of Q abovearound 0.3 indicate a strong community structure for the given network. In our case,the edges that we considered in the graph (recall that only the strongest 150 edges areconsidered) have a weight, de�ned as shown in Eq. 3 above. For the purpose of theclustering algorithm, this weight has to be normalized by the sum of all weights in thesystem, thus we assign initial values to eij as:eij = 1Pij simij simij (5)5.5 The graph partitioning algorithmThe algorithm we use to determine the optimal partition is the �community identi�ca-tion� algorithm described in [20], formally speci�ed as Alg. 1 above. Informally de-scribed, the algorithm runs as follows. Initially, each of the vertexes (in our case, eachkeyword) is assigned to its own individual cluster. Then, at each iteration of the algo-rithm, two clusters are selected which, if merged, lead to the highest increase in themodularity Q of the partition. As can be seen from lines 5-6 of Alg. 1, because ex-actly two clusters are merged at each step, it is easy to compute this increase in Q as:�Q = (eij+eji�2aiaj) or�Q = 2� (eij�aiaj) (the value of eij being symmetric).The algorithm stops when no further increase in Q is possible by further merging.Note that it is possible to specify another stopping criteria in Alg. 1, line 9, e.g.it is possible to ask the algorithm to return a minimum number of clusters (subsets),by letting the algorithm run until nC reaches this minimum value. Furthermore, thisalgorithm is computationally ef�cient, since it is basically linear in the size of the graph(number of keywords considered), hence it can be applied even to very large datasets.



The Complex Dynamics of Sponsored Search Markets 13Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9beach party package weather getaway diving cruise show lastluxury entertainment vacation exotic romantic swimming sunrise tickets minutehotel nightlife holidays tropical sunset ticket visitisland fun destination warm cheapresort Hawaii deal �ightsun Oahu tourmountain offerocean greathikingclimbingseasand Keywords eliminated to increase modularity: holiday, holidays, relaxation, trip.Fig. 5.Optimal partition of the set of travel terms in semantic clusters, when the top 150 edges areconsidered. The partition was obtained by applying Newman's automated �community detection�algorithm to the graph from Fig 4. This partition has a clustering coef�cient Q=0.59.5.6 Discussion of graph partitioning resultsThe results from the graph partitioning algorithm, showing the partition maximises themodularity Q for this setting, is shown in Fig. 5. Note that this is not the only possibleway to partition this graph - if one would consider a different number of strongest de-pendencies to begin with (in this case we selected the top 150 edges, for 50 keywords),or a different stopping criteria, one may get a somewhat different result. Furthermore,note that some keywords, which were very general and could �t in several clusters(shown below the �gure), were pruned in order to improve modularity, through a sepa-rate algorithm not shown here.Still, the partition results shown in Fig. 5 match well what our intuition would de-scribe as interesting combinations of search terms, for such a setting. There is one largecentral cluster, of terms that all have reasonably strong relations to each other, and a setof small, marginal clusters on the side. The large cluster in the middle could be furtherbroken by the partition algorithm, but only if we force some other stop criteria thanmaximum modularity (such as a certain number of distrinct clusters).The partition in Fig. 5 �ts well with what can be graphically observed in Fig. 4:actually, most of the clusters obtained automatically after partition can be identi�ed ondifferent parts of the graph. This does not have to be a one-to-one mapping, however,because in a 2D drawing, the layout of the nodes after �spring embedding� may varyconsiderably and, furthermore, there are keywords which could �t well into 2 clusters,and were assigned to one as that had a slightly higher modularity.



14 V. Robu, H. La Poutré, S. Bohte6 Discussion6.1 Contribution of the paper & related workOur work can be seen as related to several other directions of research. Similar tech-niques to the ones used in this paper have been succesfully applied to analyze large-scalecollaborative tagging systems [11] and preference networks for Ebay items [12].The amount of work which is speci�cally geared to sponsored search auctions, es-pecially empirical studies, has so far been rather limited (probably not least due to lackof extensive datasets in this �eld). Much of the previous work, e.g. [8] looks mostly atthe bias introduced by a link's display rank on clicking behaviour (such as discussedin Sect. 3 of this paper). Another important direction of work uses existing intuitionsabout user clicking behaviour to design different allocation mechanisms for this prob-lem - the work of [5] is a good example of this approach. By comparison to our work,the approach taken by [5] studies mostly at mechanism design issues arising from com-putational advertising, rather than perform an empirical examination of such markets.One paper that is related in scope to ours, since it also provides an empirical study ofsearch engine advertising markets is [9]. This work takes, however, a different perspec-tive on this problem, also due to the different type of data the authors had available. Bycontrast to our work, the data that [9] use comes from a single, large-scale advertiser.This means they do get access to more detailed information (including �nancial one)and can say more about actual bidding behaviour. By comparison, the data available tous for this study does not contain any detailed �nancial information, but, unlike [9] itallows us to have a global level view of the whole market (from the perspective of thesearch engine, not just a single advertiser). This provides very important insights aboutthe structure of sponsored search markets.Finally, there exists previouswork that has applied similar co-occurence-based tech-niques to organic search logs or tagging systems [7, 11]. However, our focus in thispaper is different: we do not aim to to merely deduce what is the semantic distancebetween keywords in the general sense, but what kind of combinations of keywords are�nancially interesting for a sponsored search advertiser to bid on. This is the reasonwhy the size of the nodes and distances computed in Fig. 4 are built using only querieswhich lead to an actual click on a sponsored ad. Basically, this is equivalent to �lteringonly the �opinion� (expressed through queries) of the subset of users that are likely tobuy something online, rather than all search engine users. To our knowledge, this is the�rst paper to use sponsored search click data in this way.6.2 Future workThis work, being somewhat preliminary, leaves many aspects open to future research.On such aspect would be is the issue of externalities: how the presence of links by com-peting advertisers in�uences the clickthrough rates of other bidders. As the competitionis basically on customers' attention space, externalities play an important role in theef�cacity of sponsored search impressions.Another very interesting topic would be to study the structure of sponsored searchmarkets (in terms of advertiser market share etc.) not only at the global, macro-level, but
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